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On some exact solutions
of the three-dimensional non-linear
Schrödinger equation
W.I. FUSHCHYCH, N.I. SEROV

Some exact solutions of the three-dimensional non-linear Schrödinger equation are
found. The formulae for generating solutions of the Schrödinger-invariant equations
are adduced.

The linear heat equation and its complex generalisation, i.e. the Schrödinger equati-
on

(P0 − P 2
a /2m)u = 0, P0 = i∂/∂x0, Pa = −i∂/∂xa, a = 1, 3, (1)

where

u = u(x0,x), x0 ≡ t, x = (x1, x2, x3) ∈ R
3

and m is the particle mass, is invariant under the generalised Galilei group G2(1, 3).
The basis elements of the Lie algebra AG2(1, 3) have the following form:

P0 = i∂/∂x0, Pa = −i∂/∂xa, Jab = xaPb − xbPa, (2)

Ga = x0Pa + mxa, I = u∂/∂u, a, b = 1, 3, (3)

D = 2x0P0 − xP +
3
2
i, (4)

A = x0

(
x0P0 − xP +

3
2
i

)
+

1
2
mx2. (5)

The same algebra for the one-dimensional equation had been found over a hundred
years ago by S. Lie [8]. For the three-dimensional equation (1) this algebra had been
found by Hagen [7] and Niederer [9] (see also Fushchych and Nikitin [4, 5]). The
elements D and A generate the scale and projective transformations respectively.
We denote the group generated by operators (2)–(4) and its Lie algebra by symbols
G1(1, 3) and AG1(1, 3). The group and the algebra generated by (2)–(5) are denoted
as G2(1, 3) and AG2(1, 3).

We now consider the following non-linear generalisation of (1):

(P0 − P 2
a /2m)u + F (x, u, u∗) = 0, (6)

where F is an arbitrary differentiable function. To construct the families of exact
solutions of (6) we have to know the symmetry of (6) which obviously depends on
the structure of the non-linearity.
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Theorem. Equation (6) is invariant under the following algebras:

AG(1, 3) iff F = φ(|u|)u, (7)

where φ is an arbitrary smooth function, and

AG1(1, 3) iff F = λ|u|ku, (8)

where λ, k are arbitrary parameters, the operator of scale transformations D having
the form D = x0P0 − xP + 2i/k, k �= 0, and

AG2(1, 3) iff F = λ|u|4/nu, (9)

where n = 3 is the number of spatial variables in the Schrödinger equation [2, 3].

To give the proof of the theorem, which we omit because of its clumsiness, it
is necessary to apply the Lie method to (6). The detailed account of this method is
given by Ovsyannikov [10] and Bluman and Cole [1]. We can make sure that (6) with
non-linearities (7)–(9) admits the groups G, G1 and G2 by direct verification.

Later on we shall construct the exact solutions of the Schrödinger equation with
non-linearity (9), i.e.

(P0 − P 2
a /2m)u + λ|u|4/3u = 0. (10)

It follows from the theorem that only the equation with fractional non-linearity is
invariant under the group G2(1, 3).

Following Fushchych [2] we seek solutions of (10) with the help of the ansatz

u(x) = f(x)ϕ(ω1, ω2, ω3), (11)

where ϕ is the function to calculate. This function depends only on three invariant
variables ω1, ω2 and ω3 being the first integrals of the Euler–Lagrange system of
equations:

dx0

ξ0(x, u)
=

dx1

ξ1(x, u)
=

dx2

ξ2(x, u)
=

dx3

ξ3(x, u)
=

du

η(x, u)
, (12)

where ξ0, ξ1, ξ2, ξ3 and η are coordinates of the infinitesimal operator of the group
G2(1, 3), i.e. the following functions:

ξ0 = ax2
0 + 2bx0 + d0, ξ = (ax0 + b)x + gx0 + α × x + d,

η = −
[
Im

(
1
2
ax2 + gx

)
+

3
2
(ax0 + b)

