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On the new invariance algebras
and superalgebras of relativistic wave
equations
W.I. FUSHCHYCH, A.G. NIKITIN

We show that any relativistic wave equation for a particle with mass m > 0 and
arbitrary spin s is invariant under the Lie algebra of the group GL(2s + 1, C). The
explicit form of basis elements of this algebra is given for any s. The complete sets
of the symmetry operators of the Dirac and Maxwell equations are obtained, which
belong to the classes of the first- and second-order differential operators with matrix
coefficients. Corresponding new conservation laws and constants of motion are found.

1. Introduction
The classical Lie approach is the main mathematical apparatus used for the analysis

of the symmetry of partial differential equations [1, 30]. This approach was that from
which it was established that the Poincaré group is the maximal symmetry group of
the Dirac equation [2, 22] and that the maximal symmetry of Maxwell’s equations
is determined by the conformal group replenished by the Heaviside–Larmor–Rainich
transformation. However, in spite of its power and universality, the Lie approach
does not make it possible to find all the symmetry operators of the given equation.
Actually it gives the possibility or finding only such symmetry operators which are
the first-order differential operators.

Using the non-Lie approach [5, 6, 8, 9], in which the invariance group generators
may be differential operators of any order and even integro-differential operators, the
new invariance groups of a number of relativistic wave equations have been found.
It has been demonstrated that the Dirac equation was invariant under the group
SU(2)×SU(2) [5, 6, 12] and that the Kemmer–Duffin–Petiau equation for the vector
field was invariant under the group SU(3)×SU(3) [29, 12]. The non-Lie approach gave
the possibility of finding the additional symmetry of the Dirac and Kemmer–Duffin–
Petiau equations describing the particles in an external electromagnetic field [13, 27].
The hidden symmetry of Maxwell’s equations has also been found and is described
by the eightparameter transformation group including the subgroup of Heaviside–
Larmor–Rainich transformations [13, 14, 15, 17].

In this paper we continue to study the symmetry of the Dirac, Weyl and Maxwell
equations and of relativistic wave equations for any spin particles. The main results
obtained here may be formulated as follows.

(i) We found that any Poincaré-invariant wave equation for a particle of arbitrary
spin s and mass m = 0 is additionally invariant under the 2(2s+1)(2s+1)-dimensional
Lie algebra which is isomorphic to the Lie algebra of the group GL(2s + 1, C). The
explicit form of basis elements of this invariance algebra is found for any value of s.
Thus the additional symmetry of an arbitrary relativistic wave equation is descri-
bed whereas previously one studied, as a rule, the symmetry properties of specific
equations.
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(ii) In our earlier work we restricted ourselves to studying symmetry operators of
relativistic wave equations which belong to a finite-dimensional Lie algebra [17]. Here
we also consider the symmetry operators belonging to the classes of firstand second-
order differential operators with matrix coefficients which, generally speaking, are
not the basis elements of any finite-dimensional Lie algebra, but are closely connected
with conservation laws. The complete set of symmetry operators of the Dirac equation
in the class of first-order differential operators with matrix coefficients (class M1) is
found. We also obtain the symmetry operators of the Weyl and Maxwell equations
which form the basis of the Lie superalgebra.

(iii) The new conservation laws and motion constants, which are connected with
hidden symmetry of the Dirac and Maxwell equations, are found.

The results of this paper supplement and in some sense complete, those obtained
by us and expanded by a number of other authors [3, 31, 24, 32] by studying the
additional symmetry of Poincaré-invariant wave equations.

2. The additional symmetry of Poincaré-invariant wave equations
for arbitrary spin particles

In this section we demonstrate that any relativistic wave equation for a particle of
non-zero mass and spin s = 0 has more extensive symmetry than Poincaré invariance,
and describe this additional symmetry exactly.

Let us write an arbitrary linear (differential or integro-differential) equation in the
following symbolic form

Lψ = 0, (2.1)

where L is a linear operator defined on a vector space H, ψ ∈ H.
Let Q be an operator defined on H. We say that Q is the symmetry operator of

the equation (2.1), if

L(Qψ) = 0 (2.2)

for any ψ satisfying (2.1).

