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On some exact solutions of a system
of non-linear differential equations
for spinor and vector fields
W.I. FUSHCHYCH, R.Z. ZHDANOV

The problem of finding ansätze for a non-linear Dirac equation which is invariant under
the extended Poincaré group is solved. With the help of these ansätze some multi-
parameter families of exact solutions of non-linear Dirac and Dirac-Maxwell equations
are constructed.

1. Introduction
In the present work using ideas and methods of S. Lie (see [12, 2]) we have

constructed large classes of exact solutions of the non-linear Dirac equation(
γµp

µ + λ(ψ̄ψ)1/2k
)
ψ(x) = 0, k �= 0, (1.1)

where γµ are 4 × 4 Dirac matrices, pµ = igµν∂/∂xν , ψ̄ = ψ†γ0, x = (x0, x1, x2, x3),
ψ is a four-component spinor and k, λ are parameters, and of the system of eight
non-linear equations,

(γµp
µ + λ1γµAµ +m1)ψ(x) = 0,

pνp
νAµ − pµp

νAν = exp(ψ̄γµψ) + Aµ(m2 + λ2AνAν),
(1.2)

where Aµ(x) is the vector potential of the electromagnetic field and e, λ1, λ2, m1, m2

are constants. If we choose m2 = λ2 = 0, then system (1.2) coincides with equations
of the classical electrodynamics describing interaction of electromagnetic and spinor
fields.

To construct multiparameter families of exact solutions of (1.1) and (1.2) we
essentially use their symmetry properties and the ansatz

ψ(x) = A(x)ϕ(ω) +B(x) (1.3)

suggested by Fushchych [3, 4] and effectively realised by Fushchych and Shtelen [6, 7]
and Fushchych and Serov [5] for a number of non-linear wave equations. A(x) is a 4×4
matrix and B(x) is a four-component spinor, algorithms for their construction being
cited below, and ϕ(ω) is the column vector, components of which depend in general
on three invariant variables ω = {ω1, ω2, ω3} (for more details see Fushchych [3, 4]).
Later we shall consider the case when B(x) = 0.

On using finite transformations it is established that equation (1.1) is invariant
under the extended Poincaré group P̃(1, 3), i.e. under the Poincaré group P(1, 3)
supplemented by a group of scale transformations.

Basis elements of the Lie algebra AP̃(1, 3) have the form

Pµ = pµ, Jµν = xµpν − xνpµ + Sµν ,

D = xµp
µ − ik, Sµν = (i/4)(γµγν − γνγµ), µ, ν = 0, 3.

(1.4)
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A general scheme for constructing solutions of the system (1.1) (solutions of the
system (1.2) are obtained in an analogous way) is as follows. We look for solutions of
equation (1.1) which are invariant under the subgroup of the group P̃(1, 3) generated
by linear combination of all basis elements of AP̃(1, 3)

Q = CµνJµν + C00D + CµPµ, (1.5)

where Cµν , C00, Cµ are constants and µ, ν = 0, 3.
The matrix A(x) is a solution of the following system of partial differential equa-

tions (PDE):

QA(x) = 0. (1.6)

Invariant variables are the first integrals of the Euler–Lagrange system of ordinary
differential equations (ODE)

dx0

ξ0(x)
=

dxa

ξa(x)
, a = 1, 3, (1.7)

where ξµ = Cµνxν + C00xµ + Cµ.
If one knows an explicit form of the matrix A(x) then after substituting (1.3) into

the corresponding equation we shall obtain an equation for a spinor ϕ(ω) depending
on three invariant variables {ω1, ω2, ω3} only. This means that ansatz (1.3) with the
chosen matrix A(x) provides separation of variables in equation (1.1). Solutions of the
corresponding equation for ϕ(ω) being substituted in (1.3) yield the solutions of the
initial equation.

To realise this scheme it is necessary first of all to construct in an explicit form
matrices A(x) satisfying (1.6). So one has to solve the first-order linear system of 16
PDE with variable coefficients. It is rather difficult to solve such a system by standard
methods, which is why we use the following trick. The operator Q is transformed into
another operator

Q′ = WQW−1 (1.8)

with the help of the invertible operator

W (x, p) = exp(θΣ), W−1(x, p) = exp(−θΣ), (1.9)

where

Σ = θµνJµν + θ00D + θµPµ. (1.10)

Transformation W is so chosen that operator Q′ is as simple as possible. This
purpose can always be achieved because of the Poincaré invariance of system (1.1).
From the physical point of view this means that the non-linear Dirac equation is
solved in the fixed reference system. The construction of the solutions which do not
depend on the reference system (ungenerable solutions) is the next step.
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2. Construction of the matrix A(x)
Before proceeding with a direct solution of the system (1.6) let us simplify it using

the method described in the introduction. To do this we need the Campbell–Hausdorff
formula

exp(θQ1)Q2 exp(−θQ1) =
∞∑

k=0

θk

k!
{Q1, Q2}k,

{Q1, Q2}0 = Q2, {Q1, Q2}n = [Q1, {Q1, Q2}n−1],

(2.1)

where Q1, Q2 are operators and [A,B] = AB −BA.
A fundamental role is played by the following lemma.

Lemma. The operator Q = CµνJµν = AkMk + BlNl, where Mk = − 1
2εklmJlm,

Nk = J0k, by a transformation Q → Q′ = V QV −1, where V = exp(θµνJµν , can be
reduced to one of the following forms:

(i) Q′ = αJ01 + βJ23, (A · B)2 +
(
A2 − B2

)2 �= 0,

(ii) Q′ = α(J01 + J12), A · B = A2 − B2 = 0.

Proof. Let us introduce new operators

Ja = (i/2)(Ma + iNa), Ka = (i/2)(Ma − iNa), a = 1, 3.

One can easily check that the following commutational relations hold:

[Ja, Jb] = iεabcJc, [Ka,Kb] = iεabcKc, [Ja,Kb] = 0 (2.2)

so Q = akJk + blKl, where ak = −Bk − iAk and bl = Bl − iAl.
Using (2.1) and (2.2) one obtains

Q′ = V1QV
−1
1 =

(
a2
1 + a2

2 + a2
3

)1/2
J1 +

[(
a2
1 + a2

2 + a2
3

)1/2
]∗
K1 = αJ01 + βJ23,

where

V1 = exp
[−i tan−1(a2/a3)J1

]
exp

{
i tan−1

[
a1

(
a2
2 + a2

3

)−1/2 + π/2
]
J2

}
×

× exp
[−i tan−1(b2/b3)K1

]
exp

{
i tan−1

[
b1
(
b22 + b23

)−1/2 + π/2
]
K2

}
.
(2.3)

It is evident that these formulae lose their validity in the case

a2
1 + a2

2 + a2
3 = 0 ⇔ A2 = B2, A · B = 0.