]
u,

where a, b, g, α, d0 and d are parameters of the group G2(1, 3).
Functions f(x) also are found from the system (12). The method of seeking f(x)

and variables ω is given in more detail in [2, 6].
Ansatz (11) reduces (10) to the equations for function ϕ which depends only on

three variables ω1, ω2 and ω3. Thus to construct solutions of (10) using ansatz (11)
it is necessary to have the explicit form of the function f(x) and the new invariant
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variables ω1, ω2 and ω3. Not going into details we write them. Depending on relations
between parameters of the group G2(1, 3) there are nine sets f(x) and ω(x):

1) f(x) =
(
1 − x2

0

)−3/4
exp

[
1
2
imx0x

2/
(
1 − x2

0

)]
, ω1 = (αx)

(
1 − x2

0

)−1/2
,

ω2 = x2
(
1 − x2

0

)−1
, ω3 = tanh−1 x0 + tan−1(βx/γx);

2) f(x) = x
−3/2
0 exp

(
−1

2
ix2x−1

0

)
, ω1 = (αx)x−1

0 ,

ω2 = x2x−2
0 , ω3 = x−1

0 + tan−1(βx/γx);

3) f(x) =
(
1 + x2

0

)−3/4
exp

(
−1

2
imx0x

2
(
1 + x2

0

)−1
)

,

ω1 = (αx)
(
1 + x2

0

)−1/2
, ω2 = x2

(
1 + x2

0

)−1
,

ω3 = − tan−1 x0 + tan−1(βx/αx);

4) f(x) = x
−3/4
0 , ω1 = (αx)x−1/2

0 , ω2 = x2x−1
0 ,

ω3 = − ln x0 + tan−1(βx/γx);

5) f(x) = x
−3/4
0 , ω1 = (αx)x−1/2

0 , ω2 = (βx)x−1/2
0 , ω3 = (γx)x−1/2

0 ;

6) f(x) = 1, ω1 = αx, ω2 = x2, ω3 = −x0 + tan−1(βx/γx);

7) f(x) = 1, ω1 = αx, ω2 = x2, ω3 = x0;

8) f(x) = exp
(
−1

2
imαx/x0

)
, ω1 = αx + x0βx,

ω2 = αx + x0γx, ω3 = x0;

9) f(x) = 1, ω1 = αx, ω2 = βx, ω3 = x0,

where α, β, γ are constant vectors satisfying the conditions

α2 = β2 = γ2 = 1, αβ = βγ = γα = 0.

We adduce the explicit form of the reduced equations for the function ϕ, obtained
from ansatz (11) in all nine cases:

1) Lϕ + 6ϕ2 − 2imϕ3 + m2ω2ϕ − 2λm|ϕ|4/3ϕ = 0,

Lϕ ≡ ϕ11 + 4ω2ϕ22 + (ω2 − ω2
1)−1ϕ33 + 4ω1ϕ12,

2) Lϕ + 6ϕ2 + 2imϕ3 − 2λm|ϕ|4/3ϕ = 0,

3) Lϕ + 6ϕ2 + 2imϕ3 − m2ω2ϕ − 2λm|ϕ|4/3ϕ = 0,

4) Lϕ + imω1ϕ1 + 2(imω2 + 3)ϕ2 + 2imϕ3 + 3
2 imϕ − 2λm|ϕ|4/3ϕ = 0,

5) ϕ11 + ϕ22 + ϕ33 + im(ω1ϕ1 + ω2ϕ2 + ω3ϕ3) + 3
2 imϕ − 2λm|ϕ|4/3ϕ = 0,

6) Lϕ + 6ϕ2 + 2imϕ3 − 2λm|ϕ|4/3ϕ = 0,

7) ϕ11 + 4ω2ϕ22 + 4ω1ϕ12 + 6ϕ2 − 2imϕ3 − 2λm|ϕ|4/3ϕ = 0,

8) ω3

[
(1 + ω2

3)(ϕ11 + ϕ22) + ϕ12

] − 2im
(
ω1ϕ1 + ω2ϕ2 + ω3ϕ3 + 1

2ϕ
)−

−2λmω3|ϕ|4/3ϕ = 0,

9) 2imϕ3 − ϕ11 − ϕ22 − 2λm|ϕ|4/3ϕ = 0,
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where