Definition. Equation (2.1) is Poincaré-invariant and describes a particle of mass
m and spin s if it has 10 symmetry operators Pµ, Jµν , µ, ν = 0, 1, 2, 3, which form
the basis of the Lie algebra of the Poincaré group, and any solution ψ satisfies the
conditions

PµP
µψ = m2ψ, WµW

µ = −m2s(s+ 1)ψ, (2.3)

where Wµ is the Lubansky–Pauli vector

Wµ =
1
2
εµνρσJ

νρP σ. (2.4)

Below we consider only such equations (2.1) which satisfy the given definition and
so may be interpreted as equations for a relastivistic particle of spin s and mass m.
The symmetry operators Pµ, Jµν of such a equation satisfy the commutation relations

[Pµ, Pν ] = 0, [Pµ, Jνσ] = i(gµνPσ − gµσPν),
[Jµν , Jλσ] = i(gµσJνλ + gνλJµσ − gµλJνσ − gνσJµλ)

(2.5)
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which characterise the Lie algebra of the Poincaré group P (1, 3). The eigenvalues
of the corresponding Casimir operators PµP

µ and WµW
µ are fixed and given by the

relations (2.3). Let us emphasise that we do not make any supposition with regards to
the explicit form of the operators Pµ and Jµν — they can be as differential operators
of first order as non-local (integro-differential) ones.

Theorem 1. Any Poincaré-invariant equation for a particle of mass m and spin s is
invariant under the algebra1 GL(2s+ 1, C).
Proof. Let Pµ, Jµν be the symmetry operators of the equation (2.1) satisfying the
commutation relations (2.5). Then by the definition (2.3) the following combinations

Q±
µν =

1
m2

[εµνρσW
ρP σ ± i(PµWν − PνWµ)] (2.6)

are also the symmetry operators of these equations.
Using (2.5) and the relations

[Wµ, Pν ] = 0, [Wµ,Wν ] = iεµνρσP
ρW σ (2.7)

can make sure that the operators (2.6) satisfy the conditions

[Q±
µν , Q

±
λσ] = i(gµσQ

±
νλ + gνλQ

±
µσ − gµλQ

±
νσ − gνσQ

±
µλ)m−4(PµP

µ)2, (2.8)

C1 =
1
4
Q±

µνQ
±µν = −m4WλW

λPσP
σ,

C2 =
1
4
εµνρσQ

±µνQ±ρσ = ∓im−4WµW
µPσP

σ.

(2.9)

It follows from (2.3) and (2.8) that on the set of the equation (2.1) solutions the
operators (2.6) satisfy the commutation relations

[Q±
µν , Q

±
λσ]ψ = i(gµσQ

±
νλ + gνλQ

±
µσ − gµλQ

±
νσ − gνσQ

±
µλ)ψ, (2.10)

which characterise the Lie algebra of the group SL(2, C). From (2.3) and (2.9) one
obtains the eigenvalues of corresponding Casimir operators

C1ψ =
1
2

(
l20 + l21 − 1

)
ψ, C2ψ = il0l1ψ, (2.11)

where l0 = s, l1 = ±(s+ 1).
So we have demonstrated that any Poincaré-invariant equation for a particle of

non-zero mass and spin s �= 0 is additionally invariant under the algebra SL(2, C),
the basis elements of which belong to the enveloping algebra of the P (1, 3) and are
given exactly by the relations (2.6). According to (2.11) the operators (2.6) realise
the representation D(l0, l1) = D(s,±(s + 1)) of the algebra GL(2, C). Now we see
that this invariance algebra may be extended to 2(2s + 1)-dimensional Lie algebra
isomorphic to the algebra GL(2s + 1, C). Exactly the basis elements of the algebra
GL(2s+ 1, C) have the following form on the set of the equation (2.1) solutions:

λn+k n = ank(Q+
23 −Q+

02)P
s
n, λn n+k = aknP

s
n(Q+

23 +Q+
02),

λ̃mn = Q1λmn,
(2.12)

1We use the same notation for the groups and for the corresponding Lie algebras.
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where

P s
n =

∏
n′ �=n

Q12 − s− 1 + n′

n′ − n
, Q1 =

εabc

2s(s+ 1)
Q+

0aQ
+
bc,

m, n = 1, 2, . . . , 2s+ 1, k = 0, 1, . . . , 2s− n

and akn are the coefficients determined by the recurrent relations

a0n = 1, a1n = [n(2s+ 1 − n)]−1/2,

aλn = aλ−1 naλ−1 n+λ−1, λ = 2, 3, . . . , 2s− n.

