W.I. Fushchych, Scientific Works 2001, Vol. 3, 150-174.

On subalgebras of the Lie algebra
of the extended Poincaré group P(1,n)

L.F. BARANNIK, W.I. FUSHCHYCH

Some general results on the subalgebras of the Lie algebra AP(I,n) of the extended
Poincaré group P(1,n) (n > 2) with respect to P(1,n) conjugation have been obtai-
ned. All subalgebras of AP(1,4) that are nonconjugate to the subalgebras of AP(1,4)

are classified with respect to P(1,4) conjugation. The list of representatives of each
conjugacy class is presented.

1. Introduction

The systematic study of subalgebras of quantum mechanics transformation al-
gebras was begun in the fundamental paper by Patera, Winternitz and Zassenhaus
(PWZ) [1] in which the general method for classifying the subalgebras of a finite-
dimensional Lie algebra with a nontrivial solvable ideal with respect to some group
of automorphisms was suggested. This method is applied to classify all subalgebras
of Lie algebras of the following groups: the Poincaré group P(1,3) [1], the extended
Poincaré groups P(1,2) [2], P(1,3) [3], the de Sitter groups O(1,4) [4], O(2,3) [5],
the optical groups Opt(1,2) [5], Opt(1,3) [6], the Euclidean group E(3) [7], the
Schrodinger group Sch(2) [8], and the extended Schrodinger group @1(2) [8], the
Poincaré group P(1,4) [9-11], the Euclidean group E(5) [12, 13], the Galilei group
G(3) [12], and the extended Galilei group G(3) [12]. The application of the general
method had allowed us to study the subalgebras structure of the Lie algebra of the
generalized Euclidean group E(n) (n > 2) [13]. The subalgebras of the algebras
AP(1,3), AG(3), and AG(3) were described by another method [14-17].

The PWZ method needs the development for particular classes of algebras of its
generality. In the present paper we give the further development of the PWZ method
for extended Poincaré algebras AP(1,n) (n > 2), denoted also by ASim(1,n). The
necessity in the description of subalgebras of AP(1,n) follows from certain problems
of theoretical and mathematical physics [1]. In particular, knowledge of the algebra
AP(Ln) subalgebras gives us the possibility to study the symmetry reduction for the
relativistically invariant scalar differential equation

® (Ou, (Vu)?,u) =0,
where

Ou = Uzozg = Uzrzy — " — Uzpay,
(Vu)? = (ugg)® = (ug,)® =+ = (ug,)?,

and ® is a sufficiently smooth function [18-20]. The description of the algebra
AP(1,n) subalgebras allows us to solve the problem of the reduction of AP(1,n)
algebra representations on its subalgebras [21, 22].
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In Sec. 2 we describe the maximal reducible subalgebras of the algebra AO(1,n),
and in Sec. 3 we describe the completely reducible subalgebras of the algebra AO(1,n)
= AO(1,n) ® (D), where D is the dilatation generator. Section 4 is devoted to study
of the subalgebras of the extended Galilei algebra AG(n — 1), which is one of the
important subalgebras of the AP(1,n) algebra. In Sec. 5 which is the logical sequel to
Sec. 4, a number of assertions on subalgebras of the normalizer of isotropic subspace
of the Minkowski space M(1,n) in algebra AP(1,n) are conceived. Classification of
the AP(1,n) algebra subalgebras with respect to the P(1,4) conjugation is carried
out in Sec. 6. The conclusions are summarized in Sec. 7.

2. Maximal reducible subalgebras of the algebra AO(1,n)

In this section we describe the maximal reducible subalgebras and the maximal
Abelian subalgebras of the algebra AO(1,7).

Let R be the real number field; (Y7,...,Ys) is a vector space or Lie algebra
over R with the generators Y7,...,Ys; R™ is the m-dimensional arithmetical vector
space over R; U = M(1,n) is (1 4+ n)-dimensional pseudo-Euclidean space with the
scalar product

(X,Y) =2oyo — T1y1 — *** — Tn¥Yn; 2.1)

O(1,n) is the group of the linear transformations of M(1,n) which conserve (X, X)
for every X € M(1,n); E, is the unit matrix of degree q. We suppose that O(1,n) is
realized as the group of the real matrices of degree n + 1.

