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The symmetry and exact solutions of some
multidimensional nonlinear equations
of mathematical physics
W.I. FUSHCHYCH

We discuss exact solutions of some nonlinear equations obtained in collaboration
with Shtelen W.M., Serov M.I., Zhdanov R.Z. (Institute of Mathematics, Kiev).

We consider the following equations:
— The nonlinear wave equation

pµpµu + F1(u) = 0, (0.1)

u = u(x) scalar, x = (x0, x1, . . . , xn) ∈ R(1, n), F1(u) twice differentiable, pµ =
i∂/∂xµ.

— The generalized Monge–Ampere equation

det(uµν) = F2(x, u, u
1
),

uµν =
∂2u

∂xµ∂xν
, u

1
=

{
∂u

∂x0
,

∂u

∂x1
, . . . ,

∂u

∂xn

}
,

(0.2)

F2 smooth. With F2 = 0, we get the Monge–Ampere equation used in differential
geometry and, especially at present, in quantum field theory.

— The multidimensional hyperbolic analog of the Euler–Lagrange equation for
minimal surfaces or the Born–Infeld equation

�u(1 − uνuν) + uµνuµuν = 0,

uνuν =
(

∂u

∂x0

)2

−
(

∂u

∂x1

)2

− · · · −
(

∂u

∂xn

)2

.
(0.3)

— The nonlinear Schrödinger equation(
p0 − p2

a

2m

)
u + F3(u)u = 0, (0.4)

m is a parameter, u = u(x0, . . . , xn) is a complex function.
– The nonlinear Dirac equation[

iγµ∂µ + F4(Ψ̄Ψ)
]
Ψ = 0, (0.5)

γµ are 4 × 4 Dirac matrices, Ψ, Ψ̄ spinors, F4 smooth and depending on ΨΨ̄. The
special case[

iγµ∂µ + λ
(Ψ̄γµΨ)γµ

[(Ψ̄γνΨ)Ψ̄γνΨ]1/3

]
Ψ = 0 (0.6)
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can be considered as a conformally invariant analog of the Dirac–Heisenberg equation
for a spinor field.

If we require these equations to be invariant with respect to a group larger than the
Poincaré or the Galilei group, a special form is imposed on F and we can construct
a whole family of solutions from known ones from such a symmetry.

We denote by P̃ (1, n) the extended Poincaré group, i.e. the Poincaré group P (1, n)
and scale transformations, and by AP̃ (1, n) its Lie algebra.

§ 1. The symmetry
To construct solutions of (0.1)–(0.6) we need to know their symmetry properties.

Theorem 1. The wave equation (0.1) is invariant under P̃ (1, n) iff

F1(u) = λ1u
r, r �= 1, (1.1)

F1(u) = λ2 exp(u), (1.2)

λ1, λ2, r constants.
The proof is given in [3]. (0.1) is in the case (1.1) and for r = n+3

n−1 invariant under
the conformal group C(1, n) ⊃ P (1, n).
Theorem 2. For F2 = 0 equation (0.2) is invariant under IGL(1, n+1), the group of
linear inhomogeneous transformations of R(1, n+1), and C(1, n+1), the conformal
group of R(1, n + 1). The basis elements of the corresponding Lie algebra have the
form

PA = igAB∂/∂xB , LAB = xAPB, A,B = 0, . . . , n + 1, (1.3)

KA = xAD, D = ixAPa, xn+1 ≡ u, (1.4)

gAB is the metric tensor in R(1, n + 1).
The Monge–Ampere equation is invariant, in particular under linear transforma-

tions which preserve the quadratic form

s2 = x2
0 − x2

1 − · · · − x2
n − u2

containing independing variables x and the depending variable u equally.

Theorem 3. Equation (0.2) with F2 �= 0 is invariant under P̃ (1, n + 1) iff

F2(u) = λ(1 − uνuν)
n−1

2 . (1.5)

Theorem 4. The maximal, in the sense of Lie, invariance group of the equation
(0.3) is P̃ (1, n + 1).
Theorem 5. (0.4) is invariant under the extended Galilei group G̃(1, n) which in-
cludes G(1, n), scale and projective transformations, iff

F3 = λ|u|4/n. (1.6)

where n is the number of spatial variables.
Theorem 6. The nonlinear Dirac equation (0.5) is invariant under the conformal
group C(1, n) iff

F4(Ψ̄Ψ) = λ(Ψ̄Ψ)4/n. (1.7)
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All theorems listed above can be proved by Lie’s method. The proofs are as a rule
cumbersome, so we omit them.

§ 2. Solutions of nonlinear equations
To construct exact solutions of (0.1)–(0.6) we use the symmetry properties of the

equations. The solutions in question are multiparametrical and due to their symmetry
we use the following ansatz

u(x) = f(x)ϕ(ω) + g(x), (2.1)

where ϕ(ω) an unknown function depending on new variables (m = n − 1)

ω(x) = {ω1, ω2, . . . , ωm}
chosen from the invariants of the symmetry group of the equation. More precisely ω
and f , g are determined from the equations

dx0

A0
=

dx1

A1
= · · · =

dxn

An
=

du

B
, (2.2)

where Aµ, B are functions defining infinitesimal transformations of the invariance
group

x′
µ = xµ + εAµ, u′ = u + εB,

Aµ = cµνxν + dµ, B = au + b,

where cµν , dµ, a, b are group parameters. Variables ω are just the first integrals of
(2.2).