Actually the polynomials of the symmetry operators Q+
µν given by the relati-

ons (2.12) manifestly are the symmetry operators of equation (2.1). Operators (2.11)
form the basis of the algebra GL(2s + 1, C) inasmuch as they satisfy the following
commutation relations

[λab, λcd] = −[λ̃ab, λcd] = δbcλad − δadλbc,

[λab, λ̃cd] = δbcλ̃ad − δadλ̃bc, a, b, c, d = 1, 2, . . . , 2s+ 1
(2.13)

which characterise the algebra GL(2s+ 1, C). The relations (2.13) are correct on the
set of the equation (2.1) solutions. The validity of these solutions can be verified by
direct calculation using the equivalent matrix representation for the basis elements of
the algebra SL(2, C) (which is evaluated according to (2.11))

Q+
ab = εabcSc, Q+

0a = −Sa.

Here Sa are the matrices which realise the representation D(s) of the SO(3) algebra
in the Gelfand–Zetlin basis [21]. Thus the theorem is proved.

So if equation (2.1) is Poincaré invariant and describes a particle of spin s and
mass m > 0, it is invariant also under the algebra GL(2s+ 1, C), the basis elements
of which belong to the enveloping algebra of the algebra P (1, 3). The operators (2.12)
together with the Poincaré generators Pµ and Jµν form the basis of the 10+2(2s+1)-
dimensional Lie algebra isomorphic to the algebra P (1, 3) ⊕ GL(2s + 1, C). The last
statement can easily be verified by moving to the new basis Pµ → Pµ, Jµν →
Jµν −Qµν , λmn → λmn, λ̃mn → λ̃mn, where

Q12 =
∑

n

(s− n+ 1)λmn, Q03 =
∑

n

(s− n+ 1)λ̃mn,

Q23 =
∑

n

1
2a1n

(λn n+1 + λn+1 n), Q31 = −i[Q12, Q23],

Q02 = i[Q23, Q03], Q01 = −i[Q31, Q03].

The theorem proved has a constructive character insofar as it gives the explicit
form of the basis elements of additional invariance algebra via the Poincaré generators.
Starting, for example, from the Poincaré generators for the Dirac equation

Pµ = pµ = i
∂

∂xµ
, Jµν = xµpν − xνpµ +

i

4
[γµ, γν ], (2.14)
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where γµ are the Dirac matrices, one obtains by the formula (2.6) the additional
symmetry operators of this equation found earlier by Fushchych and Nikitin [12]. In
an analogous way to formulae (2.6) and (2.12), the additional invariance algebras of
the Kemmer–Duffin–Petiau and Proca equations may be obtained (see [12, 17, 19,
20]) and even the invariance algebra of infinite-component wave equations [18] may
be found.

Let us note that relativistic wave equations for a particle of spin s > 0 also possess
such additional invariance algebras which belong to the class of integro-differential
operators [5, 8, 9, 16, 17, 29, 27] and, generally speaking, are not numbered among
the enveloping algebras of the algebra P (1, 3).

3. Symmetry operators of the Dirac equation in the class M1

Here we consider in detail the symmetry properties of the Dirac equation

Lψ ≡ (γµpµ −m)ψ = 0. (3.1)

It is well known that the symmetry of equation (3.1) which can be found in
the classical Lie approach is exhausted by invariance under the algebra P (1, 3), the
basis elements of which are given in (2.14), and under a corresponding group of
transformations, i.e. the Poincaré group.

