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Exact solutions of multidimensional nonlinear
Dirac’s and Schrödinger’s equations
W.I. FUSHCHYCH

A class of nonlinear spinor equations invariant under the extended Poincaré group
and conformal group is described. New Ansätze for spinor fields are suggested. Multi-
parameter families of exact solutions for the multidimensional families of exact solutions
for the multidimensional nonlinear Dirac and Schrödinger equations are obtained.

In this paper I present some new results, obtained in Intitute of Mathematics,
Academy of Sciences of the Ukranian SSR in Kiev by R. Zhdanov, W. Shtelen,
N. Serov and me on multiparameter families of exact solutions of nonlinear Dirac and
Schrödinger equations

γµpµΨ + F1(x,Ψ∗,Ψ)Ψ = 0, (1)
(

p0 +
1

2m
papa

)
u + F2(x, u, u∗) = 0, (2)

where Ψ ≡ Ψ(x) = (Ψ0,Ψ1,Ψ2,Ψ3) is 4-component spinor, x = (x0, x1, x2, x3), Ψ∗ is
complex conjugated spinor, γµ are 4 × 4 Dirac matrices, u ≡ u(x0, x1, x2, x3), x0 ≡ t,
u∗ is complex conjugated wave function,

p0 = i
∂

∂x0
, pj = −i

∂

∂xj
, µ, ν = 0, 3, j = 1, 2, 3,

F1, F2 are arbitrary smooth function, m is the particle mass.
Fifty years ago D. lvanenko (1938) considered the simplest equation of the type

(1), the case in which

F1 = λ(Ψ̄Ψ), (3)

where Ψ̄ ≡ Ψ†γ0 is Dirac-conjugated spinor, λ is arbitrary parameter.
W. Heisenberg and his collaborators (1954–1959) have analysed the equation (1)

from a different point of view with the nonlinearity

F1 = λΨ̄γµγ4Ψγµγ4, γ4 = γ0γ1γ2γ3. (4)

The main efforts of W. Heinseberg directed into the construction of unified quan-
tum field theory based on eq. (1) with the nonlinearities (3), (4). In the works by
R. Finkelstein and his collaborators (1951–1956) eq. (1) has been studied from the
classical point of view, i.e. they studied the exact and approximate solutions of spinor
systems of the type (1).

Some exact solutions of the Dirac equation were obtained by F. Kortel (1956), D.
Kurgeleidze (1957), K.G. Akdezin., A. Smailogic (1984), A.O. Barut, B.W. Xu (1982),
K. Takahashi (1979).
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The classical Lie’s method for finding exact solutions of multidimensional nonli-
near Schrödinger equation and d’Allembert equation was applied by Fushchych (1981,
1983), Fushchych and Serov (1983, 1987), Gagnon and Winternitz (1988), Grundland,
Harmad and Winternitz (1984), Tajiri (1983).

Evidently if we do not specify the functions F1, F2 in eqs. (1), (2) there is no hope
to get any profound information about exact solutions of these equations. To specify
the functions F1 and F2 we shall study the symmetry properties of equations (1), and
(2). In what follows, I shall essentially use the classical ideas of S. Lie in application
to nonlinear wave equations.

The wide symmetry of equations (1), (2) makes it possible to reduce the multidi-
mensional partial differential equation (PDE) a set of systems of ordinary differential
equations (ODE). Many of these ODEs can be solved exactly. In this way we are able
to construct many parameter families of exact solutions of the multidimensional wave
equations (1), (2).

1. The symmetry of the nonlinear spinor equation. In this section we will
present the theorems concerning the symmetry properties of equation (1).