Therefore one can use this approach only in case (i). Let us now consider case
(ii). It follows from (2.1) that

exp(θMa)AkMk exp(−θMa) =
= AkMk cos θ +AaMa(1 − cos θ) + εaklAkMl sin θ

(2.4)

(no summation is performed over a),

exp(θMa)BlNl exp(−θMa) =
= BlNl cos θ +BaNa(1 − cos θ) + εaklBkNl sin θ

(2.5)

(no summation is performed over a).
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Using identities (2.4) and (2.5), one can be convinced that the following equality
holds:

Q′ = V2QV
−1
2 = V2(AkMk +BlNl)V −1

2 = −|A| sgnA3(J01 + J12),

where

V2 = exp
[
tan−1(A1/A2)M3

]
exp

{
tan−1

[(
A2

1 +A2
2

)1/2
/A3

]
M1

}
×

× exp
[[{

tan−1 [B3|A|/(B2A1 −B1A2)] + πθ(B1A2 −B2A1)
}
M3

]]
,

sgn x =
{

1, x ≥ 0,
−1, x < 0, θ(x) =

{
1, x > 0,
0, x ≤ 0.

This completes the proof. Let us prove the main statement.

Theorem. The operator Q = AkMk + BlNl + C00D + CµPµ with the help of trans-
formation (1.8) can be reduced to one of the following forms:

(A) A · B = 0, A2 = B2,

(i) Q′ = J01 + J12 + aD, (2.6)

(ii) Q′ = J01 + J12 + βP3 − P0, (2.7)

(iii) Q′ = J01 + J12 + βP3, (2.8)

(B) (A · B)2 +
(
A2 − B2

)2 �= 0,

(iv) Q′ = J23 + aD, (2.9)

(v) Q′ = J01 + bJ23 + aD, (2.10)

(vi) Q′ = J01 + bJ23 +D + βP0, (2.11)

(vii) Q′ = J01 + P2, (2.12)

(viii) Q′ = J23 + α1P0 + α2P1, (2.13)

(C) A = B = 0,

(ix) Q′ = D, (2.14)

(x) Q′ = P0 + P1, (2.15)

(xi) Q′ = P0, (2.16)

(xii) Q′ = P1. (2.17)

Proof. If A �= 0, B �= 0 then it follows from the lemma that there exists an operator
V1 (V2) of the form (1.9) such that

(a) under A · B = A2 − B2 = 0,

V1QV
−1
1 = α(J01 + J12) + θD + θµPµ,

(b) under (A · B)2 +
(
A2 − B2

)2 �= 0,
V2QV

−1
2 = αJ01 + βJ23 + θD + θµPµ.
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It is clear from (1.6) and (1.7) that operators Q and αQ, α �= 0, generate the same
invariant solutions. One may suppose that α = 1.

We need the following formulae which are consequences of the Campbell–Haus-
dorff formula:

exp(iλµPµ)Jαβ exp(−iλµPµ) = Jαβ + (λβPα − λαPβ), (2.18)

exp(iλµPµ)D exp(−iλµPµ) = D − λµPµ, (2.19)

exp(iλµPµ)Pα exp(−iλµPµ) = Pα. (2.20)

Let us consider the case (a):

Q′ → Q′′ = exp(iλµPµ)(J01 + J12 + θD + θαPα)(exp(−iλµPµ) =
= J01 + J12 + θD + θµPµ + λ1P0 − λ2P1 − λ1P2 − θλαPα.

Under θ �= 0 one can always choose λα that

Q′′ = J01 + J12 + θD

and under θ = 0 so that

Q′′ = J01 + J12 + αP0 + βP3, α ≤ 0.

If in the last operator α �= 0, then

Q′′′ = exp(−i ln |α|D)(J01 + J12 + αP0 + βP3) exp(i ln |α|D) =
= J01 + J12 − P0 + βP3.

If α = 0 then

Q′′ = J01 + J12 + βP3.

Let us now consider case (b). If α �= 0 then on dividing into α and on transforming
the operator Q according to (2.18)–(2.20) we obtain

Q′ = exp(iλµPµ)(J01 + bJ23 + θD + θµPµ) exp(−iλµPµ) =
= J01 + (λ1P0 − λ0P1) + bJ23 + b(λ3P2 − λ2P3) + θD − θλµPµ + θµPµ.

Under θ �= ±1, θ2 + b2 �= 0 it is always possible to choose λµ so that

Q′ = J01 + bJ23 + θD.

Under θ = ±1 it is possible to choose λµ so that

Q′ = J01 + bJ23 + δD + βP0.

Under θ = b = 0 there exist such λµ that

Q′ = J01 + P2.

Under α = 0 using formulae (2.18)–(2.20) one can check that the operator Q can
be reduced to one of the following forms:

Q′ = J23 + aD, θ �= 0,
Q′ = J23 + α1P0 + α2P1, θ = 0.
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The only thing left is to consider the case A = B = 0, i.e. Q = θD + θµPµ. Using
formulae (2.18)–(2.20) it is easy to be convinced that under θ = 0

exp[(i/θ)θµPµ](θD + θµPµ) exp[−(i/θ)θµPµ] = θD.

If θ = 0 then analysing three possibilities θµθ
µ = 0, θµθ

µ > 0, θµθ
µ < 0 we obtain

operators (2.15)–(2.17). The theorem is proved.

Note 1. When proving the theorem we used only commutational relations of an
algebra AP̃(1, 3) and we did not use its concrete representation.

Note 2. It is seen from the proof that P̃(1, 3)-invariant solutions are exhausted by
solutions generated from ones invariant under operators (2.6)–(2.17) with the help of
transformations from P̃(1, 3).

This theorem essentially simplifies the problem of finding ansätze because instead
of integrating the system (1.6) where Q is an operator of the general form (1.5), it is
enough to find a partial solution of this system with Q having the form (2.6)–(2.17).

For example, let us consider case (2.9). The matrix A(x) is a solution of the
following matrix system of PDE

x2Ax3 − x3Ax2 +
1
2
γ2γ3A+ axµAxµ

− akA = 0, (2.21)

where Axa
= ∂A/∂xa, a = 0, 3.

We look for a partial solution of (2.21) of the form

A(x) = f(x) exp(g(x)γ2γ3). (2.22)

Substituting (2.22) into (2.21) we obtain[
x2fx3 − x3fx2 + axµfxµ

− akf + f

(
x2gx3 − x3gx2 + axµgxµ

+
1
2

)
γ2γ3

]
×

× exp(g(x)γ2γ3) = 0.

A partial solution of the last system is given by formulae

f(x) =
(
x2

2 + x2
3

)−k/2
, g(x) = −1

2
tan−1(x2/x3).

Finally

A(x) = exp
[
−1

2
γ2γ3 tan−1(x2/x3)

] (
x2

2 + x2
3

)−k/2
.

