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On the reduction and some new exact
solutions of the non-linear Dirac and
Dirac—Klein—-Gordon equations

W.I. FUSHCHYCH, R.Z. ZHDANOV

New ansitze tor spinor fields are suggested. Using these, we construct multiparameter
families of exact solutions of the non-linear many-dimensional Dirac and Dirac—Klein-
Gordon equations, some solutions including arbitrary functions.

In this letter we have constructed new families of exact solutions of the following
equations:

(yup" = AWp)*)p(x) =0, p=0,1,2,3, (1)

[yup* = (Maful™ + Xz (v2)*2)] () =0,
[pup" = (palul* + p2(19)**)?] u(z) = 0,

where 7, are (4 x 4)-Dirac matrices, ¢ = 1(z) is a four-component spinor, u = u(x)
is a complex scalar function, pg = i9/0xq, Py = —i0/0xq, a = 1,3; A, k, A;, u; and
k; are constants. Hereafter we use the summation convention.

Solutions obtained by us differ from those already known in the literature [1-8].
These solutions can be useful in the relativistic quantum field theory.

To construct exact solutions of equation (1) we use the following ansétze:

2)

Y(x) = [ig1(w) +7ag2(w) — (ifi(w) + vafo(W))yup"wlx, Y4 =77M7%27 (3)

¢($) = [Gl (wla WQ) + i(%ta# + Vud#)GQ(wla WQ) + (4)
+i(7,0") Fi(wr, wa) + (ypah + 5, dH) (7,07) Fa(wr, w2)]x,

where w = w(x) are scalar functions satisfying conditions of the form
pupfw + A(w) =0,  (puw)(p'w) + Bw) =0, (5)

where f;, g;, F;, G;, A and B are arbitrary differentiable functions, wy = a,z*+d, 2",
wo = byx” and x is an arbitrary constant spinor. Hereaiter a,, b,, ¢, and d, are
arbitrary real parameters satisfying the following conditions:

—ayat =b,b = ¢yt =dydt = -1,
a#bﬂ = a#ci“‘ = aﬂdu = quC# = budu = Clu‘dy' =0.

Substitution of ansatze (3) and (4) into the initial equation (1) leads to the following
systems of differential equations for unknown functions f;, g, F;, G;:

Bfi+ Af1 = Mg} — g3 + B(f2 — 13))F a1,
g1 = =gt — g5 + B(ff — )" fr,
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g2 = Agt — g3 ":B(f12 — [N fa,

Bfs+ Afy = =Agi — g3 + B(f — f3)]" g2,

A= XX fi=dfi/dw, § =dgi/dw, i=1,2,

FL = -M(G")? - (FY)?]*G?, GL, = -A\[(G")? — (F1)?FF1,

G, + F2, = =M(G")? = (F')’I*G® = G2, + F}, = A[(G")* — (F')]*F>. g

Not going into details of the integration of systems (5) and (6) we shall write down
exact solutions of the non-linear Dirac equation (1) obtained through the substitution
of expressions for f;, g; into ansatz (3)

(i) k<%

Qb(x) = wil/Qk{:F(]. — 4]€)1/2(—i01 + ’7402) + (Cl — i’7402) X
x [(70)(by) + (ye)(cy) + (vd)(dy)lw™" Fx, (8)
w = [(by)? + (cy)® + (dy)*]"/?,  Cj = const
and the condition holds
+(1 — 4k)Y2 — 2kN[4K(C? — C2)])F = 0;
(i) k> %
’(/J(J}) = w_l/Qk{:F(4k‘ — 1)1/2(—i01 + ’)/402) + (Cl — 7;’7402) X
x [(va)(ay) — (vb)(by) — (ve) (ey)]w™ Ix, 9)
w = [(ay)* — (by)* — (ey)?]'/*,  C; = const
and the condition holds

+(4k — 1)Y/2 — 2kA[4k(C? — C2)F =0,

(iii) k> §
P(x) = wVRF(6k — 1)V/2(=iCy + 14C2) + (C1 — i1 C2) (vy)w ™ X,
(10)
w = (yy)'/2, C; = const

and the condition holds
+(6k — 1)/2 — 2kA[6k(C2 — C2)F =0,
(iv) keR

P(x) = {igr (w) + 1192(w) + (f1(w) — ivafo(w)) [0 + (va + vd) F(ay + dy)] }x.
fi = Cy cosh[A\(C2 — C)Fw + Cy),  fo = Cycosh[A(C3 — C?)*w + Cy),

- - 11
g1 = C1sinh[A(C2 — C?)*w + C3], g2 = C3sinh[A(C2 — CF)Fw + Cy, an
w=by+ F(ay +dy), C;=const,

where F' is an arbitrary differentiable function;
Y(z) = [ig1(w) + 7192 (w) + (f1(w) — ivafo(w))(va)lx,
fi = Cisin[A(C} — C3)Fw + Cy),  fo = C3co8]M(CF — C3)Fw + Cy), 12)

g1 = C1cos|NC2 — CHFw + Oy,  go = Cssin[A(C2 — C2)rw + Cy),
C; = const, w = ay;
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v) k=1/m, m=2,3
d)(l?) = (1 + 02w2)’(m+1)/2[iC’1 + "}/402 — 0(01 + 27402)] X
[(va)(ay) — (vb)(by) — (ve)(ey)], m =2,