Theorem 1. Equation (1) is invariant under the Poincaré group P (1, 3) iff

F1(x,Ψ∗,Ψ) = F11(s) + F12(s)γ4 + F13(s)γµ(Ψ̄γ4γµΨ) + F14(s)Sµν(Ψ̄γ4SµνΨ),

s = (Ψ̄γ4Ψ, Ψ̄Ψ), Sµν = [γµ, γ4] =
1
4
(γµγν − γνγµ), (1.1)

where F11, F12, F13, F14 are arbitrary smooth scalar functions of the invariant
variable s.
Theorem 2. Equation (1) is invariant under the extend Poincaré group P̃ (1, 3), i.e.
the P (1, 3) group expanded by the one-parameter group of scale transformations of
the type

x′
µ = xµ exp(θ), Ψ′

x′ = Ψ(x) exp(kθ),

iff

F1i = (Ψ̄Ψ)−1/2kF̃1i, i = 1, 2, (1.2)

F1j = (Ψ̄Ψ)−
(1+2k)

2k F̃1j , j = 3, 4, (1.3)

where F̃1i, F̃1j are arbitrary functions of (Ψ̄Ψ)
(Ψ̄γ4Ψ)

.

Theorem 3. Equation (1) is invariant under the conformal group C(1, 3) = 〈P (1, 3),
D,Kµ〉

x′
µ = {xµ − cµ(x · x)}σ−1(x), σ(x) = 1 − 2cµxµ + c2x2,

Ψ′(x) = σ(x){1 − (γ · c)(γ · x)}Ψ
iff

F1i = (Ψ̄Ψ)1/3F̃1i, i = 1, 2, k = −3/2, (1.4)

F1j = (Ψ̄Ψ)−2/3F̃1j , j = 3, 4. (1.5)
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Note 1. The conformally-invariant Dirac–Gürsey equation (1956)

{γµpµ + D(Ψ̄Ψ)1/3}Ψ = 0 (1.6)

belongs to the class (1), (1.4).

Note 2. The equation of the type

{γµpµ + Dγµ(Ψ̄γµΨ) · [(Ψ̄γαΨ)(Ψ̄γαΨ)]−1/3}Ψ = 0 (1.7)

is invariant under the conformal group C(1, 3).
2. The Ansätzes for P̃ (1, 3)-invariant equation. To be specific let us consider

the nonlinear spinor equation of the type

{γµpµ + λ(Ψ̄Ψ)1/2k}Ψ = 0, (2.1)

where λ, k are arbitrary constants, k �= 0.
We look for solutions of (2.1) in the form Fushchych (1981)

Ψ = A(x)φ(ω), (2.2)

where A(x) is 4× 4 matrix, φ(ω) is 4-component column-function depending on three
new variables ω = {ω1, ω2ω3}.

For the Ansatz (2.2) to work effectively it is necessary to find A(x), ω in a form
which after a substitution of (2.2) into (1) would yield an equation for φ(ω) depending
only on new variables ω.

This requirement is met if the following equalities are satisfied:

QA(x) ≡
(

ζµ ∂

∂xµ
+ η

)
A(x) = 0, (2.3)

ζµ ∂ωl

∂xµ
= 0, l = 1, 2, 3, (2.4)

where ζµ(x), η(x) are the coefficients of the infinitesimal operators Q = {Q1, Q2, . . .}
of the group P̃ (1, 3). In our case the generators of the P (1, 3) have the form

Pµ = pµ, Jµν = xµpν − xνpµ + Sµν . (2.5)

Thus the problem of describing Ansätze of the form (2.2) reduces to the construc-
tion of the general solution to the system of equations (2.3), (2.4) with the given ζµ,
η.

As an example let us consider the case where in (2.3), (2.4) the operators Q have
the simple form

Q = {Q1 = J03, Q2 = P1, Q3 = P2}.
Then the system (2.3), (2.4) has the form(

x0p3 − x3p0 +
i

2
γ0γ3

)
A(x) = 0, p1A(x) = 0, p2A(x) = 0, (2.6)

(x0p3 − x3p0)ω = 0, p1ω = 0, p2ω = 0. (2.7)
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It follows from (2.7) that ω = ω(x0, x3) = x2
0 − x2

3. We look for the solutions to
(2.6) in the form

A(x) = exp{γ0γ3g(x)}. (2.8)

After a substitution of (2.8) into (2.6), we obtain

x0
∂g

∂x3
+ x3

∂g

∂x0
− 1

2
= 0. (2.9)

The particular solution of eq. (2.9) is given by the expression

g(x) =
1
2

ln(x0 + x3).