Theorem 1 gives the possibility of extending the set of symmetry operators of
the Dirac equation. Actually, using formulae (2.6), (2.14) and (3.1) one obtains the
additional symmetry operators [12, 17]

Q±
µν =

i

4
[γµ, γν ] +

i

2m
(γµpν − γνpµ)(1 ± iγ4). (3.2)

The operators (3.2) are the first-order differential operators with matrix coeffi-
cients (i.e. belong to the class M1) and so they cannot be found in the frames of
classical Lie approach. But these operators (with fixed sign ±) form the basis of
16-dimensional Lie algebra together with the Poincaré generators (2.14). It follows
from the above that the Dirac equation is invariant under the 16-parameter group
including the Lorentz transformations (generated by Pµ, Jµν) and the transformations
which are generated by the operators (3.2). Specifically these transformations have
the form

ψ → ψ′ = exp(2iθQ)ψ = (cos θ − γ1γ2 sin θ)ψ
i

m
(1 ∓ iγ4) sin θ

(
γ1
∂ψ

∂x2
−γ2

∂ψ

∂x1

)

if Q = Q±
12 etc [12].

It may be interesting to know whether the operators (2.14) and (3.3) exhaust all
symmetry operators of the Dirac equation in the class M1. It turns out that this is
not so.

Here we find the complete set of symmetry operators Q ∈ M1 for equation (3.1)
which, however, do not form the basis of Lie algebra.

Theorem 2. The Dirac equation has 26 linearly independent symmetry operators
Q ∈ M1. These operators include the Poincaré generators (2.14), identity operator
and fifteen operators given below

ηµ =
1
4
iγ4(pµ −mγµ), ωµν = mSµν +

1
2
i(γµpν − γνpµ),

Aµ = ωµνx
ν + xνωµν − iγµ, B = iγ4(D −mγµx

µ),
(3.3)
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where

D = xµpµ +
3
2
i, Sµν =

1
4
i[γµ, γν ], µ, ν = 0, 1, 2, 3. (3.3′)

Proof. To find all linearly independent symmetry operators of the Dirac equation in
the class M1 it is necessary to obtain the general solution of the following operator
equations

[L,Q] = fQL, (3.4)

where L = γµpµ −m, Q and fQ are unknown operators belonging to M1:

Q = Ãµpµ + B̃, fQ = C̃µpµ + D̃,

Ãµ, B̃µ, C̃µ and D̃ are 4 × 4 matrices depending on x = (x0,x).
Relations (3.4) mean that the operators on the RHS and LHS give the same result

acting on arbitrary solutions of the Dirac equation. On the set of these solutions
operator p0 can be expressed via the operators pa with matrix coefficients: p0ψ =
Hψ ≡ (γ0m+γ0γapa)ψ. In other words it is sufficient to restrict ourself by considering
symmetry operators of a form such that

Q = B · p +G, (3.5)

where B and G are 4 × 4 matrices depending on x. For the operators (3.5) the
invariance condition (3.4) reduces to the following form:

[p0 −H,Q] = fQ(p0 −H), (3.6)

where fQ ≡ 0 insofar as the commutator on the LHS cannot depend on p0.
An unknown operator (3.5) can be expanded via a complete set of the Dirac

matrices

B = Id0 + iγ4d
1 + γνnν + Sµνmµν + γ4γνbν ,

G = Ia0 + iγ4a
1 + γνc

ν + Sµνf
µν + γ4γνg

ν ,
(3.7)

where d0, d1, nν , mµν , bν , a0, a1, cν , fµν , gν are unknown functions on x.
Substituting (3.5) and (3.7) into (3.6) and equating coefficients by the linearly

independent matrices and differential operators one comes to the following system of
partial differential equations:

n0 = b0 = 0, na
b = iεabcd

2
c , bab = iεabcd

3
c ,

m0a
b = iδabA

0, mab
c = εabcA

1, a, b, c = 1, 2, 3,
(3.8)

∂dµ
a

∂xb
= −∂d

µ
b

∂xa
,

∂dµ
a

∂xa
=
∂dµ

b

∂xb
, a �= b, m div d0 = 0, m div d1 = 2ima1,

ḋ
2

= −1
2
rot d3, ḋ

3
=

1
2
rot d2, ḋ

i
= −grad Ai, div di = −3Ai, i = 0, 1,

ca = −1
2
(rot d2)a, c0 = −1

3
div d3 +mA0, g0 =

1
3
div d2,

ga = −1
2
(rot d3)a − imd1

a, ȧ0 = −1
2
i div d0, grad a0 = −3

2
id̈

0
,

a1 = −1
2
i div ḋ

1
+

1
3
m div d2, grad a1 = −mḋ

2 − 3
2
id̈

1
,

f0a =
1
2
ḋ0

a − 1
4
i(rot d1)a, fab = εabc

[
1
2
iḋ1

c +
1
4
(rot d0)c +md2

c

]
,

(3.9)
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where the dot denotes the derivative on x0 and there is no sum by the repeated indices.
The symbol dµ denotes a vector with components (dµ

