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On some exact solutions of a system
of non-linear differential equations

for spinor and vector fields
W.I. FUSHCHYCH, R.Z. ZHDANOV

The problem of finding ansitze for a non-linear Dirac equation which is invariant under
the extended Poincaré group is solved. With the help of these ansédtze some multi-
parameter families of exact solutions of non-linear Dirac and Dirac-Maxwell equations
are constructed.

1. Introduction
In the present work using ideas and methods of S. Lie (see [12, 2]) we have
constructed large classes of exact solutions of the non-linear Dirac equation

(3 + AP ) (@) =0,k £0, (11)

where 7, are 4 x 4 Dirac matrices, p,, = ig,,0/07,, ¥ = ¥y, x = (z9, 21,72, 73),
1 is a four-component spinor and k, A are parameters, and of the system of eight
non-linear equations,

(Vup! + My A+ ma)p(z) =0,
PP’ Au — pup” Ay = exp(hyuth) + Au(ma + X AV A,),

where A, (x) is the vector potential of the electromagnetic field and e, A1, A2, my, mo
are constants. If we choose mo = A2 = 0, then system (1.2) coincides with equations
of the classical electrodynamics describing interaction of electromagnetic and spinor
fields.

To construct multiparameter families of exact solutions of (1.1) and (1.2) we
essentially use their symmetry properties and the ansatz

P(z) = A(z)p(w) + B(x) (1.3)

suggested by Fushchych [3, 4] and effectively realised by Fushchych and Shtelen [6, 7]
and Fushchych and Serov [5] for a number of non-linear wave equations. A(x) is a 4x4
matrix and B(z) is a four-component spinor, algorithms for their construction being
cited below, and ¢(w) is the column vector, components of which depend in general
on three invariant variables w = {wy,ws, w3} (for more details see Fushchych [3, 4]).
Later we shall consider the case when B(z) = 0.

On using finite transformations it is established that equation (1.1) is invariant
under the extended Poincaré group P(1,3), i.e. under the Poincaré group P(1,3)
supplemented by a group of scale transformations.

Basis elements of the Lie algebra AP(1,3) have the form

(1.2)

Pu = Pus Juz/ = TupPv _mupu+spua
D= xupﬂ — ik, Sul/ = (7;/4)(7;/% - 'YV'V;L)v p, v =0,3.
J. Phys. A: Math. Gen., 1987, 20, P. 4173-4190.

(1.4)
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A general scheme for constructing solutions of the system (1.1) (solutions of the
system (1.2) are obtained in an analogous way) is as follows. We look for solutions of
equation (1.1) which are invariant under the subgroup of the group P(1,3) generated
by linear combination of all basis elements of AP(1,3)

Q=C"J,, +C"D+C"P,, (1.5)

where C*, C% C* are constants and p,v =0, 3.
The matrix A(x) is a solution of the following system of partial differential equa-
tions (PDE):

QA(z) = 0. (1.6)

Invariant variables are the first integrals of the Euler-Lagrange system of ordinary
differential equations (ODE)
dxg dxg
8@~ ew CT0Y o
where ¢* = C*g,, + COxt + CH.

If one knows an explicit form of the matrix A(x) then after substituting (1.3) into
the corresponding equation we shall obtain an equation for a spinor ¢(w) depending
on three invariant variables {w;,ws, w3} only. This means that ansatz (1.3) with the
chosen matrix A(x) provides separation of variables in equation (1.1). Solutions of the
corresponding equation for ¢(w) being substituted in (1.3) yield the solutions of the
initial equation.

To realise this scheme it is necessary first of all to construct in an explicit form
matrices A(x) satisfying (1.6). So one has to solve the first-order linear system of 16
PDE with variable coefficients. It is rather difficult to solve such a system by standard
methods, which is why we use the following trick. The operator @ is transformed into
another operator

Q =ww! (1.8)
with the help of the invertible operator

W(z,p) = exp(6%), W (z,p) = exp(—6%), (1.9)
where

Y =0""Ju + 0D+ 60"P,. (1.10)

Transformation W is so chosen that operator @ is as simple as possible. This
purpose can always be achieved because of the Poincaré invariance of system (1.1).
From the physical point of view this means that the non-linear Dirac equation is
solved in the fixed reference system. The construction of the solutions which do not
depend on the reference system (ungenerable solutions) is the next step.
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2. Construction of the matrix A(x)
Before proceeding with a direct solution of the system (1.6) let us simplify it using
the method described in the introduction. To do this we need the Campbell-Hausdorff

formula
© ok
exp(0Q1)Q2 exp(—0Q1) = > H—I{Qh Q2}",

r i (2.1)

{QlaQQ}O = QQ’ {Q17Q2}n = [Qla {Q17Q2}n71]7

where @1, Q2 are operators and [A, B] = AB — BA.
A fundamental role is played by the following lemma.

Lemma. The operator Q = C*"J,, = ApyMy + BN,, where M) = —%ékszzm,
Ny = Jow, by a transformation Q — Q' = VQV ™!, where V = exp(6*” J,,, can be
reduced to one of the following forms:

(i) Q =aJo+phs, (A -B)?+(A>— B’ #0,

(i) Q =a(Jor +Ji2), A-B=A>—-B*=0.
Proof. Let us introduce new operators

Jo = (i/2)(My +iN,), Ko = (i/2)(M, —iN,), a=T,3.
One can easily check that the following commutational relations hold:

[Jas Jo] = i€apede,  [Ka, Kp| = i€apeKe,  [Ja, Kp) =0 (2.2)
so Q = apJy + b K, where a, = —Byp — 1A and by = B; — iA;.