Thus we have

A(x) = exp
{

1
2
γ0γ3 ln(x0 + x3)

}
. (2.10)

Without going into the technical details on solving the system (2.3), (2.4) we give
some expressions for the matrix A(x) and ω.

Example 2.1.

A(x) = (x0 − x2)−k exp
{

1
2a

γ1(γ2 − γ0) ln(x0 − x2)
}

, (2.11)

ω1 =
(
x2

0 − x2
1 − x2

2

)
x−2

3 , ω2 = (x0 − x2)x−2
3 ,

ω3 = ax1(x0 − x2)−1 − ln(x0 − x2), a �= 0.
(2.12)

If the parameter a = 0, then

A(x) = exp
{

x1

2(x0 − x3)
γ1(γ2 − γ0)

}
. (2.13)

Example 2.2.

A(x) = 2(x0 + 2x1 + β)−k/2×

× exp
{

1
4
γ0γ2 ln(2x0 + 2x1 + β) − 1

2
γ2γ3 tg−1 x2

x3

}
, β �= 0,

(2.14)

ω1 = (2x0 + 2x1 + β) exp{2(x1 − x0)β−1},
ω2 = (2x0 + 2x1 + β)

(
x2

2 + x2
3

)−1
, ω3 = b ln

(
x2

2 + x2
3

)
+ 2 tg−1 x2

x3
.

(2.15)

3. 3.1. Reduced equations. The Ansatz (2.2) with the matrices (2.10), (2.11),
(2.14) and new variables ω gives the following reduced equations

k(γ2 − γ0)φ + [(γ0 − γ2)(ω1 + a−2ω2
2ω2

3) + (γ0 + γ2)ω2
2 −

− 2a−1γ1ω3ω
2
2 − 2γ3ω1ω2]

∂φ

∂ω1
+ [(γ0 − γ2)ω2 − γ3ω

2
2 ]

∂φ

∂ω2
+

+ [aγ1 + (γ2 − γ0)(ω3 + 1)]
∂φ

∂ω3
= iλ(φ̄φ)1/2kφ,

(3.1)
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(γ0 + γ1)
∂φ

∂ω1
+ γ2

∂φ

∂ω2
+ γ3

∂φ

∂ω3
= iλ(φ̄φ)1/2kφ, (3.2)

1
2
(1 − 2k)γ3φ + 2(γ3 + aγ2)

∂φ

∂ω2
= iλ(φ̄φ)1/2kφ. (3.3)

The Ansatz (2.2) with the matrix A(x) = 1, ω1 = x0 + x3, ω2 = x1, ω3 = x2 leads
to the equation

(γ0 + γ3)
∂φ

∂ω1
+ γ1

∂φ

∂ω2
+ γ2

∂φ

∂ω3
= iλ(φ̄φ)1/2kφ. (3.4)

It turns out that some of the reduced equations possess substantially more sym-
metries than the initial equation (2.1). For example the equation (3.4) is invariant
under infinite-dimensional Lie algebras. More exactly, the following statement is true:

Theorem 4. The system (3.4) is invariant under the infinitely dimensional algebra
whose basis elements have the form

For the case k = 1

Q1 = Φ1(ω1)
∂

∂ω2
+ Φ2(ω2)

∂

∂ω3
+

1
2
[Φ1γ1 + Φ2γ2](γ0 + γ3),

Q2 = −ω2
∂

∂ω3
+ ω3

∂

∂ω2
,

Q3 = Φ0(ω1)
∂

∂ω1
+ Φ̇0(ω1)

(
ω2

∂

∂ω3
+ ω3

∂

∂ω2

)
+

+ Φ̇0 +
1
2
Φ̈0(ω1)(γ1ω2 + γ2ω1)(γ0 + γ3),

Q4 = Φ3(ω1)γ4(γ0 + γ3).