1 , d
µ
2 , d

µ
3 ) (analogous notation is

used for other vector quantities).
The first line in (3.9) gives the equations in the Killing form. Using this cir-

cumstance it is not difficult to obtain the general solution of the system (3.9) for
m �= 0:

d0 = x × η + ρx0 + ν, d1 = ξ + λx, d2 = x × ε + ζ,

d3 = εx0 + µx + σ, g0 = 0, ga = −im(ξa + λxa),

f0a =
1
2
ρa, fab =

1
2
εabc(2mζc − ηc) +m(xaεb − xbεa),

c0 = −µ−m(ρ · x + κ), ca = εa, A0 = −ρ · x − κ,

A1 = −λx0 + ω, a0 = Ω, a1 = −3
2
iλ.

(3.10)

Here the Greek letters denote arbitrary constants.
So the general solution of the system (3.9) depends on 26 arbitrary numerical

parameters. Substituting (3.7), (3.8) and (3.10) into (3.5) and using equation (3.1),
one obtains a general expression for the symmetry operator Q ∈ M1 for the Dirac
equation as a linear combination of the Poincaré group generators (2.14), identity
operator and the operators (3.3). The theorem is proved.

So we have obtained the complete set of the symmetry operators Q ∈ M1 for
the Dirac equation with m �= 0. Besides the Poincaré group generators (2.14) this
set includes four operators which coincide on the set of the equation (3.1) solutions
with Lubansky–Pauli vector (2.4), six operators ωµν = 1

2 (Q+
µν +Q−

µν), trivial identity
operator and five symmetry operators B and Aµ, µ = 0, 1, 2, 3, which belong to the
enveloping algebra generated by the Poincaré generators.

The operators (3.3) satisfy the following commutation relations

[B,Pµ] = −2iηµ, [B, ηµ] = − 1
2 i(Pµ +mAµ),

[Aµ, Pν ] =
1
m

[ηµ, ην ] = −2iωµν .

However these operators do not form the basis of the Lie algebra inasmuch as the
commutators [ωµν , ωλσ] do not belong to the class M1.

One of the most interesting consequences of the symmetry described in theorem 2
is the existence of new conservation laws for the Dirac equation. Corresponding new
conserved currents have the form

ηνµ =
1
4

(
ψ̄γ4γν

∂Ψ
∂xµ

− ∂ψ

∂xµ
γνγ4ψ

)
+mψ̄γ4Sµνψ,

ωµρν =
1
4
i

(
∂ψ̄

∂x0
Sνµψ + ψ̄Sνρ

∂ψ

∂xµ
− ψ̄Sνµ

∂ψ

∂xρ
− ∂ψ̄

∂xµ
Sµνψ

)
+

+
1
2
mψ̄[Sµν , γλ]+ψ, Bν = 2xµηµν , Aµν = 2xλωµλν .

(3.11)

The tensors ηµν , ωµρν , Aµν and the vector Bν correspond to the symmetry operators
ηµ, ωµρ, Aµ and B. All quantities (3.11) satisfy the continuity equations

pνηµν = 0, pνωµρν = 0, pνAµν = 0, pνBν = 0

and so generate conservation laws.
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4. Additional symmetry of the Weyl and massless Dirac equations
Here we study the symmetry of the Weyl equation

σµpµϕ = 0, (4.1)

where ϕ is the two-component spinor and σµ the Pauli matrices. Putting

ψ =
(

ϕ+ ϕ∗

i(ϕ∗ − ϕ)

)
(4.2)

one may rewrite this equation in the Dirac form

γµpµψ = 0, (4.3)

where γµ are the Dirac matrices in the Majorana representation. So we consider the
symmetry properties of equation (4.3) in order to obtain the results which are valued
as for the Weyl equation as for the massless Dirac one.