We call the extended Poincaré group P(1,n) the multiplicative group of the matri-

ces
A Y
o 1 )’
where A € O(1,n), \€ R, A >0, Y € R,

We denote by AG the Lie algebra of the Lie group G. Using the definition of Lie
algebra, we find that AO(1,n) consists of matrices

0 Qo1 Qo2 s apn—1 Qon
o1 0 a2 e Q-1 Qin
Qo2 -2 0 e Qap—1 Qan
X = . . . . o (2.2)
Qon—-1 —AWlp-1 —Q2p-1 -°° 0 Qp—1,n
Qon —U1n —0Ogp e —Qp—1.n 0

Let E;; be the matrix of degree n + 2 which has the unity on the cross of ith line
and kth column and zeros on the other places (i,k =0,1,...,n+1). It is easy to get
that the basis of the algebra AP(1,n) is formed by the matrices

D= FEo + E11+ -+ Enn, Joa = —Eoa — Eao,  Jab = —FEab + Ebpa,
Py=FEynt1;, Po=FEgn+1 (a<b, a,b=1,...,n).
The basis elements satisfy the following commutation relations:
[Jass Jys] = Gas Tpy + 9pyJas — Gan s — 9psday,  Jpa = —Jas,
[Pos Jsy] = 9apPy = gary P, [Pay Ps] =0, [D,Jap] =0, [D,Po] = Pa,
where goo = —g11 == —gnn =1, gop =0, when a # 8 (o, 5 =0,1,...,n).

(2.3)
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The generators of turning J,3 generate the algebra AO(1,n) and the translation
P, the commutative ideal N, and moreover AP(1,n) = N &(AO(1,n) @ (D)). Let
O(1,n) = {AE,11|A € R, A > 0} x O(1,n). Evidently, AO(1,n) = AO(1,n) & (D). It
is easy to see that [X,Y] = X-Y for all X € AO(1,n), Y € N. Let us identify N and
M(1,n) establishing correspondence between P; and the (n + 1)-dimensional column
with unity on the ith place and zeros on the others (i =0,1,...,n).

Let C be such matrix of degree n + 2 over R that mapping ¢c : X — CXC~!
is an automorphism of the algebra AP(1,n). If C' € G, where G is a subgroup of
P(1,n), then ¢¢ is called G automorphism. The subalgebras L and L’ of algebra
AP(1,n) are called P(1,n) conjugated if (L) = L’ for some P(1,n) automorphism
@c of algebra AP(1,n). Let us identify oo and C.

Let W a nondegenerate subspace of the space U. This subspace we also consider
to be pseudo-Euclidean relative to scalar product defined in U. Let O(W) be the
group of isometries of the space W, O(W) = O(W) x {AE,;1|A € R\ > 0}.
A subalgebra F ¢ AO(W) is called irreducible if in T there does not exist any
F-invariant subspace different from O and W. Otherwise F is called reducible. If for
every F-invariant subspace W’ in W there exists an F-invariant subspace W in W
such that W =W’ @ W” then it is called completely reducible.

Theorem 2.1. The maximal reducible subalgebras of algebra AO(1,n) are exhausted
with respect to O(1,n) conjugation by the following algebras: (1) AO(1,n—1)@ (D);
(2) AO(n) ® (D); (3) AO(1,k) ® AO'(n — k) ® (D), where AO'(n — k) = (Jala,b =
E+1,....n) (k=2,....,n—=2); (4) (G1,...,Gpn_1) F(AO(n—1) ® {Jon, D)), where
Ga :Joa—Jan (CL: 1,...,n—1).