In the same way we have obtained matrices A(x) which correspond to operators
(2.6)–(2.17)

(i) a �= 0, A(x) = (x0 − x2)−k exp
[
1
2
a−1γ1(γ0 − γ2) ln(x0 − x2)

]
, (2.23)

a = 0, A(x) = exp
[
1
2
x1(x0 − x2)−1γ1(γ0 − γ2)

]
, (2.24)

(ii) A(x) = exp
[
1
2
γ1(γ2 − γ0)(x2 − x0)

]
, (2.25)
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(iii) A(x) = exp
[
1
2
β−1γ1(γ2 − γ0)x3

]
, (2.26)

(iv) A(x) =
(
x2

2 + x2
3

)−k/2
exp

[
−1

2
γ2γ3 tan−1(x2/x3)

]
, (2.27)

(v) a �= −1, A(x) =
(
x2

0 − x2
1

)−k/2 ×
× exp

[
1
2
(a+ 1)−1γ0γ1 ln(x0 + x1) − 1

2
γ2γ3 tan−1(x2/x3)

]
,

(2.28)

a = −1, A(x) =
(
x2

0 − x2
1

)−k/2 ×
× exp

[
−1

4
γ0γ1 ln(x0 − x1) − 1

2
γ2γ3 tan−1(x2/x3)

]
,

(2.29)

(vi) A(x) = (2x0 + 2x1 + β)−k/2 ×
× exp

[
1
4
γ0γ1 ln(2x0 + 2x1 + β) − 1

2
tan−1(x2/x3)γ2γ3

]
,

(2.30)

(vii) A(x) = exp
[
1
2
γ0γ1 ln(x0 + x1)

]
, (2.31)

(viii) A(x) = exp
[
−1

2
γ2γ3 tan−1(x2/x3)

]
, (2.32)

(ix) A(x) = x−k
0 I, (2.33)

(x) A(x) = I, (2.34)

(xi) A(x) = I, (2.35)

(xii) A(x) = I, (2.36)

where I is a unit 4 × 4 matrix.

3. Ansätze for the non-linear Dirac equation (1.1)
As pointed out in the introduction, to find invariant variables ω1(x), ω2(x), ω3(x)

it is necessary to find all the first integrals of the Euler–Lagrange system of ODE

dxµ

dτ
= Cµνx

ν + C00xµ + Cµ. (3.1)

Because of the lemma proved above, one can restrict oneself to the following cases
of the system (3.1):

(i) C01 = −C12 = 1, C00 = a, rest coefficients are equal to 0,

(ii) C01 = −C12 = 1, C0 = −1,
C3 = −β, rest coefficients are equal to 0,

(iii) C01 = −C12 = 1, C3 = −β, rest coefficients are equal to 0,

(iv) C23 = −1, C00 = a, rest coefficients are equal to 0,

(v) C01 = 1, C23 = −b, C00 = a, rest coefficients are equal to 0,

(vi) C01 = 1, C23 = −b, C00 = 1,
C0 = β, rest coefficients are equal to 0,

(vii) C01 = 1, C2 = −1, rest coefficients are equal to 0,
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(viii) C23 = −1, C0 = α1, C1 = −α2, rest coefficients are equal to 0,

(ix) Cµν = 0, C00 = 1, Cµ = 0,
(x) Cµν = C00 = 0, C0 = −C1 = 1, C2 = C3 = 0,
(xi) Cµν = C00 = 0, C1 = C2 = C3 = 0, C0 = 1,
(xii) Cµν = C00 = 0, C0 = C2 = C3 = 1, C1 = −1.

Solution of the system (3.1) in cases (i)–(xii) above is carried out in the usual
way, so we write down its first integrals omitting intermediate calculations.

(i) a �= 0, ω1 =
(
x2

0 − x2
1 − x2

2

)
x−2

3 , ω2 = (x0 − x2)x−1
3 ,

ω3 = ax1(x0 − x2)−1 − ln(x0 − x2),
(3.2)

a = 0, ω1 = x0 − x2, ω2 = x3, ω3 = x2
0 − x2

1 − x2
2, (3.3)

(ii) ω1 = x3 + β(x0 − x2), ω2 = 2x1 + (x0 − x2)2,
ω3 = 3x3 + 3x1(x0 − x2) + (x0 − x2)3,

(3.4)

(iii) ω1 = x0 − x2, ω2 = x2
0 − x2

1 − x2
2, ω3 = βx1 − (x0 − x2)x3, (3.5)

(iv) ω1 = x0x
−1
1 , ω2 = ln

(
x2

2 + x2
3

)
+ 2a tan−1(x2/x3),

ω3 =
(
x2

2 + x2
3

)
(x0x1)−1,

(3.6)

(v) a �= −1, ω3 = b ln
(
x2

2 + x2
3

)
+ 2a tan−1(x2/x3),

ω1 = (x0 + x1)2a
(
x2

0 − x2
1

)−(a+1)
, ω2 =

(
x2

0 − x2
1

) (
x2

2 + x2
3

)−1
,

(3.7)

a = −1, ω1 = x0 + x1, ω2 =
(
x2

0 − x2
1

) (
x2

2 + x2
3

)−1
,

ω3 = b ln
(
x2

2 + x2
3

)− 2 tan−1(x2/x3),
(3.8)

(vi) ω1 = (2x0 + 2x1 + β) exp[2β−1(x1 − x0)],

ω2 = (2x0 + 2x1 + β)
(
x2

2 + x2
3

)−1
,

ω3 = b ln
(
x2

2 + x2
3

)
+ 2 tan−1(x2/x3),

(3.9)

(vii) ω1 = x2
0 − x2

1, ω2 = ln(x0 + x1) − x2, ω3 = x3, (3.10)

(viii) ω1 = x2
2 + x2

3, ω2 = tan−1(x2/x3) + β1x0 + β2x1,

ω3 = α2x0 + α1x1, −α1β1 + α2β2 = 1,
(3.11)

(ix) ωa = xax
−1
0 , a = 1, 3, (3.12)

(x) ω1 = x0 + x1, ω2 = x2, ω3 = x3, (3.13)

(xi) ωa = xa, a = 1, 3, (3.14)

(xii) ω1 = x0, ω2 = x2, ω3 = x3. (3.15)
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Now substituting (2.23 )–(2.36) and (3.2)–(3.15) into (1.3) under B(x) = 0 we
obtain the following set of ansätze for the non-linear Dirac equation (1.1):

(i) ψ(x) = (x0 − x2)−k exp
[
1
2
a−1γ1(γ2 − γ0) ln(x0 − x2)

]
ϕ(ω), (3.16)

ψ(x) = exp
[
1
2
x1(x0 − x2)−1γ1(γ2 − γ0)

]
ϕ(ω), (3.17)

(ii) ψ(x) = exp
[
1
2
γ1(γ2 − γ0)(x0 − x2)