Using (2.1) and (2.2) one obtains

Q' =iQVit= (@ + a3 +ad) P + (03 + d + ad) ] Ky = ador + s,

where

Vi = exp [—itan™!(az/a3)J1] exp {itan_l {al (a3 + a%)_l/2 + 77/2} Jg} X
(2.3)

—1/2 i 71_/2} Kg}.

x exp [—itan~"(by/b3) K1] exp {itan’l [61 (b3 + b3)
[t is evident that these formulae lose their validity in the case
a2+ai+ai=0 < A’=B? A-B=0.

Therefore one can use this approach only in case (i). Let us now consider case
(ii). It follows from (2.1) that

exp(OM, ) Ax My exp(—0M,) =

2.4
= A My cos + A M, (1 — cos ) + eqpi A M; sin 0 2:4)

(no summation is performed over a),
exp(0M,)B;N;exp(—6M,) = ©25)

= BiN;cos8 + BN, (1 — cos ) + 41 BrN; sin 6

(no summation is performed over a).
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Using identities (2.4) and (2.5), one can be convinced that the following equality
holds:

Q/ = VQQ‘/Q_l = VQ(AkMk + BZNZ)VQ_l = 7‘A| Sgl‘lA3(J01 + Jlg),
where
-1 -1 2 2\1/2
Va = exp [tan~!(A; /As) Ms] exp {tan [(A1 + A3) /A3} Ml} x

X exp [[{tan_l [B3‘A|/(B2A1 — BlAQ)] + 71'9(31142 - B2A1)} Mg]] 5

O 1, >0, o(x) — 1, >0,
gn o= -1, =<0, =0, z<o.

This completes the proof. Let us prove the main statement.

Theorem. The operator Q = AyMy, + BN, + C°D + C* P, with the help of trans-
formation (1.8) can be reduced to one of the following forms:

(A) A-B=0, A*’=B?

(1) = J()l + J12 + aD (26)
(i) Q" = Jo1 + Jiz + B8P3 — Py, 2.7
(iil) @ = Jo1 + Ji2 + 8P, (2.8)

(B) <A B)’+(4” - B)" #0,

(1v) = Jog + aD, (2.9)
(v) Q" = Jor + bJas +aD, (2.10)
(vi) Q" = Jo1 4 bJog + D + 3Py, (2.11)
(vil) Q" = Jo1 + Px, (2.12)
(vili) Q" = Jaz + a1 Py + o Py, (2.13)

(C) A=B=0o,

(ix) Q (2.14)
(x) @ =Py + P, (2.15)
(xi) Q" = P, (2.16)
(xii) Q' = P. (2.17)

Proof. If A # 0, B # 0 then it follows from the lemma that there exists an operator
V1 (Va) of the form (1.9) such that

(a) under A-B = A% - B? =0,
ViQVy ! = a(Jor + Ji2) + 0D + 64 P,
(b) under (A-B)?+ (A% - B%)® #0,
VaQVy ' = adoy + BJag + 0D + 04 P,.
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It is clear from (1.6) and (1.7) that operators @ and a@Q, a # 0, generate the same
invariant solutions. One may suppose that o = 1.

We need the following formulae which are consequences of the Campbell-Haus-
dorff formula:

exp(iA' P,)Jag exp(—iA'P,) = Jog + (A\gPa — Ao Ps), (2.18)
exp(iA'P,)D exp(—iA“P,) = D — APy, (2.19)
exp(iAF P,) Py exp(—iA'P,) = P,. (2.20)

Let us consider the case (a):

Q' — Q" =exp(iXN'P,)(Jor + Jiz2 + 0D + 0°P,)(exp(—iA'P,) =
=Jo1 +Ji2 +0D +0"P, + M Py — AP — M Po — OX*P,.

Under 6 # 0 one can always choose A\, that
Q" =Jor+ Ji2+6D
and under # = 0 so that
Q" =Jor+ Jiz + Py + P, a<O0.
If in the last operator o # 0, then

Q" = exp(—iln|a|D)(Jo1 + Ji2 + aPy 4 fP3) exp(iln |a|D) =
= Jo1 + Ji2 — Po + 8Ps.

If « =0 then
Q" = Jo1 + Ji2 + BPs.

Let us now consider case (b). If & # 0 then on dividing into v and on transforming
the operator @ according to (2.18)-(2.20) we obtain

Q' = exp(iA*P,)(Jo1 + bJag + 0D + 0* P,) exp(—iA'P,) =
= Jo1 + (MPo — Ao Pr1) + bJag + b(AsPo — Ao Ps) + 60D — O\'P, 4+ 6 P,.

Under 0 # +1, 6% + b% # 0 it is always possible to choose A, so that

Q' = Jo1 + bJag + 6D.
Under 6§ = %1 it is possible to choose A, so that

Q' = Jor + bJas + 0D + BF,.
Under § = b = 0 there exist such A, that

Q' = Jo1 + P

Under o = 0 using formulae (2.18)-(2.20) one can check that the operator @ can

be reduced to one of the following forms:

Q' = Jag+aD, 0#0,

Q' = Jos+a1 Py +asP, 6=0.
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The only thing left is to consider the case A = B =0, i.e. Q = 0D + 0"P,. Using
formulae (2.18)-(2.20) it is easy to be convinced that under 6§ =0

exp[(i/6)0" P,](6D + 6*P,) exp[—(i/0)6*P,] = 6D.
If & = 0 then analysing three possibilities §,0* = 0, §,0* > 0, §,60* < 0 we obtain
operators (2.15)—(2.17). The theorem is proved.