Y, m =3, (13)
{ [(ay)? = (by)* = (cy)? ]2, m=2,
w =
(yy)'/2, m=3

and the condition holds
(m+1)0 — M\(C? — CH/™ = .
In the formulae (8)—(13) the following notations were used:

ay = auy”, ya=vyuat, vy =9t p=0,1,2,3,

AN (14)
Yp = Ty + 9,u7 0/L =const, A= /\(XX) :

If g0 = fz =0, w= z,2" then (3) coincides with the ansatz suggested by
Heisenberg in [1]. That is why exact solutions of the equation (1) obtained with the
help of the Heisenberg ansatz in [2-4] belong to classes (10) and (13).

It was Giirsey who showed that under k = § equation (1) is conformally inva-
riant [9]. This makes it possible to construct new families of exact solutions using the
solution generation technique (see [6]). As is shown in [6] the formula of generating
solutions by final transformations of the four-parameter special conformal group has

the form

Pa(x) = o2 (2)[1 = (y2)(ya)]eh (2'),
x, = (7, — arr)o(z), (15)
o(z) =1-2az + (aa)(zx), «, =const, p=0,3.

Using (9)—(13) under k = % as 11 (x) one can obtain multi-parameter families of
solutions of the non-linear Dirac equation (1) which are invariant under the conformal
group C(1,3).

System (7) proved to be an integrable one. Substituting its general solution into the
ansatz (4) we obtain a multi-parameter family of exact solutions of the equation (1)

depending on four arbitrary functions
W(z) = {¢1 cosh(gbx) + g sinh(¢ba) + i(va + vd)[(bz/26)d x

X (¢p2 cosh(pbx) + ¢1 sinh(pbx) 4+ ¢3 cosh(pbx) + ¢4 sinh(dbx))] +
+ i(yb) (¢ sinh(dbx) + P2 cosh(obz)) + (ya + vd)(yb) x

b2 1 ot . P20 P2 6
< (G =5 e siuh(one) + (T3 = - (16)
_ %bm) cosh(¢pbx) + ¢3 sinh(pbzx) + P4 cosh(q&bx)} }X,
p=120 4B

= dw’ dw ) ) )
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where
ya =yuat, b =y,bt, br =b,at,
P(w) = =A(XX)*[(91(w))? = (¢3(w))?)",
®1,...,¢4 are arbitrary differentiable functions of w = a,z# + d,z".

We note that it is not difficult to construct an explicit form of the energy-momen-
tum tensor

1 - _
T;w = 5@@%% - %%ﬂﬁ) + g/w£7

1. - - A=
L= ?W%ﬂ/’u — Yuu) — k—_i_l(d}w)kﬂ

corresponding to obtained solutions. For the solutions (8)-(10) one has
Ty wmgee H,Ww*(k*l)/k, 6, = const. (17)

110 <k < § (for (8)) or k> ¢ (for (10)) then T}, has a non-integrable singularity
in the point x,, = —6,,, in other points of the Minkowsky space R(1,3) expression (17)
being integrable. In the case k& > % (for (9)) T,,, has a singularity on the cone

ay = £[(by)* + (cy)’]*/?

while at other points it is integrable.

Ansitze (3), (4) proved to be very useful while constructing solutions of the
system (2). We shall write down some of the families of exact solutions obtained,
omitting intermediate calculations.

(i) kv > 1, k1 > §

P(x) = w 2R {F(dky — 1)Y2(—iCy + 714C2) + (C1 — i714C2) ¥
x [(va)(ay) — (vb)(by) — (ve)(ey)lw™ }x, (18)
u(z) = Bw™ /% C; =const, w = [(ay)? — (by)? — (cy)?]'/?
and the following conditions hold:
(1= kR + { [ BI* + p2(00)* [(CF — C)4ka)™2}* = 0,
+(dke = 1)Y2 = 2k (Ao EI" + Mo ()2 [4k2(CF - C3)]2}? = 0.
(i) k1 =2/(m—=1), ka =1/m, m=2,3
(@) (1 + 0°w?) = FINIC) 4 44Co — 0(Cy + i7aCy)] %
y { (va)(ay) — (70)(by) — (vc)(cy), m =2,
Y, m =3, (19)
[(ay)® = (by)* = (cy)?]'/?, m =2,
- { (yy)'/?, m =3,
where 0, C; and E are constants satisfying conditions
62 (m* — 1) = [ |EI* " 4 pa (0™ (CF = G5,
O(m +1) = [MIE[ D 4 2o (xx) ™ (CF - C5)Y™).
n (18), (19) we have used notations of (14).

u(z) = B(1 + 02w (—m)/2,
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