]
ϕ(ω), (3.18)

(iii) ψ(x) = exp
[
1
2
β−1γ1(γ2 − γ0)x3

]
ϕ(ω), (3.19)

(iv) ψ(x) =
(
x2

2 + x2
3

)−k/2
exp

[
−1

2
γ2γ3 tan−1(x2/x3)

]
ϕ(ω), (3.20)

(v) ψ(x) =
(
x2

0 − x2
1

)−k/2 ×
× exp

[
1
2
(a+ 1)−1γ0γ1 ln(x0 + x1) − 1

2
γ2γ3 tan−1(x2/x3)

]
ϕ(ω),

(3.21)

ψ(x) =
(
x2

0 − x2
1

)−k/2 ×
× exp

[
−1

4
γ0γ1 ln(x0 − x1) − 1

2
γ2γ3 tan−1(x2/x3)

]
ϕ(ω),

(3.22)

(vi) ψ(x) = (2x0 + 2x1 + β)−k/2 ×
× exp

[
1
4
γ0γ1 ln(2x0 + 2x1 + β) − 1

2
γ2γ3 tan−1(x2/x3)

]
ϕ(ω),

(3.23)

(vii) ψ(x) = exp
[
1
2
γ0γ1 ln(x0 + x1)

]
ϕ(ω), (3.24)

(viii) ψ(x) = exp
[
−1

2
γ2γ3 tan−1(x2/x3)

]
ϕ(ω), (3.25)

(ix) ψ(x) = x−k
0 ϕ(ω), (3.26)

(x) ψ(x) = ϕ(ω), (3.27)

(xi) ψ(x) = ϕ(ω), (3.28)

(xii) ψ(x) = ϕ(ω). (3.29)

The problem of finding all the ansätze for P̃(1, 3)-invariant solutions is therefore
completely solved. The second step of the algorithm — the reduction of the Dirac
equation — will be realised in the next section.
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4. Reduction of the non-linear Dirac equation (1.1)
It was pointed out above that substitution of ansatz (1.3) into (1.1) results in a

reduction by one of a number of independent variables. This means that the equation
obtained will depend on the three independent variables ω1, ω2, ω3. Omitting cum-
bersome calculations we write down resulting systems of PDE:

(i) k(γ2 − γ0)ϕ+
[
(γ0 − γ2)

(
ω1 + a−2ω2

2ω
2
3

)
+

+ (γ0 + γ2)ω2
2 − 2a−1γ1ω3ω

2
2 − 2γ3ω1ω2

]
ϕω1 +

+
[
(γ0 − γ2)ω2 − γ3ω

2
2

]
ϕω2 +

+ [aγ1 + (γ2 − γ0)(ω3 + 1)]ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.1)

1
2
(γ0 − γ2)ω−1

1 ϕ+ (γ0 − γ2)ϕω1 + γ3ϕω2 +

+
[
(γ0 + γ2)ω1 + (γ0 − γ2)ω3ω

−1
1

]
ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.2)

(ii) [γ3 + β(γ0 − γ2)]ϕω1 + 2γ1ϕω2 +

+
3
2
(2γ2) + (γ0 − γ2)ω2)ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.3)

(iii)
1
2
β−1γ4(γ0 − γ2)ϕ+ (γ0 − γ2)ϕω1 +

[
(γ0 + γ2)ω1 − 2β−1γ1ω3 +

+ (γ0 − γ2)
(
β−2ω2

3 + ω2

)
ω−1

1

]
ϕω2 + (βγ1 − γ3ω1)ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.4)

(iv)
1
2
(1 − 2k)γ3ϕ+ (ω1ω3)1/2(γ0 − γ1ω1)ϕω1 + 2(γ3 + aγ2)ϕω2 +

+
[
2γ3 − (γ0 + γ1ω1)ω

1/2
3 ω

−1/2
1

]
ω3ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.5)

(v)
[
−k
(
γ0 cosh lnω−1/2(a+1)

1 − γ1 sinh lnω1/2(a+1)
1

)
+

+
1
2
(a+ 1)−1(γ0 + γ1)ω

−1/2(a+1)
1 +

1
2
γ3ω

1/2
2

]
ϕ−

− 2(a+ 1)ω1

(
γ0 cosh lnω1/2(a+1)

1 − γ1 sinh lnω1/2(a+1)
1

)
ϕω1 +

+ 2
[
γ0 cosh lnω1/2(a+1)

1 − γ1 sinh lnω1/2(a+1)
1 − γ3ω

1/2
2

]
ω2ϕω2 +

+ 2(aγ2 + bγ3)ω
1/2
2 ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.6)

[
−k
(
γ0 cosh lnω1/2

1 − γ1 sinh lnω1/2
1

)
+

+
1
4
(γ0 − γ1)ω

1/2
1 +

1
2
γ3ω

1/2
2

]
ϕ+ (γ0 + γ1)ω

1/2
1 ϕω1 +

+ 2ω2

(
γ0 cosh lnω1/2

1 − γ1 sinh lnω1/2
1 − 2γ3ω

1/2
2

)
ϕω2 +

+ 2(bγ3 − γ2)ω
1/2
2 ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.7)

(vi)
1
2
[(1 − 2k)(γ0 + γ1) + γ3ω2]ϕ+ 2[(β − 1)γ0 + (β + 1)γ1]ω1ϕω1 +

+ 2ω2

(
γ0 + γ1 − ω

1/2
2 γ3

)
ϕω2 + 2(γ2 + bγ3)ω

1/2
2 ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,

(4.8)
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(vii)
1
2
(γ0 + γ1)ϕ+ [γ0(ω1 + 1) + γ1(ω1 − 1)]ϕω1 +

+ (γ0 + γ1 − γ2)ϕω2 + γ3ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,
(4.9)

(viii)
1
2
ω
−1/2
1 ϕ+ 2ω1/2

1 γ3ϕω1 +
(
ω
−1/2
1 γ2 + β1γ0 + β2γ1

)
ϕω2 +

+ (α2γ0 + α1γ1)ϕω3 = iλ(ϕ̄ϕ)1/2kϕ,
(4.10)

(ix) −kγ0ϕ+ (γa − ωaγ0)ϕωa
= iλ(ϕ̄ϕ)1/2kϕ, (4.11)

(x) (γ0 + γ1)ϕω1 + γ2ϕω2 + γ3ϕω3 = iλ(ϕ̄ϕ)1/2kϕ, (4.12)

(xi) γaϕωa
= iλ(ϕ̄ϕ)1/2kϕ, (4.13)

(xii) γ0ϕω1 + γ2ϕω2 + γ3ϕω3 = iλ(ϕ̄ϕ)1/2kϕ, (4.14)

wher ϕωa
= ∂ϕ/∂ωa and a = 1, 3.