Note 1. When proving the theorem we used only commutational relations of an
algebra AP(1,3) and we did not use its concrete representation.

Note 2. It is seen from the proof that P(1,3)-invariant solutions are exhausted by
solutions generated from ones invariant under operators (2.6)—(2.17) with the help of
transformations from P(1, 3).

This theorem essentially simplifies the problem of finding ansitze because instead
of integrating the system (1.6) where @ is an operator of the general form (1.5), it is
enough to find a partial solution of this system with @ having the form (2.6)-(2.17).

For example, let us consider case (2.9). The matrix A(z) is a solution of the
following matrix system of PDE

1
ToAy, — T3Ay, + 5727314 +ax, Ay, —akA =0, (2.21)

where A,, = 0A/0z,, a=0,3.
We look for a partial solution of (2.21) of the form

A(z) = f(z) exp(g(z)y273)- (2.22)
Substituting (2.22) into (2.21) we obtain

1
T2 foy — T3 fu, +axyfz, —akf + f (932%3 — 239z, + 0TpGa, + 2) ’Yz%} X

x exp(g(x)y273) = 0.
A partial solution of the last system is given by formulae
—k/2 1 _
f@) = (@3 +23) 7, gl@) = —5 tan~ @2 /ay).
Finally

1 _ —k
A(x) = exp [—57273 tan 1(562/553):| (23 + 23) /2,

In the same way we have obtained matrices A(x) which correspond to operators
(2.6)-(2.17)

(i) a £ 0, A(x) = (zg — 1’2)_k exp Ba_lﬁyl(% —2) In(zo — .’IJ2>:| , (2.23)
1 -1
a=0, A(z)=exp {2951(10 —22)” 71(70 — 72)} ) (2.24)

(i) Ae) = exp | 30 = 02 — a0 2.25)
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(iii) A(z) = exp [;61% (2 — ")/())IE3:| , (2.26)
(iv) A(z) = (a:% + x%)_k/g exp [;7273 tanl(o:Q/xg)} , (2.27)
(V) a# -1, Ax) = (a2 —22) "? x
1 1 . (2.28)
X exp [5 a+ 1)ty In(zg + 21) — 37273 tan™ (arg/mg)] ,
= -1, A(x) = (s —23) ™" x
1 1 (2.29)
X exp [—Zyovl In(zog — 1) — 572’73 tan™ (xg/xg)] ,
(vi) A(x) = (2x0 + 221 + B)7F/2 x
2.30
X exp [37071 In(2xg + 221 + 3) — %tan_l(wz/xa)vm] ; (2.30)
(vii) A(z) = exp me In(zo + xl)} 7 (2.31)
(viii) A(z) = exp [—%7273 tan_l(xg/xg)] , (2.32)
(ix) A(z) = 25 "1, (2.33)
(x) A(z) =1, (2.34)
(xi) A(z) =1, (2.35)
(xii) A(z) =1, (2.36)

where I is a unit 4 x 4 matrix.

3. Ansitze for the non-linear Dirac equation (1.1)
As pointed out in the introduction, to find invariant variables wy(z), wa(z), ws(x)
it is necessary to find all the first integrals of the Euler-Lagrange system of ODE
dz,
dr
Because of the lemma proved above, one can restrict oneself to the following cases
of the system (3.1):

= CW,.TV + COOJ:M + CH' (31)

(i) Cop=—-Ci12=1, Cyo=a, rest coefficients are equal to 0,
(ii)) Coi=-Cia=1, Cyp=—1,

C3 = —f, rest coefficients are equal to O,
(iii)) Co1 =—-Ci2=1, Cs5=—p, rest coefficients are equal to O,
(iv) Cos=-1, Coo=a, rest coefficients are equal to O,
(v) Coi=1, Cy3=-b, Cpo=a, restcoefficients are equal to 0,
(vi) Co1 =1, Ca3=-b, Cpy =1,

Co = 3, rest coefficients are equal to O,
(vii) Co1 =1, Cy=—1, rest coefficients are equal to 0,
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viii) Caog = -1, Cyp=a1, Ci = —az, rest coefficients are equal to 0,

(
(ix) Cu=0, Cyp=1, C,=0,

(x) Cuw=Copp=0, Co=-Ci =1, Cy=C5=0,
(xi) Cu=Cop=0, Ci=C=C3=0, Cy=1,
(xii) Cu=Cop=0, Co=Cr=C3=1, Cy=-1L

Solution of the system (3.1) in cases (i)—(xii) above is carried out in the usual

way, so we write down its first integrals omitting intermediate calculations.

(i) a#0, wy = (a8 — 23 — 23) 237, wa = (w0 — x2)75 ",

w3 = awy (g — x2) "1 — In(z0 — 72),

2 2 2
a=0, wi =x9— T2, Wy =T3, W3=2T[—T] — Ty,

(11) w1 =3 + ﬁ(l‘o — 33‘2), Wy = 21‘1 + (370 — 1‘2)2,

w3 = 31133 —+ 31’1($0 — .TQ) —+ (SL'O — 1’2)3,

(iil) w1 = o — T2, wo = x% - x% - x%, ws = Px1 — (xo — T2)x3,
(iv) w1 = moz7 !, wo = In (23 + 23) + 2a tan~! (z2/x3),

w3 = (m% + a:%) (roz1)~ 1,

(v) a # =1, wg =bln (23 + 23) + 2atan™! (22 /3),

wi = (wo +21)* (e —23) """ wp = (0 — a3) (e +23)
a=-1, wi =x0+ 1, W2 = (m% *ﬁ) (m% +x§)71,
ws = bln (23 + 23) — 2tan* (22/x3),