For the case k �= 1

Q1 =
∂

∂ω1
, Q2 = −ω2

∂

∂ω3
+ ω3

∂

∂ω2
+

1
2
γ2γ3.

Q3 = Φ1(ω1)
∂

∂ω2
+ Φ2(ω1)

∂

∂ω3
+

1
2
[Φ̇1(ω2)γ1 + Φ2(ω1)γ2](γ2 + γ3),

Q4 = ω1
∂

∂ω1
+ ω2

∂

∂ω2
+ ω2

∂

∂ω3
+ k,

Q5 = Φ3(ω1)γ4(γ0 + γ3),

where Φ0(ω1), Φ1(ω1), Φ2(ω1), Φ3(ω1) are arbitrary smooth functions, a dot desig-
nates differentiation with respect to ω1.

3.2. The reduction of the nonlinear spinor equation to a system of ODE. Here
we give the explicit form of some ODE’s to which the Dirac equation is reduced:

iγ2φ̇(ω) = λ(φ̄φ)1/2kφ, (3.5)

i

2
(γ0 + γ3)φ + i[ω(γ0 − γ3)]φ̇ = λ(φ̄φ)1/2kφ, (3.6)
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i

2
ω−1/2γ2φ + 2iω1/2γ2φ̇ = λ(φ̄φ)1/2kφ, (3.7)

i

2
[ω(ω + 1)]−1(2ω + 1)[γ0 + γ3)φ + i(γ0 + γ3)φ̇ = λ(φ̄φ)1/2kφ, (3.8)

i(γ0 + γ3)φ̇ + i

[
(γ0 + γ3)ω−1 +

1
4
(γ0 − γ3)γ4

]
φ = λ(φ̄φ)1/2kφ, (3.9)

iω−1(γ0 + γ3)ϕ + i(γ0 + γ3)φ̇ = λ(φ̄φ)1/2kφ, φ̇ ≡ dφ

dω
. (3.10)

The full list of the systems of ordinary differential equations is given in Fushchych
and Zhdanov (1988).

4. The explicit solutions of the Dirac equation. Some of the ODE’s can be
integrated in quadratures.

I. Case k = 1/2, with the nonlinearity λ(Ψ̄Ψ), ω = x2
2 + x2

3,

Ψ(x) = (x2
2 + x2

3)
−1/4 exp

{
−1

2
γ2γ3 tg−1 x2

x3

}
×

× exp
{
−iλ

χ̄χ

2(1 + a2)
(γ3 + aγ2) ln(x2

2 + x2
3) + 2 tg−1 x2

x3

}
χ,

(4.1)

χ is constant spinor, a is a real parameter.
II. Case k �= 1/2, nonlinearity λ(Ψ̄Ψ)1/2k, ω = x2

2 + x2
3,

Ψ(x) = (x2
2 + x2

3) exp
{
−1

2
γ2γ3 tg−1 x2

x3

}
exp

{
2iλk

1 − 2k
(x2

2 + x2
3)

2k−1
4k γ3

}
χ. (4.2)

III. Case k �= 1/2, nonlinearity λ(Ψ̄Ψ)1/2k, ω = x0 + x3,

Ψ(x) = exp
{[

−1
2
(Φ̇1γ1 + Φ̇2γ2) + Φ3γ4

]
(γ0 + γ3)

}
×

× exp
{

iλ(χ̄χ)1/2kγ1(x1 + Φ1)
}

χ,

(4.3)

where Φ1, Φ2, Φ3 arbitrary smooth functions of ω.
IV. Case k = 1, nonlinearity λ(Ψ̄Ψ)1/2,

Ψ(x) =
γ0x0 − γ1x1 − γ2x2

(x2
0 − x2

1 − x2
2)3/2

exp
{

iλ(χ̄χ)1/2 γ0x0

x2
0 − x2

1 − x2
2

}
χ. (4.4)

Now, making use of the Poincaré invariance of the Dirac equation, is not difficult
to construct new multiparameter families of exact solutions of the equation starting
from those obtained above. The two following examples illustrate the procedure of
generating solutions.