A partial solution of one of the equations (4.1)–(4.14) through formulae (3.16)–
(3.29) gives a partial solution of the non-linear Dirac equation. To obtain a partial
solution of the reduced equation one can again apply the reduction procedure. But
it demands a knowledge of the symmetry of equations (4.1)–(4.14). Investigation of
symmetrical properties of equations in question is a very interesting problem (for
example, equation (4.12) possesses an infinite-parameter symmetry group) and it will
be considered in a future paper. We shall perform the direct reduction (if it is possible)
of systems (4.1)–(4.14) to systems of ODE.

Let us suppose that in (4.1) ϕ = ϕ(ω2). It follows that

k(γ2 − γ0)ϕ+ ω2(γ0 − γ2 − ω2γ3)ϕω2 = iλ(ϕ̄ϕ)1/2kϕ. (4.15)

Similarly, if one chooses ϕ = ϕ(ω3) then

k(γ2 − γ0)ϕ+ [(γ2 − γ0)(1 + ω3) + aγ1)ϕω3 = iλ(ϕ̄ϕ)1/2kϕ. (4.16)

(4.15) and (4.16) are non-linear systems of ODE.
Equation (4.2) gives the following system of ODE:

(γ0 − γ2)ϕω1 +
1
2
ω−1

1 (γ0 − γ2)ϕ = iλ(ϕ̄ϕ)1/2kϕ. (4.17)

From (4.3) it follows that

[γ3 + β(γ0 − γ2)]ϕω1 = iλ(ϕ̄ϕ)1/2kϕ, (4.18)

2γ1ϕω2 = iλ(ϕ̄ϕ)1/2kϕ. (4.19)

Systems (4.4) and (4.5) can be reduced to the systems of ODE of the form

2β(γ0 − γ2)ϕω1 + (γ0 − γ2)γ4ϕ = 2iλ(ϕ̄ϕ)1/2kϕ, (4.20)

1
2
(1 − 2k)γ3ϕ+ 2(γ3 + aγ2)ϕω2 = iλ(ϕ̄ϕ)1/2kϕ. (4.21)
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We did not succeed in reducing systems (4.6)–(4.8) to ODE. From (4.9) one can
obtain three systems of ODE:

1
2
(γ0 + γ1)ϕ+ [(γ0 + γ1)ω1 + γ0 − γ1]ϕω1 = iλ(ϕ̄ϕ)1/2kϕ, (4.22)

1
2
(γ0 + γ1)ϕ+ (γ0 + γ1 − γ2)]ϕω2 = iλ(ϕ̄ϕ)1/2kϕ, (4.23)

1
2
(γ0 + γ1)ϕ+ γ3ϕω3 = iλ(ϕ̄ϕ)1/2kϕ. (4.24)

Equation (4.10) gives the system

1
2
γ3ω

−1/2
1 + 2γ3ω

1/2
1 ϕω1 = iλ(ϕ̄ϕ)1/2kϕ. (4.25)

Equations (4.11)–(4.14) are reduced to the following systems of ODE:

−kγ0ϕ+ (γa − ωaγ0)ϕωa
= iλ(ϕ̄ϕ)1/2kϕ, (4.26)

(γ0 + γ1)ϕω1 = iλ(ϕ̄ϕ)1/2kϕ, (4.27)

γaϕωa
= iλ(ϕ̄ϕ)1/2kϕ, (4.28)

γ0ϕω1 = iλ(ϕ̄ϕ)1/2kϕ (4.29)

(no summation is carried over a).
Symmetry properties of the non-linear Dirac equation therefore enable us to reduce

the problem of finding its partial solution to an essentially simpler one of integration
of systems of ode (4.15)–(4.29). To solve these systems one can apply various methods
including numerical ones.

5. Construction of exact solutions of the non-linear Dirac equation (1.1)
We shall consider only systems of ODE solvable in quadratures, but we shall not

consider cases which give already known solutions. The general solution of (4.19) has
the form

ϕ(ω2) = exp[−(iλ/2)(χ̄χ)1/2kγ1ω2]χ,

where χ is an arbitrary constant spinor.
Substituting the above result into (3.18), we obtain a solution of the initial equation

(1.1):

ψ(x) = exp
[
1
2
(γ0 − γ2)(x0 − x2)

]
×

× exp
{
−(iλ/2)(χ̄χ)1/2kγ1

[
2x1 + (x0 − x2)2

]}
χ.

(5.1)

Let us next consider equation (4.21). Under k = 1
2 its general solution has the

form

ϕ(ω2) = exp
[
−1

2
iλχ̄χ

(
1 + a2

)−1
(γ3 + aγ2)ω2

]
χ, (5.2)

where χ is a constant spinor.
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Under k �= 1
2 , a �= 0, we did not succeed in integrating the corresponding equation.

If a = 0, then making a change of variables we obtain

ϕ(ω2) = exp
[
1
4
(2k − 1)ω2

]
φ(ω2),

2 exp
[
1
4
(1 − 2k)k−1ω2

]
γ3φω2 = iλ(φ̄φ)1/2kφ.

The general solution of the last equation is given by the formula

φ = exp
{

(2iλk)(1 − 2k)−1(χ̄χ)1/2k exp
[
1
4
(2k − 1)k−1ω2

]
γ3

}
χ,

where χ is the arbitrary constant spinor.
Substituting the above results into (3.20) we obtain the following solutions of the

non-linear Dirac equation.
If k = 1

2

ψ(x) =
(
x2

2 + x2
3

)−1/4
exp

{
−1

2
γ2γ3 tan−1(x2/x3)

}
×

× exp
{
−1

2
iλχ̄χ

(
1 + a2

)−1
(γ3 + aγ2)

[
ln
(
x2

2 + x2
3

)
+ 2a tan−1(x2/x3)

]}
χ.

(5.3)

If k �= 1
2

ψ(x) =
(
x2

2 + x2
3

)−1/4
exp

[
−1

2
γ2γ3 tan−1(x2/x3)

]
×

× exp
[
2iλk(1 − 2k)−1(χ̄χ)1/2k

(
x2

2 + x2
3

)(2k−1)/4
γ3

]
χ.

(5.4)

It is important to note that equation (4.3) can be reduced to the two-dimensional
Dirac equation. This fact can be used for obtaining new non-trivial classes of solutions
of (1.1). If we choose in (4.3), ϕ = ϕ(ω1, ω2) then

[γ3 + β(γ0 − γ2)]ϕω1 + 2γ1ϕω2 = iλ(ϕ̄ϕ)1/2kϕ. (5.5)

Having made a change of variables

z1 = ω1, z2 =
1
2
ω2

and denoting

Γ1 = γ3 + β(γ0 − γ2), Γ2 = γ1

we obtain

Γ1ϕz1 + Γ2ϕz2 = iλ(ϕ̄ϕ)1/2kϕ, (5.6)

where ΓaΓb + ΓbΓa = 2gab and a, b = 1, 2.
(i) We look for a solution of (5.6) in the form

ϕ(z) = (Γazaf(zbzb) + ig(zbzb))χ, (5.7)
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where χ is a constant spinor and f , g are unknown scalar functions. Substitution of
(5.7) into (5.6) gives the system of ODE

f + ω
df

dω
=

1
2
λ(χ̄χ)1/2k

(
g2 − ωf2

)1/2k
g,

dg

dω
=

1
2
λ(χ̄χ)1/2k

(
g2 − ωf2

)1/2k
f.