Theorem 3. The massless Dirac equation has 46 symmetry operators Q ∈ M1. These
operators are

Pµ, Jµν , Kµ, D, F, FPµ, FJµν , FKµ, FD, I, (4.4a)

Âµ = ω̂µνx
µ + xν ω̂µν − γµ, ω̂µν = γµpν − γνpµ, F Âµ, (4.4b)

where Kµ = 2xµD − pµxνx
ν + 2Sµνx

ν , F = iγ4, Pµ, Jµν and D are given in (2.14)
and (3.5′).
Proof. This can be carried out in full analogy with the proof of theorem 2. The
general solution of the system (3.8) for the case m = 0 has the form

dα = xx · µα +
1
2
µα

(
x2

0 − x2
)

+ x × ηα + ναx + ραx0x + λα + ωαx0,

α = 0, 1, d2 = x × ε + ξx − ζx0 + ϕ, d3 = x × ξ + σx + εx0 + κ,

Aα = −
[
x · µαx0 +

1
2
ρα

(
x2

0 + x2
)

+ ναx0 + ωαx + χα

]
,

aα = −3
2
i (x · µα + ραx0 + δα) , c0 = σ, xa = −εa, g0 = ξ,

ga = −ζa, f0a =
1
2
(−η1

a + ρ0xa + µ0
ax0 + ω0

a),

fab = −1
2
εabc(µ1

cx0 + ρ1
1xc + ω1

c + η0
c

(4.5)

and includes 46 independent parameters denoted by the Greek letters. Substituting
(3.5) and (4.5) into (3.7) and using equation (4.3) one obtains a general expression
for the symmetry operator of the massless Dirac equation in the form of a linear
combination of the operators (4.4). Thus the theorem is proved.

Among the operators (4.4) there are exactly fourteen symmetry operators, which
do not belong to the enveloping algebra generated by the conformal group generators
Pµ, Jµν , Kµ, D and by the operator F = iγ4. These essentially new symmetry
operators are given in (4.4b).

Operators (4.4) transform the real wave function ψ (4.2) into real wave function
ψ′ = Qψ and so they are also the symmetry operators for the Weyl equation (4.1).



On the new invariance algebras and superalgebras 231

Incidentally the linear transformations of ψ (4.2) generate linear and antilinear trans-
formations of a two-component Weyl spinor.

The operators (4.4) do not form a basis of the Lie algebra. However, one may
consider different subsets of the operators (4.4) which have the structure of the Lie
algebra or superalgebra. Thus the operators (4.4a) form the basis of 32-dimensional
Lie algebra including the Lie algebra of the conformal group. The operators Jµν , ω̂µν ,
F and λµ = FPµ satisfy the following commutation and anticommutation relations:

[ω̂µν , ω̂λσ]+ = −2i[Jµν , pλpσ] = 2(gµλpνpσ + gνσpµpλ − gµσpνpλ − gνλpµpσ),
[Jµν , ω̂λσ] = i(gµσω̂νλ + gνλω̂µσ − gµλω̂νσ − gνσω̂µλ), F 2 = I,

[ω̂µν , λρ]+ = [ωµν , F ]+ = 0, [λµ, λν ]+ = 2pµpν , [λµ, F ]+ = 2Pµ,

(4.6)

where the symbol [A,B]+ denotes the anticommutator [A,B]+ = AB +BA.
It follows from (2.5) and (4.6) that the set of symmetry operators {Pµ, Jµν , pµpν , I,

F, λµ, ω̂µν} form the basis of the Lie superalgebra (which includes ten symmetry
operators pµpν not belonging to the class M1).

5. The symmetry and supersymmetry of Maxwell’s equations
We shall write Maxwell’s equations for the electromagnetic field in vacuum in the

following form [17]:

L1ψ ≡ (i∂/∂x0 + σ2S · p)ψ = 0,
La

2ψ ≡ (pa − S · ppa)ψ = 0.
(5.1)

Here

σ2 = i

(
0 −1
1 0

)
, Sa = i

(
sa 0
0 sa

)
, (5.2)

where 1 and 0 are unit and zero 3 × 3 matrices, sa are the generators of irreducible
representation D(1) of the group SO(3) with the matrix elements (sa)bc = iεabc. The
symbol ψ denotes the six-component function, ψ = column (E1, E2, E3,H1,H2,H3),
where Ea and Ha are the components of the vectors of electric and magnetic fields
strengths.