In the special case that ϕ depends on one variable, the partial differential equation
for u reduces to an ordinary differential equation for ϕ. Solutions of this ODE give
through (2.1) solutions of the original PDE.

Below we list some simple solutions of (0.1)–(0.6).
1. The nonlinear wave equation

�u + λur = 0, r �= 1, (2.3)

u(x) =
{
−λ

2
(
1 − k2

) [
(βνyν)2 + yνyν

]} 1
1−k

,

βνβν = −1, yν = xν + aν ;

(2.4)

u(x) =
{

λ

2
(
1 − k2

)
ανyνβσyσ

} 1
1−k

,

αναν = βνβν = 0, ανβν = −1;

(2.5)

u(x) = [F (ανxν) + βνxν ]
2

1−k , βνβν = −λ

2
(1 − k)2

1 + k
�= 0, (2.6)

F arbitrary smooth, aν , αν , βν are constants satisfying the above conditions. (2.4)–
(2.6) give a family of solutions of equation (2.3). As it is seen from (2.4)–(2.6), for
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k > 1 the solutions have a singularity at λ = 0 and cannot be obtained by a standard
perturbation method.

2. Solutions of the Monge–Ampere equation
For det(uµν) = 0 arbitrary smooth functions

u = ϕ(ω1, ω2, . . . , ωn−1), ωk = αk
νxν , (2.7)

αk = (αk
0 , . . . , αk

n) arbitrary constant vectors, are solutions. Additional solutions in
explicit and in implicit form are

u = (αµxµ)2 − α2x2, α2 ≡ α2
0 − α2

1 − · · · − α2
n; (2.8)

u = x2/(α · x), α · x ≡ ανxν ; (2.9)

ανxν − αn+1u = ϕ2(βνxν − βn+1u), (2.10)

ϕ2 is smooth, βν are parameters;

u = σ−1(x, u)
[
(α · x)2 − α2x2

]
, σ(x, u) = 1 + bµxµ − bn+1u. (2.11)

3. Solutions of the generalized Euler–Lagrange equation
For �u(1 − uνuν) + uµνuµuν = 0 the function

u = ϕ(ανxν) + βνxν (2.12)

is a solution, where ϕ is smooth, and the parameters satisfy the following conditions

ανβν + αναν(1 − βσβσ) = 0.

A solution in implicit form is

ανxν − αn+1u = ϕ(βνxν − βn+1u),(
αναν − α2

n+1

) (
βσβσ − β2

n+1

) − (αµβµ − αn+1βn+1)2 = 0.
(2.13)

4. Solutions of the nonlinear Dirac equation
[
iγµ∂µ + λ(Ψ̄Ψ)k

]
= 0. (2.14)

Consider the case k = 1/3, then eq. (2.14) is invariant under C(1, 3). To reduce eq.
(2.14) to the system of ODE we use the ansatz

Ψ(x) = A(x)ϕ(ω), (2.15)

where A(x) is a 4 × 4 matrix, ϕ(ω) is a four-component function, depending on one
invariant variable ω. More specifically

A(x) = (γνxν)(xµxµ)−2, (2.16)

ω = βνxν(xµxµ)−1, βνβν > 0. (2.17)

(2.15)–(2.17) reduces (2.14) to the following system of ODE

dϕ

dω
= iλ(βνβν)−1(ϕ̄ϕ)1/3(γ · β)ϕ. (2.18)
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Solving eq. (2.18), we get the following solution of (2.14)

Ψ(x) = (γ · x)(xνxν)−2 exp{iλκ(γ · β)ω)χ =

= (γ · x)(xνxν)−2

[
cos(λκβω) + i

γ · β
β

sin(λκβω)
]

χ,
(2.19)

where χ is a constant spinor, β = (βνβν)1/2, κ = (χ̄χ)1/3(βνβν)−1. (2.19) is confor-
mally invariant.

In the same way solutions of nonlinear Schrödinger, Navier–Stokes, Liouville equa-
tions have been constructed [1, 2, 3, 6]. We can even solve PDE’s which are nonin-
variant with respect to P (1, 3), e.g.

�u =
(

λ0

x0

)2(
∂u

∂x0

)2

+
(

λ1

x1

)2(
∂u

∂x1

)2

+
(

λ2

x2

)2(
∂u

∂x2

)2

+
(

λ3

x3

)2(
∂u

∂x3

)2

,(2.20)

where λ0, λ1, λ2, λ3 are parameters, xµ �= 0. This reduces with the Lorentz-invariant
ansatz u = ϕ(x2) to an ODE

ω
d2ϕ

dω2
+ 2

dϕ

dω
= λ2

(
dϕ

dω

)2

, ω = x2 ≡ xνxν .
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