V. Case k = 1/2, nonlinearity λ(Ψ̄Ψ),

Ψ = [(a · z)2 + (b · z)2]−1/4 exp
{
−1

2
(γ · a)(γ · b) tg−1 a · z

b · z
}
×

× exp
{
−iλ

χ̄χ

2(1 + θ2)
(γ · b + θγ · a) ×

×
[
ln

(
(a · z)2 + (b · z)2

)
+ 2θ tg−1 a · z

b · z
]}

χ,

(4.5)
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zµ = xµ + θµ, aµ, bµ, θ, θµ are arbitrary parameters satisfying conditions

a · a = aµaµ = −1, b · b = bµbµ = −1, a · b = 0,

γ · a ≡ γ0a0 − γ1a1 − γ2a2 − γ3a3, θ = (θ2
0 − θ2

1 − θ2
2 − θ2

3)
1/2.

VI. Case k �= 1/2, nonlinearity λ(Ψ̄Ψ)1/2k,

Ψ(x) =
[
(a · z)2 + (b · z)2

]−1/4
exp

{
−1

2
(γ · a)(γ · b) tg−1 a · z

b · z
}
×

× exp
{
−i

2λk

1 − 2k
(γ · b)(χ̄χ)1/2

[
(a · z)2 + (b · z)2

] 1−2k
4k

}
χ.

(4.6)

Formulas (4.5), (4.6) give multiparameter families of exact solutions of the Dirac
equations. These families are nongenerating with respect to the group P̃ (1, 3) in the
sense that solutions (4.5), (4.6) have the same symmetrys as the equation (2.1).

5. Conformally invariant solutions. Conformally invariant Dirac–Gürsey equa-
tion has the form{

γµpµ + (Ψ̄Ψ)1/3
}

Ψ = 0. (5.1)

With the help of a conformally invariant ansatz we can construct the following
solutions

Ψ(x) =
γ · x

(x · x)2
exp{iλk(γ · β)ω}χ, k = 1/3,

ω =
βµxµ

xνxν
, xνxν �= 0, βµβµ > 0;

(5.2)

Ψ(x) = σ2(x)[1 − (γ · x)(γ · β)] ×

× exp
{

θ

2
(γ · a)(γ · b)[b · x − (b · θ)(x · x)]σ−1(x)

}
×

× exp
{
− i

2
λ(χ̄χ)1/3(γ · a)[2(a · x) − (a · θ)(x · x)]σ(x) +

+ θ(b · x − (b · θ)(x · x))2σ−2(x)
}

χ,

a · b = b · b = 0, a · a = a2
0 − a2

1 − a2
2 − a2

3 = −1,

c2 = cαcα, x2 = xµxµ.

(5.3)

Formulae (5.2), (5.3) give multiparameter families of exact solutions of the equati-
on (5.1). The family (5.3) is nongenerating with respect to the group C(1, 3).

If Ψ1(x) is a solution of equation (5.1) then

Ψ2(x) = σ−2(x)[1 − (γ · x)(γ · c)]Ψ1(x′),

x′ =
{

x′
µ =

xµ − cµx2

σ(x)

} (5.4)

will also be a solution (5.4) is the formula for multiplication of solutions of Dirac
equation.
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6. How to construct solutions of the nonlinear d’Alambert equation via
solutions of the Dirac equation? Complex scalar field can be represented as

u(x) = Ψ̄Ψ exp{iθ(x)}, (6.1)

where Ψ(x) is a solution of the Dirac equation, θ(x) is a phase. In the simplest case,
when