ϕa = ∂ϕ/∂ωa, ϕab = ∂2ϕ/∂ωa∂ωb, a, b = 1, 3.

We did not succeed in finding the exact solutions of all of the reduced equations.
However, some of them had been solved. Let us write the final form of several exact
solutions of (10).

u(x) =
(
1 − x2

0

)−3/4
exp

[
1
2
imx2 (1 − x0)

−1

]
, λ =

3
2
i. (13)

u(x) = (c0x0 − cx)−3/2 exp
{
−1

2
imx2x−1

0

}
, (14)

where c0, c = (c1, c2, c3) are arbitrary constants, satisfying the condition c2 = 8
15λm.

u(x) = x
−3/2
0 exp

[
−1

2
im

(
x2 − rx

)
x−1

0

]
, r2 = −8λ/m. (15)

u(x) =
(

8
3
λx2

)−3/4

exp
(
−1

2
imx2x−1

0

)
. (16)

u(x) = x
−3/2
0 ϕ(ω1) exp

(
−1

2
imx2x−1

0

)
, ω1 = αx/x0, (17)

where function ϕ(ω1) is defined by the elliptic integral

∫ ϕ

0

dτ
(
k1 + τ10/3

)−1/2

=
(

6
5
λm

)1/2

(ω1 + k2), (18)

where k1, k2 are arbitrary constants.

u(x) = x
−3/2
0 exp

(
−1

2
imx2x−1

0

)
ϕ(ω2), ω2 = x2/x0, (19)

where function ϕ(ω2) is the solution of the Emden–Fauler equation

2ω2ϕ22 + 3ϕ2 − λmϕ7/3 = 0. (20)

u(x) = x
−3/4
0 ϕ(ω1), ω1 = (αx)x−1/2

0 , (21)

where function ϕ(ω1) is defined by elliptic integral (18).

u(x) = ϕ(ω2), ω2 = x2, (22)

where ϕ(ω2) is the solution of (20).

u(x) = (c0/3λ)3/4x
−1/2
0 exp

(
ic0x

−1/3
0 − 1

2
imcx/x0

)
, (23)

where c2 = 1 and c0 = const.

u(x) = (c0/λ)3/4 exp(ic0x0), (24)
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u(x) = (λ2x0)−3/4 exp
(
−iλ1λ2(λ2x0)−3/4

)
, (25)

where λ = 3
4 (λ1 + iλ2) and λ1, λ2 are arbitrary real constants.

u(x) = (cx)−3/2, c2 =
8
15

λm. (26)

Formulae (13)–(26) give multiparameter families of exact solutions of the non-
linear Schrödinger equation (10). Some of them are of non-perturbative type due to a
singularity with respect to the coupling constant λ. Obtained solutions may be used
in quantum field theory, and in many non-linear problems of solid state and plasma
physics.

In conclusion we adduce the formulae of extension of solutions of (10). If u = u1(x)
is a given solution of (10) then the new solutions u2, u3 may be found by formulae

u2 = u1(x0,x + vx0) exp
[
im

(
1
2
v2x0 + vx

)]
,

u3 = u1

(
x0

1 − ax0
,

x

1 − ax0

)
(1 − ax0)−3/2 exp

(
1
2
im

ax2

1 − ax0

)
,

where a, v are arbitrary constants. These formulae follow from the fact that (10)
admits both groups G(1, 3) and G2(1, 3).
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