The partial solution of this system is given by the formulae (k < 0)

f = |k|1/2

(
∓
(
k2 + |k|)1/2

λ(χ̄χ)1/2k

)k

ω−(k+1)/2,

g = ∓ (1 + |k|−1
)−1/2

(
∓
(
k2 + |k|)1/2

λ(χ̄χ)1/2k

)k

ω−k/2.

(5.8)

(ii) We shall look for a solution of (5.6) in the form

ϕ(z) = Γaza(zbzb)−1φ(βaza/zbzb), a, b = 1, 2, (5.9)

where φ = φ(ω) is a four-component spinor, ω = (βaza)/(zbzb) and k = 1
2 . It follows

from (5.6) that φ(ω) satisfies the system of ODE of the form

(Γaβa)
dφ

dω
= iλ(φ̄φ)φ,

whose general solution has the form

φ(ω) = exp
[
−iλ(χ̄χ)

(
β2

1 + β2
2

)−1
(Γaβa)ω

]
χ. (5.10)

Using formulae (3.18), (5.7)–(5.10) we obtain the following solutions of the nonli-
near Dirac equation (1.1).

If k < 0

ψ(x) = exp
[
1
2
γ1(γ0 − γ2)(x0 − x2)

] [{
[γ3 + β(γ0 − γ2)] ×

× [x3 + β(x0 − x2)] +
1
2
γ1

[
2x1 + (x0 − x2)2

]}
f(ω) + ig(ω)

]
χ,

(5.11)

where

ω = [x3 + β(x0 − x2)]2 +
1
4
[
2x1 + (x0 − x2)2

]2
and f(ω), g(ω) are defined by (5.8).
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If k = 1
2

ψ(x) = exp
[
1
2
γ1(γ0 − γ2)(x0 − x2)

]{
[γ3 + β(γ0 − γ2)] ×

× [x3 + β(x0 − x2)] +
1
2
γ1

[
2x1 + (x0 − x2)2

]}
ω−1 ×

× exp

[
−iλ(χ̄χ)

(
β2

1 + β2
2

)−1
{
β1[γ3 + β(γ0 − γ2)] +

1
2
β2γ1

}
×

×
{
β1[x3 + β(x0 − x2)] +

1
2
β2

[
2x1 + (x0 − x2)2

]}
ω−1

]
χ,

(5.12)

where

ω = [x3 + β(x0 − x2)]2 +
1
4
[
2x1 + (x0 − x2)2

]2
.

Let us point out one of the possible ways of obtaining ungenerable families of
solutions. On applying the procedure of generation of solutions by Lorentz rotations
in the plane (x0, x1) to the solution (5.1) one obtains

ψ2(x) = exp
(
−1

2
θγ0γ1

)
exp

[
1
2
γ1(γ0 − γ2)(x′0 − x′2)

]
×

× exp
{
−1

2
iλ(χ̄χ)1/2kγ1

[
2x′1 + (x′0 − x′2)

2
]}

χ,

x′0 = x0 cosh θ + x1 sinh θ, x′1 = x1 cosh θ + x0 sinh θ, x′2 = x2, x′3 = x3.

Let us rewrite this expression in the equivalent form

ψ2(x) = exp
(
−1

2
θγ0γ1

)
exp

[
1
2
γ1(γ0 − γ2)(x0 cosh θ + x1 sinh θ − x2)

]
×

× exp
(

1
2
θγ0γ1

)
exp

(
−1

2
θγ0γ1

){
−1

2
iλ(χ̄χ)1/2kγ1×

× [2x1 cosh θ + 2x0 sinh θ + (x0 cosh θ + x1 sinh θ − x2)2
]}×

× exp
(

1
2
θγ0γ1

)
exp

(
−1

2
θγ0γ1

)
χ.

On taking into consideration the identities

exp
(
−1

2
θγ0γ1

)
γα exp

(
1
2
θγ0γ1

)
=




γ0 cosh θ + γ1 sinh θ, α = 0,
γ1 cosh θ + γ0 sinh θ, α = 1,
γα, α = 2, 3,
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we obtain the following expression:

ψ2(x) = exp

[
1
2
(γ1 cosh θ + γ0 sinh θ)(γ0 sinh θ + γ1 cosh θ − γ2) ×

× (x0 cosh θ + x1 sinh θ − x2)

]
×

× exp

{
−1

2
iλ(χ̄′χ′)1/2k(γ1 cosh θ + γ0 sinh θ) ×

× [2x1 cosh θ + 2x0 sinh θ + (x0 cosh θ + x1 sinh θ − x2)2
]}
χ′,

where χ′ = exp
(− 1

2θγ0γ1

)
χ.

Using rest transformations from O(1, 3) ⊂ P̃(1, 3) in the same way one can find a
family of solutions of equation (1.1) of the form

ψ(x) = exp
[
1
2
(γa)(γb)bx

]
exp

{
−1

2
iλ(χ̄χ)1/2k(γa)

[
2ax+ (bx)2

]}
χ, (5.13)

where parameters aµ, bµ satisfy the conditions

aa = −1, bb = ab = 0, γa = γµa
µ, bx = bµx

µ, ab = aµb
µ.

Applying the formula for generating solutions by scale transformations

ψ2(x) = e−kαψ1(x′), x′µ = eαxµ, α = const

one can obtain

ψ(x) = exp
[
1
2
θ(γa)(γb)bx

]
exp

{
−1

2
iλ(χ̄χ)1/2k(γa)

[
2ax+ θ(bx)2

]}
χ. (5.14)

At last, generating from (5.14) new solutions by the group of translations, we obtain
an ungenerable family of solutions of the non-linear Dirac equation (1.1).