(vi) w1 = (2z0 + 271 + B) exp[26~H(z1 — 0)],
wa = (2xg + 221 + B) (23 + x%)_l )

w3 = bln (23 + 23) + 2tan~" (z2/x3),
(Vll) w1 = IZZ% — l‘%, Wy = hl(mo —+ 2131) — X2, W3 = I3,

(viii) w1 = 2% + 2%, wo = tan~1(z2/23) + Bixo + Paz1,

w3 = axo + 0wy, —of +azfB =1,

(ix) we = maxal, a=1,3,

(x) w1 =20 + 71, W2 = T2, Wy = T3,

(xi) wg = x4, a=1,3,

(Xll) W1 = Tg, W2 = T2, W3 = T3.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
(3.13)
(3.14)

(3.15)
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Now substituting (2.23 )-(2.36) and (3.2)-(3.15) into (1.3) under B(z) = 0 we
obtain the following set of ansétze for the non-linear Dirac equation (1.1):

() 9(0) = (a0~ aa) Fexp | 32 =) oo —an) (), (316)
1 -1

$(o) = exp | gaan = 22) 02 = 20) | (), @.17)
. 1
(ii) ¥(z) = exp [571(72 —70)(zo — 562)} p(w), (3.18)
1,4
(i) (a) = exp | 307 (2 — )73 o). (3.19)
. 2 o\ —k/2 1 1
() 00a) = (a3 + )™ oxp |~ e ton (a0 | ), (3.20)

(v) (x) = (af —a?) "7 x

3.21
X exp %(a + 1) oy In(zo 4+ 1) — %7273 tanl(a:Q/:c;),)} p(w), (32D
w(e) = (e - a3) " x
M1 1 o (3.22)
exp |~ o In(o — 1) = e ton~ (e /12)| (o),
(vi) (x) = (220 + 221 + B)7F/% x
[ 3.23
X exp %7071 In(2zg + 221 + 6) — %7273 tanl(xg/xg)] o(w), ( )
.. 1
(vii) ¥(x) = exp [57071 In(zo + 1:1)} o(w), (3.24)
(viii) ¢ (z) = exp {—%7273 tan_l(xg/xg)} p(w), (3.25)
(ix) ¥(2) = 5 p(w), (3.26)
(x) ¥(z) = p(w), (3.27)
(xi) ¢(z) = p(w), (3.28)
(xii) P(x) = p(w). (3.29)

The problem of finding all the ansitze for P(1,3)-invariant solutions is therefore
completely solved. The second step of the algorithm — the reduction of the Dirac
equation — will be realised in the next section.
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4. Reduction of the non-linear Dirac equation (1.1)

It was pointed out above that substitution of ansatz (1.3) into (1.1) results in a
reduction by one of a number of independent variables. This means that the equation
obtained will depend on the three independent variables w;, ws, ws. Omitting cum-
bersome calculations we write down resulting systems of PDE:

(i) k(72 —10)e + [(vo —72) (w1 + a2wiws) +
+ (70 + 72)w3 — 2a" 1y waw3 — 273w1w2] Puw, + 1)
+ [(v0 = 72)wa — V3w3] Pu, + :
+lay1 + (2 = 90) (Ws + 1)] guy = iA@0)/ 2,

(0 =) o+ (10— 1) + Y50 +
2 (] V2)w @ Yo Y2 )Puw; V3Pws (42)

+ [(70 + 12)wi + (Yo — Y2)wswi ] puy = iN@p) Y,

(ii) [v3 + B0 — 72)|Pw, + 2710w, +

3 o \1/2 (4.3)
+5(292) + (10 = 2)wz)ws = iA(@0) 10,
N _
(iii) 55 "0 = 12)e + (0 — 72)Pwr + [(Y0 +2)wr — 287 ' yws + (4.4)

+ (Y0 — 12) (8723 4 w2) wi '] Pu, + (811 — Y3wW1)Puwy = A (Pp) %,

. 1
(iv) 5(1 — 2k)v39 + (wiws) 2 (Y0 — 1w1)Pwr + 2(73 + a¥2)u, + 45)
1/2k ‘

+ {273 — (0 + 71w1)w31,/zwfl/2} W3Pws = IA(Pp) e,

(v) [fk ('yo coshln wl_l/Q(aH) — 71 sinh lnw}/2(a+1)) +

1 - 1
+=(a+ 1)y + Y1 )w; L/2(atl) 4 273w§/2] w—

2
1/2(a+1) 1/2(a+1)>
1

—2(a+ Dw; (’yo cosh Inw; — vy sinhlnw (4.6)

Py T

1/2(a+1) 1/2(a+1)
1 1

+2 [70 coshlnw — yp sinhlnw vgw;/ﬂ WPy +

+ 2(ams + bys)ws X, = i)Y,

[fk (’yo cosh lnw}/2 — ~y1 sinh lnwim) +

+ i(’Yo —m)w + ;7300;/2} o+ (30 + 11wy 0wy +
+ 2wo (*yo cosh In wi/

(4.7)
> _ 4 sinh lnw}/2 — 27360;/2) Puwy +

1/2k

+2(bys — 2)ws’ > Pus = IN(Bp) /g,

(vi) %[(1 = 2k)(v0 +71) +y3wale + 2[(8 — 1)y + (B + DyJwipw, + 4.9)
1/2k ’

+ 2w, (% T—— 273) Pun + 2072 + by3)ws’ 2 pu, = M@)o,
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(vi1) 5 (20 + 1)+ ol + 1) + (1 = Dl +

(4.9)
+ (Y0 + 71 = 712) P + 13Pws = iIN@p) Y,
U _
(viil) sw; 1/290 + QW}/Q%SDM + (wy 1/272 + G170 + Bav1 ) Puws +
2 (4.10)
+ (@270 + Q171)Puy = A @p) Y o,
(ix) —kY0@ + (Ya — Wa0)Pue = IA(@p)/ e, (4.11)
(%) (Y0 + 71)Pur + 120wz + V30w = IAPP) o, (4.12)
(x1) YaPw, = iA@p) /o, (4.13)
(xi1) Y0Pur + V2Puws + 13Pws = IAGP) Y, (4.14)

wher ¢,,, = 0¢/dw, and a =1, 3.