It is well known that the Maxwell equations are invariant under the conformal
group C(1, 3) and under the group H of Heaviside–Larmor–Rainich transformations.
Moreover it was found [14, 15, 16, 17] that these equations also have the additional
hidden symmetry in the class of integro-differential operators which is determined by
the algebra GL(2, C). It was demonstrated also that GL(2, C) is the most extensive
invariance algebra of the Maxwell equations if one sopposes the symmetry operators
do not depend on x.

Here we study the symmetry of the Maxwell equations in quite another aspect. The
requirement that the symmetry operators belong to a finite-dimensional Lie algebra is
very important if one is interested in studying the symmetry groups of the equations
considered. However for many applications (e.g. for constructing conservation laws)
this requirement is not essential. So we do not require that the symmetry operators of
Maxwell’s equations should belong to a finite-dimensional Lie algebra but restrict the
class of operators considered by the second-order differential operators with constant



232 W.I. Fushchych, A.G. Nikitin

matrix coefficients. In other words we consider the symmetry operators of a form
such that

Q = dabpapb + cbpb + g, a, b = 1, 2, 3, (5.3)

where dab, cb and g are 6 × 6 numerical matrices. The operators (5.3) do not depend
on po inasmuch as one may always p0ψ via σ2S · pψ according to equation (5.1). Let
us denote the class of the operators (5.3) by the symbol M2.

We shall see that the Maxwell equations have non-trivial symmetry operators in
the class M2 which do not belong to the enveloping algebra of the conformal group
generators. On the other hand the analysis of more extensive classes of the Maxwell
equation symmetry operators is very complicated and cannot be carried out within
the framework of the present paper.

The invariance condition for equation (5.1) under the operators (5.3) may be wri-
tten in the following general form [17]

[L1, Q] = α1
QL1 + β1a

Q La
2 , [La

2 , Q] = α2a
Q L1 + β2a,d

Q Ld
2, (5.4)

where in our case α1
Q = α2a

Q ≡ 0 since the commutators on the LHS cannot depend
on p0, and

β1a
Q = ga

bcpbpc + fa
b pb + ha, β2a,d

Q = ga,d
bc pbpc + fa,d

c pc + ha,d, (5.5)

where gk
bc, f

k
b , h

k are numerical matrices, k = a or k = a, d.
Any of the matrices in (5.3) and (5.5) can be represented as a linear combination

of the matrices Dν
c and Gν

cd, where

Dν
c = σνSc, Gν

cd = σν(δcd − ScSd − SdSc).

Here σν are the 6 × 6 Pauli matrices commuting with Sa of (5.2). Calculating the
commutators in (5.4) and equating the coefficients by the linearly independent matri-
ces and differential operators one may prove the following statement.

Theorem 4. The Maxwell equations (5.1) have ten linearly independent symmetry
operators Q ∈ M2 which do not belong to the enveloping algebra of the Lie algebra
of the group C(1, 3) ⊗H. These operators have the form

Qab = σ1qab, Q̃ab = σ3qab, (5.6)

where

qab = [(S × p)a, (S × p)b] − p2δab, p2 = p2
1 + p2

2 + p2
3.

Proof. The proof can be carried out in full analogy with the proofs of theorems 2 and
3 and so can be omitted. We note only that equations (5.3)–(5.5) are satisfied by the
46 linearly independent operators given below:

σ0, iσ0pa, σ0papb, σ0S · p, ipaS · p, iσ2,

σ2pa, iσ2papb, σ2S · p, iσ2paS · p, Qab, Q̃ab,
(5.7)

where Qab and Q̃ab are given in (5.6). All operators of (5.7) with the exception of
Qab and Q̃ab can be expressed via Pa, S · p = 1

2εabcJabPc and σ2, where Jab and Pa
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are the Poincaré generators given by the formulae (2.14) with 1
4 i[γa, γb] → εabcSc,

σ2 is the matrix of (5.2) (which is the generator of the Heaviside–Larmor–Rainich
transformations).

Note 1. From twenty operators (5.6) exactly ten are linearly independent in so far as

(Q11 +Q22 +Q33)ψ = (Q̃11 + Q̃22 + Q̃33)ψ = 0,

where ψ is an arbitrary solution of equations (5.1).