(i) k ∈ R
1, k �= 0,

ψ(x) = exp
[
1
2
θ(γa)(γb)bz

]
exp

{
−1

2
iλ(χ̄χ)1/2k(γa)

[
2az + θ(bz)2

]}
χ,

zµ = xµ + θµ, γa = γµa
µ, bz = bµz

µ, az = aµz
µ,

where χ is an arbitrary constant spinor and θ, θµ, aµ, bµ are constants satisfying the
following constraints:

aa = −1, bb = 0, ab = 0. (5.15)

The same procedure when applied to (5.3), (5.4), (5.11) and (5.12) gives ungene-
rable families of the form

(ii) k ∈ R
1, k �= 0, 1

2 ,

ψ(x) =
[
(az)2 + (bz)2

]−1/4
exp

[
−1

2
(γa)(γb) tan−1(az/bz)

]
×

× exp
{
i2λk(2k − 1)−1(χ̄χ)1/2k(γb)

[
(az)2 + (bz)2

](2k−1)/4k
}
χ,

(5.16)
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where aa = −1, bb = −1, ab = 0, zµ = xµ + θµ, θµ being arbitrary constants, and χ
is an arbitrary constant spinor.

(iii) k = 1
2 ,

ψ(x) =
[
(az)2 + (bz)2

]−1/4
exp

[
−1

2
(γa)(γb) tan−1(az/bz)

]
×

× exp

[
−1

2
iλχ̄χ

(
1 + θ2

)−1
(γb+ θγa) ×

× {ln [(az)2 + (bz)2
]
+ 2θ tan−1(az/bz)

}]
χ,

where zµ = xµ + θµ and aµ, bµ, θµ, θ are arbitrary constants satisfying conditions
(5.16).

(iv) k = 1
2 ,

ψ(x) = exp
[
1
4
(γc)(γb)bz

]{
(γa+ βγb)(az + βbz) +

1
4
γc
[
cz + (bz)2

]}
ω−1 ×

× exp

{
−iλχ̄χ (β2

1 + β2
2

)−1
[
β1(γa+ βγb) +

1
2
β2γc

]
×

×
[
β1(az + βbz) +

1
2
β2

(
cz + (bz)2

)]
ω−1

}
χ,

ω = (az + βbz)2 +
1
4
[
cz + (bz)2

]2
, zµ = xµ + θµ,

and θµ, aµ, bµ, cµ, β, βi are arbitrary constants satisfying the conditions

ab = bc = ca = bb = 0, aa = −1, cc = −4. (5.17)

(v) k < 0,

ψ(x) = exp
[
1
4
(γc)(γb)bz

] [{
(γa+ βγb)(az + βbz)+

+
1
4
(γc)

[
cz + (bz)2

]}
f(ω) + ig(ω)

]
χ,

zµ = xµ + θµ, ω = (az + βbz)2 +
1
4
[
cz + (bz)2

]2
with f(ω), g(ω) from (5.8). Parameters aµ, bµ, cµ, θµ satisfy conditions (5.17) and χ
is an arbitrary constant spinor.

(vi) k ∈ R
1, k �= 0,

ψ(x) = exp
[
1
2
(γa)(γb) ln(az + bz)

]
exp

{[
1
2
(γc)(γa+ γb) +

+ iλ(χ̄χ)1/2k(γc− γa− γb)

]
[ln(az + bz) − cz]

}
χ,

(5.18)
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ψ(x) = exp
[
1
2
(γa)(γb) ln(az + bz)

]
×

× exp
{[

1
2
(γc)(γa+ γb) − iλ(χ̄χ)1/2kγc

]
(cz)

}
χ,

(5.19)

where zµ = xµ + θµ, χ is an arbitrary constant spinor and aµ, bµ, cµ are arbitrary
constants satisfying conditions

−aa = bb = −1, cc = −1, ab = bc = ca = 0.

(vii) k ∈ R
1, k �= 0,

ψ(x) = exp
[
1
2
(γa)(γb)bz

]
exp

[
−iλ(γc+ βγb)(χ̄χ)1/2k(cz + βbz)

]
χ, (5.20)

where zµ = xµ + θµ, χ is an arbitrary constant spinor and aµ, bµ, cµ, θµ are arbitrary
constants satisfying the conditions

aa = cc = −1, ab = bc = ca = bb = 0. (5.21)

In conclusion of this section, let us consider the special case of equation (1.1) when
k = 3

2 . It is common knowledge that the corresponding non-linear Dirac equation is
conformally invariant [10, 13]. This enables us to obtain a larger family of solutions
with the help of a procedure of generating solutions by special conformal transforma-
tions, corresponding formulae having the form [7]

ψ2(x) = σ−2(x)(1 − (γx)(γθ))ψ1(x′),
x′µ = (xµ − θµ(xx))σ−1(x), σ(x) = 1 − 2θx+ (θθ)(xx).

(5.22)

Using solutions (5.14) under k = 3
2 as ψ1(x) we obtain a new solution of the

conformally invariant equation (1.1)

ψ(x) = [1 − (γx)(γθ)]σ−2(x) exp
{

1
2
θ̃(γa)(γb)(bx− (bθ)(xx))σ−1(x)

}
×

× exp

{
−1

2
iλ(χ̄χ)1/3γa[2(ax− (aθ)(xx))σ(x) +

+ θ̃(bx− (bθ)(xx))2]σ−2(x)

}
χ,

(5.23)

where aa = −1, bb = 0, ab = 0 and θµ, θ̃ are arbitrary constants.
The same procedure when applied to solutions (5.18)–(5.20) under k = 3

2 give
some new solutions of the non-linear Dirac equation.

6. Exact solutions of the system (1.2)
We shall seek solutions of (1.2) when m1 = 0, m2 = 0, the following ansatz being

used:

ψ(x) = γb exp(if(ax))χ,
Aµ(x) = bµg1(ax) + aµg2(ax),

(6.1)

where bb = 0, ax = aµx
µ and f , g1, g2 are arbitrary differentiable functions.
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Substitution of (6.1) into (1.2) gives the system of ODE

λ1g2 = ḟ ,

(aa)g̈1 = −2ebθ − λ2g1
(
2abg1g2 + (aa)g2

2

)
,

−(ab)g̈1 = −λ2g2
(
2abg1g2 + (aa)g2

2

)
,

(6.2)

where a dot means differentiation with respect to ω = ax, bθ = bµθ
µ, aa = aµa

µ,
ab �= 0, θµ = χ̄γµχ, µ = 0, 3.

We have succeeded in integrating the system (6.2) in the case aa = 0, ab �= 0, i.e.

λ1g2 = ḟ ,

g2g
2
1 = −(ebθ)/(λ2ab),

g̈1 = 2λ2g1g
2
2 .

(6.3)

From the second equation it follows that

g2 = −(ebθ)/(λ2ab)g−2
1 . (6.4)

Substituting (6.4) into (6.3) we obtain ODE for determination of g1(ω)

g̈1 =
(
k2/λ2

)
g−3
1 , k =

√
2(ebθ)/(ab). (6.5)

Integration of the last ODE yields

ω + C2 =

{
2|λ2|1/2|k|−1g2

1 , λ2 < 0,

C−1
1

(
C1g

2
1 − k2/λ2

)1/2
, C1 �= 0.