Ψ̄Ψ = c = const, θ(x) = τµxµ (6.2)

formula (6.1) gives a plane-wave solution of the linear d’Alambert equation. In most
cases solutions of the nonlinear Dirac equation generate a scalar field (6.1) which
satisfies the nonlinear d’Alambert equation

pµpµu = k|u|ru, (6.3)

k, r are constants.
Let us exhibit some exact solutions of the equation (6.3) obtained this way

u(x) = c
(
x2

1 + x2
2

)
exp{iφ0(x0 + x3)}, r = 2, (6.4)

u(x) = c
[
(x1 + φ1(x0 + x3))2 + (x2 + φ2(x0 + x3))2

]−1/2

x
×

× exp{iφ0(x0 + x3)}, r = 2,
(6.5)

u(x) = c
(
x2

0 − x2
1 − x2

2 − x2
3

)−2
, r = 1/2, (6.6)

u(x) = c
(
x2

2 + x2
3

)−1/2
exp{iφ(x0 + x1)}, r = 2. (6.7)

In formulae (6.4)–(6.7) φ0, φ1, φ2, φ are arbitrary smooth functions.
So, solutions of the nonlinear Dirac spinor equation give a possibility to construct

solutions to the nonlinear d’Alambert equation.
All these ideas and results were considered in more detail by Fushchych (1981,

1987), Fushchych and Shtelen (1983, 1987), Fushchych, Shtelen and Zhdanov (1985),
Fushchych and Zhdanov (1987, 1988, 1989), Fushchych and Nikitin (1987) (see Ap-
pendix).

7. The solutions of the multidimensional Schrödinger equation. Let us consi-
der the following nonlinear equation(

i
∂

∂x0
− 1

2m
∆

)
u + F (x, u, u∗) = 0, u ≡ u(x0 ≡ t, x1, x2, x3). (7.1)

It is well known that if F = 0, then linear Schrödinger equation (see Sofus Lie
(1881), Hagen (1972), Niederere (1972), Kalnins and Miller (1987)) is invariant under
the generalised Galilei group, which will be denoted by the symbols G2(1, 3). The basis
elements of the Lie algebra AG2(1, 3) = 〈P0, Pa, Jab, Ga,D,A, I〉 have the following
form:

P0 = i
∂

∂x0
, Pa = −i

∂

∂xa
, a = 1, 2, 3, Jab = xaPb − xbPa, I = u

∂

∂u
,

Ga = x0Pa + mxa, D = 2x0P0 − xaPa +
3
2
i, A = x0D +

m

2
x2

a.

(7.2)
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Symbols AG1(1, 3), AG(1, 3) denote the following Lie algebras

AG1(1, 3) = 〈P0, Pa, Jab, Ga,D, I〉,
AG(1, 3) = 〈P0, Pa, Jab, Ga, I〉.

To construct families of exact solutions of (7.1) in explicit form we have to know
the symmetries of (7.1) which obviously depends on the structure of the function F .

By Lie’s algorithm (as given by Ovsyannikov (1978), Olver (1986)), the following
statement can be proved.

Theorem 5. Equation (7.1) is invariant under the following algebras:

AG(1, 3) iff F = Φ(|u|)u, (7.3)

where Φ is arbitrary smooth function, and

AG1(1, 3) iff F = λ|u|ku, (7.4)

where λ, k are arbitrary parameters, the operator of scale transformations D having
the form D = x0P0 − xaPa + 2i/k, k �= 0, and

AG2(1, 3) iff F = λ|u|4/nu. (7.5)

Later on we shall construct the exact solutions of the equation (7.1) with nonli-
nearity (7.5), i.e.

(
p0 − p2

a

2m

)
u + λ|u|4/3u = 0. (7.6)

Following Fushchych (1981) we seek solutions of (7.6) with the help of the ansatz

u = f(x)φ(ω1, ω2, ω3), (7.7)

where φ is the function to be calculated. To construct solutions of (7.6) using ansatz
(7.7) it is necessary to have the explicit form of the function f(x) and the new
invariant variables ω1, ω2 and ω3. Next I shall present two Ansätze of the type (7.7).