Note 2. The operators α1
Q, β

1a
Q and α2a

Q from (5.4) which correspond to the symmetry

operators (5.6) are zero matrices. For β2c,d
Qab

and β2c,d
Qab

one obtains by direct calculation

β2a,d
Qbc

= iσ2β
2a,d
Qbc

= −σ1δad[(S × p)a, (S × p)b]+.

So we have determined the complete set of the Maxwell equation symmetry ope-
rators in the class M2. Using the notation given in (5.2) and below formula (5.2), it
is not difficult to represent the transformations ψ → Qabψ and ψ → Q̃abψ generated
by operators (5.6), in the terms of the electromagnetic field strengths

Ec → gcd
abHd, Hc → gcd

abEd, (5.8)

Ec → gcd
abEd, Hc → −qcd

abHd, (5.9)

where

gcd
ab = papbδcd − papcδbd − pbpcδad + p2(δacδbd + δbcδad − δabδcd).

The invariance of Maxwell’s equations under transformations (5.8) and (5.9) can be
easily verified by direct calculation.

The operators (5.6) do not form a basis of a Lie algebra. However, one may
consider subsets of the operators (5.6) which can be extended to the Lie superalgebras.
One of these subsets includes the following operators:

Q1 =
1
2
εabccaQbc, Q2 =

1
2
εabccaQ̃bc,

Q3 = S · p, Q4 =
1
2
cacbpapb, Q5 = p2,

(5.10)

where ca are arbitrary numbers satisfying the condition caca = 1. The operators (5.10)
satisfy the relations

[Qa, Qb]+ = 2δab (Qa)2 ,
(
Q1

)2 =
(
Q2

)2 = Q6 ≡ (
Q4 −Q5

)2
,(

Q3
)2
ψ = Q5ψ, [Qa, Q4] = [Qa, Q5] = [Q4, Q5] = 0

and so form the basis of the Lie superalgebra together with the operator Q6. This
superalgebra can be extended by adding the operators Q6+a = iσ2S · pQa, Q9+a =
iσ2S · p(Qa)2 and Q12+a = p2(Qa)2, a = 1, 2, 3, which satisfy the relations

[Q6+a, Q6+b]+ = 2δabQ
12+b, [Q6+a, Qb]+ = 2δabQ

6+b,

[Q9+a, QB ] = [Q12+a, QB ] = 0, B = 1, 2, . . . , 15.

In conclusion let us give the explicit form of the motion constants of the electro-
magnetic field which correspond to the symmetry operators (5.6). Due to the Maxwell
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equations the following bilinear combinations do not depend on x0 and so are conser-
ved in time

Iab =
∫
d3xψTQabψ =

∫
d3x [(rot H)a(rot H)b − (rot E)a(rot E)b+

+Eap
2Eb −Hap

2Hb

]
,

Ĩab =
∫
d3xψT Q̃abψ =

∫
d3x

[
Eap

2Hb +Hap
2Eb−

−(rot E)a(rot H)b − (rot H)a(rot E)b] .

(5.11)

In contrast with the classical motion constants (energy, momentum, etc) the integral
combinations (5.11) depend not only on E and H but also on the derivatives of these
vectors.

So starting from the symmetry operators (5.6) found above we obtain ten new
constants of motion for the electromagnetic field in vacuum given by relations (5.11).
These motion constants, in contrast to the Lipkin ones [25, 4, 23, 26], have nothing
to do with the Lorentz or conformal invariance of the Maxwell equations inasmuch as
the corresponding symmetry operators (5.6) do not belong to the enveloping algebra
of the algebra C(1, 3) ⊕H.

Acknowledgment. We would like to thank the referee for his useful comments.

Note added in proof. In the formulation of theorem 3 we have omitted six symmetry
operators of the massless Dirac equation, which have the form Qµν = −Qνµ =
[Kν , Aµ]. So this equation has 52 linearly independent symmetry operators Q ∈ M1

All the symmetry operators Q ∈ M1 for the Dirac equation with m �= 0 belong to the
enveloping algebra of algebra P (1, 3) inasmuch as operator B (3.3) can be represented
as Dψ = 1

4εµνρσJ
µνJρσψ on the set of the Dirac equation solutions.
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