A partial solution of one of the equations (4.1)-(4.14) through formulae (3.16)-
(3.29) gives a partial solution of the non-linear Dirac equation. To obtain a partial
solution of the reduced equation one can again apply the reduction procedure. But
it demands a knowledge of the symmetry of equations (4.1)-(4.14). Investigation of
symmetrical properties of equations in question is a very interesting problem (for
example, equation (4.12) possesses an infinite-parameter symmetry group) and it will
be considered in a future paper. We shall perform the direct reduction (if it is possible)
of systems (4.1)-(4.14) to systems of ODE.

Let us suppose that in (4.1) ¢ = p(w2). It follows that

k(72 — 70)@ + w2 (0 — ¥2 — w2ys)Pu, = IN(@p) . (4.15)
Similarly, if one chooses ¢ = ¢(ws) then
k(v2 = 70)¢ + [(72 = 20) (1 + ws) + am)pu, = iA(@0) '/ * . (4.16)
(4.15) and (4.16) are non-linear systems of ODE.
Equation (4.2) gives the following system of ODE:
(0 — 1) + 37 (0 — 1) = iN(20) /% (417)
From (4.3) it follows that
[ + 810 — 12)]pun = iM@9) e, (4.18)

12k, (4.19)

Systems (4.4) and (4.5) can be reduced to the systems of ODE of the form

2710w, = iA(Pp)

1/2k

28(v0 — 72)Pw; + (0 — 72) 72 = 2iA(@p) e, (4.20)

1 o
5 (1= 2k)350 +2(73 + 092) P, = iX(@pp) /. (4.21)
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We did not succeed in reducing systems (4.6)-(4.8) to ODE. From (4.9) one can
obtain three systems of ODE:

1 /=

5(70 +71)¢ + (0 + 71)wi + Y0 — Y1lew, = iA@p) o, (4.22)

1 Sy (= \1/2k

50+ 1)+ (o +71 = 12)lpw, = iIA@e) e, (4.23)

1 /=

5 (0 + 1)@ + 1500, = iM(@0) e, (4.24)
Equation (4.10) gives the system

1 _ =

sawr 7 2w eu, = iA(@p) e, (4.25)

Equations (4.11)-(4.14) are reduced to the following systems of ODE:

—k0¢ + (Ya — Wa0) P = IA(@0)" /o, (4.26)
(0 +71)Pwr = iA(Pp) /e, (4.27)
YaPu, = iX(PP) e, (4.28)
YoPur = iA(@p) /o (4.29)

(no summation is carried over a).

Symmetry properties of the non-linear Dirac equation therefore enable us to reduce
the problem of finding its partial solution to an essentially simpler one of integration
of systems of ode (4.15)-(4.29). To solve these systems one can apply various methods
including numerical ones.

5. Construction of exact solutions of the non-linear Dirac equation (1.1)

We shall consider only systems of ODE solvable in quadratures, but we shall not
consider cases which give already known solutions. The general solution of (4.19) has
the form

p(w2) = exp[—(iA/2) (xx) " 1w,

where x is an arbitrary constant spinor.
Substituting the above result into (3.18), we obtain a solution of the initial equation

(1.1):
(@) = exp [1% )0 - m)} x

2 (5.1)
X exp {—(iA/2)(>2X)1/2k71 [221 + (zo — 562)2] } X-
Let us next consider equation (4.21). Under k = % its general solution has the
form
1 N — oy —1
o(ws) = exp —52/\)()( (1 +a ) (v3 + ay2)w2| X, (5.2)

where y is a constant spinor.
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Under k # 3, a # 0, we did not succeed in integrating the corresponding equation.
If @ =0, then making a change of variables we obtain

) = exp | (28— Djon] o),

2 exp [i(l - 2k)k1w2} Y3y = IN(BB) .
The general solution of the last equation is given by the formula
1
6 = exp { (2iAR)(1— 207 (00 exp | 26 18 n | 2 f

where x is the arbitrary constant spinor.

Substituting the above results into (3.20) we obtain the following solutions of the
non-linear Dirac equation.