1. f(x) =
(
1 − x2

0

)−3/4
exp

{
im

2
x0�x

2

1 − x2
0

}
, ω1 = �α�x

(
1 − x2

0

)−1/2
,

ω2 = �x 2
(
1 − x2

0

)−1
, ω3 = arctan x0 + arctan

�β�x

�γ�x
,

where �α, �β, �γ are constant vectors satisfying the conditions

�α 2 = �β 2 = �γ 2 = 1, �α�β = �β�γ = �γ�α = 0.

The Ansätze (7.6), (7.7) give the following reduced equation

Lφ + 6
∂φ

∂ω2
− 2im

∂φ

∂ω3
+ m2ω2φ − 2λm|φ|4/3φ = 0,

Lφ ≡ ∂2φ

∂ω2
1

+ 4ω2
∂2φ

∂ω2
2

+ (ω2 − ω2
1)−1 ∂2φ

∂ω2
3

+ 4ω1
∂2φ

∂ω1∂ω2
.

(7.8)



316 W.I. Fushchych

2. The second Ansätze has the form

f(x) = x
−3/2
0 exp

{
− im

2
x2x−1

0

}
, (7.9)

ω1 = (�α�x)x−1
0 , ω2 = �x 2x−2

0 , ω3 = x−1
0 + arctan

�β�x

�γ�x
. (7.10)

The Ansätze (7.9), (7.10) reduce the equation (7.6) to

Lφ + 6
∂φ

∂ω2
+ 2im

∂φ

∂ω3
− 2m|φ|4/3φ = 0.

8. Solutions of the equation (7.6). In this paragraph I present some explicit
solutions of the equation (7.6)

u =
(
1 − x2

0

)−3/4
exp

{
im

2
�x (1 − x0)−1

}
, λ =

3
2
i; (8.1)

u = (c0x0 − �c�x)−3/2 exp
{
− im

2
�x 2x−1

0

}
, (8.2)

where c0, �c are arbitrary parameters satisfying the following condition �c 2 = 8
15λm;

u = x
−3/2
0 exp

{
− im

2
(�x 2 − �r�x)x−1

0

}
, �r 2 = −8λ

m
; (8.3)

u =
(

8
3
λm�x 2

)−3/4

exp
{
− im

2
�x 2x−1

0

}
; (8.4)

u = x
−3/2
0 φ(ω1) exp

{
− im

2m
�x 2x−1

0

}
, ω1 =

�α�x

x0
, (8.5)

function φ(ω1) is defined by the elliptic integral

∫ φ

0

dτ(
k1 + τ10/3

)1/2
=

(
6
5
λm

)1/2

(ω1 + k2),

whre k1, k2 are arbitrary parameters.

u = x
−3/2
0 exp

{
− im

2
�x 2x−1

0

}
φ(ω2), ω2 = �x 2x−1

0 , (8.6)

where function φ(ω2) is a solution of Emden–Fauler equation

2ω2
d2φ

dω2
2

+ 3
dφ

dω2
− λmφ7/3 = 0.

The formulae (8.1)–(8.6) give multiparameter families of exact solutions of the
equation (7.6). Some of them are of non-perturbative type due to a singularity with
respect to the coupling constant λ.
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In conclusion we give formulae for multiplication of solutions. If u1 is a solution
of the equation with the nonlinearity 4/3 then the functions u2, u3 defined by

u2 = u1(x0, �x + �vx0) exp
{

im

(
�vx0

2
+ �v�x

)}
,

u3 = u2

(
x0

dx0 − 1
,

�x

1 − dx0

)
(1 − dx0)−3/2 exp

{
im

2
d�v 2

1 − dx0

}
,

also satisfy equation (7.6). Here d, �v are arbitrary parameters.
The Ansätze that have been presented here may also be applied to the equation

i
∂u

∂t
+

1
2m

∆u + λ

{
∂|u|2
∂xa

∂|u|−1

∂xa

}
u = 0,

which is also invariant under the group G2(1, 3).
More full consideration solutions of equation (7.6) was given Fushchych and Serov

(1987), Fushchych and Cherniha (1986).
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