(6.6)

Finally

C1 �= 0, g1 = ±C−1/2
1

[
(C1ω + C2)2 + k2/λ2

]−1
, (6.7)

λ2 < 0, g1 = ±(k/|λ2|)
(
2|k||λ2|−1/2ω + C2

)−1

. (6.8)

Substituting the above results into (6.4) we find expressions for g2(ω)

C1 �= 0, g2 = −(kC1/λ2)
[
(C1ω + C2)2 + k2/λ2

]−1
, (6.9)

λ2 < 0, g2 = −(k/|λ2|)
(
2|k||λ2|−1/2ω + C2

)−1

. (6.10)

Substituting these expressions into the first equation from (6.3) we obtain f(ω)

C1 �= 0, f(ω) = −λ1λ
−1/2
2 tan−1

[
k−1λ

1/2
2 (C1ω + C2)

]
, (6.11)

λ2 < 0, f(ω) = λ1|λ2|−1/2 ln
(
2k|λ2|−1/2ω + C2

)
, (6.12)

where C1, C2 are arbitrary constants.
Substitution of (6.7)–(6.12) into (6.1) gives two families of solutions of the initial

equation (1.2)
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(i) λ2 �= 0, C1 �= 0,

ψ(x) = γb exp
{
−iλ1λ

−1/2
2 tan−1

[
λ

1/2
2 k−1(C1ax+ C2)

]}
χ,

Aµ(x) = ±bµC−1/2
1

[
(C1ax+ C2)2 − k2λ−1

2

]1/2 −
− aµ(kC1/λ2)

[
(C1ax+ C2)2 − k2/λ2

]−1
,

(6.13)

(ii) λ2 < 0,

ψ(x) = γb exp
[
−iλ1|λ2|−1/2 ln

(
2k|λ2|−1/2ax+ C3

)]
χ,

Aµ(x) = ±bµ
(
2k|λ2|−1/2ax+ C3

)1/2

− aµ(k/|λ2|)
(
2k|λ2|−1/2ax+ C3

)−1

,
(6.14)

where k =
√

2ebµ(χ̄γµχ)/(ab), C1, C2, C3 are arbitrary constants and χ is an arbitrary
constant spinor.

Let us note that the solutions obtained depend analytically on parameters λ1, e
while parameter λ2 is included in a singular way. It means that solutions (6.13) and
(6.14) cannot be obtained in the framework of perturbation theory by expanding in a
series with respect to a small parameter λ2.

On introducing as usual the tensor of the electromagnetic field Fµν = ∂Aν/∂xµ −
∂Aµ/∂xν we obtain

Fµν = ±(aµbν − aνbµ)C1/2
1

[
(C1ax+ C2)2 − k2/λ2

]−1/2
,

Fµν = ±(aµbν − aνbµ)k|λ2|−1/2
(
2k|λ2|−1/2ax+ C3

)−1/2

for solutions (6.13) and (6.14) respectively.
To obtain new families of solutions of the system (1.2) one can use its symmetry

under conformal group C(1, 3) [9]. The formula for generating solutions by special
conformal transformations has the form [8]

ψ2(x) = σ−2[1 − (γx)(γθ)]ψ1(x′),

A(2)
µ (x) = σ−2(x)[gµνσ(x) + 2(θµxν − θνxµ + 2θxxµθν −

− xxθµθν − θθxµxν)]Aν
(1)(x

′),

x′µ = (xµ − θµxx)σ−1(x), σ(x) = 1 − 2θx+ (θθ)(xx).

Using (6.13) and (6.14) as ψ1(x) and A(1)
µ (x) one can construct new multiparame-

ter families of exact solutions of (1.2) but we omit corresponding formulae because of
their cumbersome character.

7. Conclusion
In the present work, large classes of exact solutions of the non-linear Dirac

equation and of the system of non-linear equations of quantum electrodynamics
were constructed. Solutions obtained by Akdeniz [1], Fushchych and Shtelen [6, 7],
Kortel [11], Merwe [14] and Takahashi [15] can be obtained with the help of ansätze
(3.16)–(3.29).

Most of the solutions depend analytically on constants λ, λi, e. However solutions
(6.13) and (6.14) have a non-perturbative character because of their singular depen-
dence on the parameter λ2.
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We have constructed ansätze which reduced the four-dimensional systems (1.1)
and (1.2) to three-, two- and one-dimensional systems of PDE. It is important to note
that these ansaẗze can be applied to any spinor equations which are invariant under
the extended Poincaré group P(1, 3).

Appendix
It is important to note that the ansätze (3.16)–(3.29) do not exhaust all possible

ansätze for the Dirac equation (1.1). To reduce (1.1) to ODE one can use the following
ansatz:

ψ(x) = [ig(ω) + f(ω)γµ∂ω/∂xµ]χ, (A1)

where g, f are unknown real-valued functions, χ is an arbitrary constant spinor and
ω = ω(x) is a real-valued function satisfying conditions of the form

pµp
µω +A(ω) = 0,

(pµω)(pµω) +B(ω) = 0, A,B : R
1 → R

1.
(A2)

Substitution of (A1) into (1.1) gives a system of ode for determination of f and g.
We now list some multiparameter families of exact solutions of the non-linear Dirac
equation (1.1) obtained in this way.

(i) k ∈ R, k �= 0

ψ(x) =
[
−i sinh

(
λ(χ̄χ)1/2kω

)
+ γµ(∂ω/∂xµ) cosh

(
λ(χ̄χ)1/2kω

)]
χ,

where ω(x) is determined by the following equalities:

(a) ω = bx cosϕ1 + cx sinϕ1 + ϕ2, (A3)

(b) ax+ bx cosφ1 + cx sinφ1 + φ2 = 0, (A4)

and ϕi = ϕi(ax+ dx), φi = φi(ω + dx) are arbitrary differentiable functions.
(ii) k > 1,

ψ(x) = ω−k
{
± (1 − k−1

)1/2
+ ω−1[(bx+ ϕ1)(γb+ (γa+ γd)ϕ̇1) +

+ (cx+ ϕ2)(γc+ (γa+ γd)ϕ̇2)]
}
χ,

ω =
[
(bx+ ϕ1)2 + (cx+ ϕ2)2

]1/2
,

(A5)

where ϕi = ϕi(ax + dx) are arbitrary differentiable functions and the dot means
differentiation with respect to ax+ dx.

(iii) k = 1,

ψ(x) =
(
1 + θ2ω2

)−3/2 [i− θ((γa)(ax) − (γb)(bx) − (γc)(cx))]χ,

ω =
[
(ax)2 − (bx)2 − (cx)2

]1/2
(A6)

and the following condition holds:

3θ − λ(χ̄χ)1/2k = 0.

In (A3)–(A6) aµ, bµ, cµ, dµ are arbitrary parametrs satisfying the following conditi-
ons:

−aa = bb = cc = dd = −1, ab = ac = ad = bc = bd = cd = 0.
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