If k= %

Y(z) = (x% + 33%)71/4 exp {—%Vﬂ:’) tan_l(%/mz&)} X
(5.3)

1 _
X exp {—52')\)()( (1 + a2) ! (3 + aya) [ln (x% + xg) + 2a tan_l(mg/mg,)] } X.
k£ L

1/4

P(x) = (m% + x§)7 exp [—%7273 tan_1($2/3?3):| X

(5.4)
X exp [Qi/\k(l — 21<;)_1()2X)1/2’C (x% + x%)<2k71)/4 73} X
[t is important to note that equation (4.3) can be reduced to the two-dimensional

Dirac equation. This fact can be used for obtaining new non-trivial classes of solutions
of (1.1). If we choose in (4.3), ¢ = p(w1,ws) then

[ + B30 = 12)JPun + 2710w, = iX(G0)/ . (5.5)
Having made a change of variables

1
21 =W, 22= §w2

and denoting

Fi=v+p6(0—"7), T2=m
we obtain

1, + Do, = iM@p) /o, (5.6)

where I',I'y + Iy Iy = 2g4p and a,b =1, 2.
(i) We look for a solution of (5.6) in the form

0(2) = Lazaf(2p2) +i9(262)) X, (5.7)
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where x is a constant spinor and f, g are unknown scalar functions. Substitution of
(5.7) into (5.6) gives the system of ODE

g 1 . 1/2k (2 2\1/2k
frwam =320 (0" —wf?) g,
dg 1

Ly oN/2k (2 e2\1/2k
7, = M) (gt —wf?) S

The partial solution of this system is given by the formulae (k < 0)

k
K2+ k)
f — |k|1/2 ($( | |) w—(k+1)/2,

A(xx)'/2k
L K (5.8)
g=F (L4 1) (xi(’f(zx')’j')% ) k2,
(ii) We shall look for a solution of (5.6) in the form
¢(2) = Taza(202) "' 0(Baza/ %), a,b=T1.2, (5.9)

where ¢ = ¢(w) is a four-component spinor, w = (Ba2a)/(22) and k = %. It follows
from (5.6) that ¢(w) satisfies the system of ODE of the form

(Cafia) 3 = ING6)o,

w

whose general solution has the form

6(w) = exp [N (57 + ) (Tafa)o] x: (5.10)

Using formulae (3.18), (5.7)—(5.10) we obtain the following solutions of the nonli-
near Dirac equation (1.1).

Ifr<0

$(e) = exp [ 371000~ 72) o~ 22) Hm + B30 =)

(5.11)
o + (o — 2] + 371 [201 + (w0 — 22)°] }f<w> + z'g(w)] x

where

w = [z3 + Blzo — 22)]° + i (221 + (20 — x2)2}2

and f(w), g(w) are defined by (5.8).
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k=1

¢@0=em{%%0m—vﬁ@o—mﬂ{h@+ﬁho—wﬂx
X [xg + B(xo — x2)] + %71 221 + (20 — 22)?] }wl X
(5.12)

exp| ~ia(00) (8 + ) { i + 50 — )]+ oo |

X {51[5”5 + B(zo — x2)] + %52 [2$1 + (o — x2)2] } w_ll X,
where

w = [z3 + B(xo — 22)]> + i [221 + (w9 — x2)2}2 )

Let us point out one of the possible ways of obtaining ungenerable families of
solutions. On applying the procedure of generation of solutions by Lorentz rotations
in the plane (zg,x1) to the solution (5.1) one obtains

Yo (x) = exp (—%970%) exp B% (0 — 72) (20 — xé)] X

1.,
X exp {—EZA(XX)U%% 22 + (z — 25)7] } X

xh = xgcoshf + xysinh @, 1z} =x1cosh@+ xpsinh, af =1z, af =xs.

Let us rewrite this expression in the equivalent form

1 1 .
o (x) = exp (—597071) exp {571 (70 — v2) (2 cosh 6 + x1 sinh 6 — $2):| X

! L (o
e (597070 o (_59%%) {_§ZA(XX)1/%71 x

X [2x1 cosh 0 + 2z sinh § + (xg cosh 6 + 1 sinh § — x2)2] } X

1 1
X exp 597071 exp —59’70’)’1 X-

On taking into consideration the identities

1 1 Yo cosh @ + vy sinhf, «a =0,
exp (—597071) Yo €XP (597071) =4 7cosht +gsinhf, a=1,
Ve a=23,



276 W.I. Fushchych, R.Z. Zhdanov

we obtain the following expression:

Yo (x) = exp E(*yl cosh 6 + ~p sinh ) (o sinh 6 4+ 1 cosh 8 — ~v2) %
X (zgcosh 4+ 21 sinh @ — z5)| X
X exp{ —%i)\()_glxl)l/%('yl cosh 6 + 7 sinh 6) x
x [2x1 cosh 6 + 2z sinh 6 + (20 cosh § + 21 sinh § — x5)] }X',

where x' = exp (—367071) X
Using rest transformations from O(1,3) C P(1,3) in the same way one can find a
family of solutions of equation (1.1) of the form

0o = oxp | 5 G0t | exp { - 3iA(00 " (0) 2+ G0 . (519

where parameters a,, b, satisfy the conditions
ao=—1, bb=ab=0, ~a=r~,a", bx=>b,z" ab=a,b".
Applying the formula for generating solutions by scale transformations
Po(x) = e ('), ), =e"w,, o= const
one can obtain

P(z) = exp [%Q(Wa)('yb)bx} exp {—%i)\(xx)l/%('ya) [2az + 6(bz)?] } x. (5.14)

At last, generating from (5.14) new solutions by the group of translations, we obtain
an ungenerable family of solutions of the non-linear Dirac equation (1.1).
(i) keRYL k#0,

P(x) = exp [%Q(WG)(’Yb)bZ] exp {—%M(xx)l/%(va) [2az + 6(b2)?] } X

- — jz — ] M - H
2y =%+ 04, vya=yua”, bz=0,2" —az=a,2",

where x is an arbitrary constant spinor and 6, 6, a,, b, are constants satisfying the
following constraints:

aa=—1, bb=0, ab=0. (5.15)

The same procedure when applied to (5.3), (5.4), (5.11) and (5.12) gives ungene-

rable families of the form
(i) ke RY k#0, 3,
0o = (@22 + 097 exp | Ga) o0 tan~ az09)

(5.16)
X exp {i2/\k(2k — 1)_1(XX)1/2k(7b) [(az)2 N (bz)2] (2k—1)/4k} N
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where aa = -1, bb = -1, ab =0, 2, = v, + 0, 0, being arbitrary constants, and x
is an arbitrary constant spinor.
(iii) k = 3,

0o = (@202 + 097 exp | Ga) o0 tan~ az09)

1 _
X exp —§iA)ZX (1 + 92) ! (b + 6va) x

x {In [(az)? + (bz)?] + 20 tanl(az/bz)}] X

where z, = x, + 0, and a,, b,, 0,, 0 are arbitrary constants satisfying conditions
(5.16).
(V) k= 1,

Y(x) = exp [i(’yc)(’yb)bz} {(fm + Bvb)(az + Bbz) + i’yc [cz + (bz)ﬂ } w1 %

X eXp{ —ixvx (B2 +82) 7" [51(%1 + Byb) + %5270] X

X {ﬂl(az + Bbz) + %ﬂg (cz+ (bz)Q)] wl}x,

w = (az + Bbz)* + i [z + (bz)2]2 , Zu =2, +0,,
and 0, ay, by, cu, B, B; are arbitrary constants satisfying the conditions
ab=bc=ca=bb=0, aa=-1, cc=—4. (5.17)
(v) k<0,

v(o) = exp |3 r0)a0:] H (va + By0)(az + Bba)+

_|_

FNgra.

(v¢) [ez + (b2)?] }f(W) + ig(bd)] X;
Zy =3, +0,, w=(az+0bz)?+ i [cz + (bz)Q}2

with f(w), g(w) from (5.8). Parameters a,, b,, c,, 0, satisfy conditions (5.17) and x
is an arbitrary constant spinor.
(vi) ke R, k #0,

Y(x) = exp %(Va)(vb) In(az + bz)] exp{ [%(70)(7a + b) +
(5.18)

+iA(0x) " (ye — va - vb)] [In(az + bz) — cz] }x,
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0(o) = exp | S G0 ez +02)|
(5.19)

X exp { [%(76) (ya + ) — iA(xx)"/ 2’“70} (CZ)} X

where z, = x, + 6, x is an arbitrary constant spinor and a,, b,, ¢, are arbitrary
constants satisfying conditions

—aa=bb=-1, cc=-1, ab=bc=ca=0.

(vii) k € R, k #0,
P(x) = exp [%(w)(vb)bz} exp [—M(vc + Byb) (X)) ez + 5b2)} x.  (5.20)

where z, =z, +0,, x is an arbitrary constant spinor and a,, b,, c,, 0, are arbitrary
constants satisfying the conditions

aa =cc=—1, ab=bc=ca=>bb=0. (5.21)

In conclusion of this section, let us consider the special case of equation (1.1) when
k= % [t is common knowledge that the corresponding non-linear Dirac equation is
conformally invariant [10, 13]. This enables us to obtain a larger family of solutions
with the help of a procedure of generating solutions by special conformal transforma-

tions, corresponding formulae having the form [7]

a(2) = 07 (2)(1 = () (10))¥r (2'),

o), = (x, — Ou(xx))o~Hz), o(x) =1-20x+ (00)(zx).

(5.22)

Using solutions (5.14) under k = 3 as t1(z) we obtain a new solution of the
conformally invariant equation (1.1)

Ga) o0)(b — () ) (o)}

0() = 1= )00~ exp {5

x EXP{—%i)\(XX)l/ *ya[2(az — (ab)(zx))o(x) + (5.23)

+ é(bx — (b8)(zz))?|o%(x) }X7

where aa = -1, bb =0, ab=0 and §,,, 0 are arbitrary constants.
The same procedure when applied to solutions (5.18)-(5.20) under k = 3 give
some new solutions of the non-linear Dirac equation.

6. Exact solutions of the system (1.2)
We shall seek solutions of (1.2) when m; = 0, mg = 0, the following ansatz being
used:

Y(x) = ybexp(if(az))x,

Au(m) =bug1 (az) + aﬂgg(ax)7 (6.1)

where bb = 0, axz = ay,2* and f, g1, g2 are arbitrary differentiable functions.
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Substitution of (6.1) into (1.2) gives the system of ODE
>\192 = fv
(aa)gs = —2ebd — Xag1 (2ab9192 + (aa)g%) , (6.2)
—(ab)jr = —A2g2 (2abg1g2 + (aa)g3) ,

where a dot means differentiation with respect to w = ax, b0 = b,0", aa = a,a”,

ab # 0, 0, = XVux, 1 =0,3.
We have succeeded in integrating the system (6.2) in the case aa =0, ab # 0, i.e.

>\192 = f7
9297 = —(ebb)/(Az2ab), (6.3)
1= 2X29193.

From the second equation it follows that

g2 = —(eb)/(Maab)gy 2. (6.4)
Substituting (6.4) into (6.3) we obtain ODE for determination of g1 (w)
g1 = (K*/X2) 73, k= V2(ebd)/(ab). (6.5)
Integration of the last ODE yields
2|2 |k g1, A2 <0,
w+02:{ RS (6.6)
Crl(Cigt —k?/X2) ", CL#0.
Finally
C1#0, g1 =+C7 2 [(Crw+ Co)? + k%] (6.7)
1/2 !
Ao <0, g =2(k/Pal) (2kIDe| 72w+ o) (6.8)

Substituting the above results into (6.4) we find expressions for gs(w)
Cr#0, g2 =—(kC1/X2) [(Crw+ C2)? + K2 /2a] (6.9)
1/2 -t

do <0, go=—(k/Ial) (2lKlDal 2w+ Co) (6.10)
Substituting these expressions into the first equation from (6.3) we obtain f(w)

CL#0, f(w) =M, tant [k—u;/z(clw + 02)] , (6.11)

Ao <0, f(w)=X|Ao| V2In <2k|)\2|’1/2w + 02) : (6.12)
where C1, Cs are arbitrary constants.

Substitution of (6.7)—(6.12) into (6.1) gives two families of solutions of the initial
equation (1.2)
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(i) Ao #0, Cy 0,
»(x) = Ybexp {—MM;W fan~! {A;/zkfl((]la:c + 02)] } X,

Ay () = £b, 072 [(Craz + Co)2 — k2251 — (6.13)
— au(kCy1/X2) [(Craz + C2)? — kz/)\z]_l )
(11) Ao <0,

W(@) = ybexp {—¢A1|A2|—1/2 In (2k|)\2|_1/2am + 03)} X,
" L (6.14)
A, (z) = £b,, (2k|)\2\_1/2am + 03) — a,(k/|X2)) (2k|)\2|_1/2ax + 03) ,

where k = v/2eb*(x7,x)/(ab), C1, Ca, Cs are arbitrary constants and x is an arbitrary
constant spinor.

Let us note that the solutions obtained depend analytically on parameters A, e
while parameter Ay is included in a singular way. It means that solutions (6.13) and
(6.14) cannot be obtained in the framework of perturbation theory by expanding in a
series with respect to a small parameter As.

On introducing as usual the tensor of the electromagnetic field F),, = 0.A,/0x, —
0A,, /dx, we obtain

Fly = H(auby, — a,b, )02 [(Craz + Co)? — k2 /2] 2,

Fpuy = £(apby — ayb)kAo] ™2 (2]~ 20z + C5) /2

for solutions (6.13) and (6.14) respectively.

To obtain new families of solutions of the system (1.2) one can use its symmetry
under conformal group C(1,3) [9]. The formula for generating solutions by special
conformal transformations has the form [8]

Ua(z) = 071 — (v2)(10) ¥ ('),
A,(f) (z) = 07 %(2)[guvo(z) + 2(0,2, — O, + 2022,0, —
— zx60,0, — 0996#96,,)]/1’(’1)(35’)7

o), = (z, — Opzx)o(z), of(x)=1-20z+ (00)(zx).

Using (6.13) and (6.14) as ¢ (z) and Af})(x) one can construct new multiparame-
ter families of exact solutions of (1.2) but we omit corresponding formulae because of
their cumbersome character.

7. Conclusion

In the present work, large classes of exact solutions of the non-linear Dirac
equation and of the system of non-linear equations of quantum electrodynamics
were constructed. Solutions obtained by Akdeniz [1], Fushchych and Shtelen [6, 7],
Kortel [11], Merwe [14] and Takahashi [15] can be obtained with the help of ansitze
(3.16)-(3.29).

Most of the solutions depend analytically on constants A, A;, e. However solutions
(6.13) and (6.14) have a non-perturbative character because of their singular depen-
dence on the parameter As.
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We have constructed ansdtze which reduced the four-dimensional systems (1.1)
and (1.2) to three-, two- and one-dimensional systems of PDE. It is important to note
that these ansafze can be applied to any spinor equations which are invariant under
the extended Poincaré group P(1,3).

Appendix
[t is important to note that the ansitze (3.16)—(3.29) do not exhaust all possible
ansitze for the Dirac equation (1.1). To reduce (1.1) to ODE one can use the following
ansatz:

¥(z) = [ig(w) + fw)y,0w/Ozy]X, (AD)
where g, f are unknown real-valued functions, x is an arbitrary constant spinor and
w = w(x) is a real-valued function satisfying conditions of the form

puptw + A(w) =0,
(ppw)(P'w) + Bw) =0, A,B: R' —R"

Substitution of (Al) into (1.1) gives a system of ode for determination of f and g.
We now list some multiparameter families of exact solutions of the non-linear Dirac
equation (1.1) obtained in this way.

(i) keR, k#0

Y(x) = {—z’ sinh (A()Zx)l/%w) + v, (0w/0z,,) cosh ()\()ZX)I/WC(U)} X,

where w(z) is determined by the following equalities:

(A2)

(a) w = bxcos g1 + crsin 1 + pa, (A3)
(b) azx + bx cos ¢y + cxsin g + ¢o =0, (A4)
and ¢; = ¢;(ax + dz), ¢; = ¢;(w + dx) are arbitrary differentiable functions.
(i) & > 1,
vi@) =w ™ {& (1= k)" 4w bz + 1) (b + (a +yd)er) +
+ (e + g2) (v + (a +7d)p2)] b, (A5)
w = [(bz + ¢1)* + (cx + @2)2]1/2 )
where ¢; = ¢;(ax + dz) are arbitrary differentiable functions and the dot means
differentiation with respect to az + dz.
(iii) k = 1,
—3/2 .
(@) = (1+6%%) " [i = 0((va) (az) — (B) (bx) — (7¢) (cx))]x
w = [(az)?* — (bx)* — (cx)2]1/2
and the following condition holds:
30 — Mxx)Y* =o0.

In (A3)-(A6) a,, by, ¢, d,, are arbitrary parametrs satislying the following conditi-
ons:

(A6)

—aa =bb=cc=dd= -1, ab=ac=ad =bc=bd=cd=0.
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