Proof. If L is a maximal subalgebra of the algebra AO(1,n) then L = AO(1,n) or
L =L, ® (D), where Ly is a maximal subalgebra of the algebra AO(1,n). Let F be
a maximal reducible subalgebra of the algebra AO(1,n), U’ a subspace of the space
U invariant under F. If U’ is a degenerate space then it contains one-dimensional
F-invariant isotropic space W conjugated under O(1,n) to the space (P + P,). In
this case

F={XecAO(L,n)|X(Py+ P,) € (Po+ P,)}.
It is not difficult to show that
F= <G15 ceey GTL—1> G_(Ao(n - 1) D <JO7L>)'

If U’ is a nondegenerate space of dimension r then it possesses an orthogonal
basis consisting of r vectors with nonzero length. Let r,, r_ be numbers of positive
and negative length vectors, in the given basis of the space U’, respectively. These
numbers are independent of the choice of basis. In accordance with Witt’s mapping
theorem any two spaces U’ and U{, for which ry = r%, r_ = rL are mutually
conjugate under the group O(1,n). Obviously, 7, € {0,1}. Since U = U’ ® U’* and
U't is invariant under F therefore F is O(1,n) conjugated to one of the algebras,

AO(1,n —1), AO(n), AO(1,k) ® AO'(n — k).
The theorem is proved.
Let
AE(n) = (P,...P,) &(AO(n) & (D)),
AE' (n —k) = (Pry1,..., By) #AO0' (n — k),
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and AG(n — 1) is the extended Galilei algebra with the basis
M:P()+Pn,Po,Pl,...7Pn,1,G17...,Gn,1,Jab (a,b:L...,n—l).

According to Theorem 2.1, the description of subalgebras of the algebra AP(1,n)
is reduced to the description with respect to the P(1,n) conjugation of irreducible
subalgebras of the algebra AO(1,n) and subalgebras of the following algebras:

(Py) @AE(n), (AP(1,k) @ AE'(n — k) a-(D),
AG(n —1) @& (Jon,D) (k=2,...,n—1).

Let 7 be the projection of the algebra AP(1,n) onto AO(1,n), F a nonzero
subalgebra of AO(1,n), and F such subalgebra of AP(1,n) that n(F) = F. If
the algebra F is ]5(1,71) conjugated to the algebra W &+F, where W is an F-
invariant subspace of the space U, then we shall assume F' to be splitting. If
every subalgebra F' ¢ AP(1,n) satisfying 7(F) = F is splitting, we shall say that
subalgebra F' possesses only splitting extensions in the algebra AF(1,n). The spli-
ttability of subalgebras for other algebras of inhomogeneous transformations is defi-
ned by analogy. If nothing is reserved, then the investigation of subalgebras of given
algebra for conjugation is carried out with respect to the group of inner automorphi-
sms.

The affine group IGL(n, R) is defined as a group of matrices

(13 {) (2.4)

where B € GL(n,R), Y € R™. The Lie algebra AIGL(n, R) of this group consists of
matrices

XY

(3 0)
where X is a square matrix of degree n over R. Let 0, be the zero matrix of degree a,
P, = E4 nt1. Let us identify X and diag [X,04], then AIGL(n,R) = (Py1,...,P,) &
AGL(n,R). If m < n, then we shall assume that AGL(m, R) consists of the matrices
diag [X,0,,41_m], where deg X = m.
Lemma 2.1. Let F be a completely reducible subalgebra of the Lie algebra
AGL(m, R) (m < n), which is not semisimple. If Z is a nonzero central element
of the algebra F and F is the Lie algebra, which is obtained from F by replacing
Z by Z + P41, then the algebra Fis nonsplitting in AIGL(n, R) with respect to
IGL(n, R) conjugation.
Proof. Let X, be a square matrix of the degree m, T = diag[Xo,0n—m], Z =
diag [T, 04],

On Y
Pm+1:< 0 O;i_l)

If F is a splitting algebra, then there exists the matrix C of the form (2.4) such that
C(Z + Ppy1)C~t = diag [T",04]. It follows that —BTB~'Y + BY,,.; = 0, which
implies that V,,41 = (TB~') Y. However,

rpi_(Xo 0\ (B B\ _{( XoBi XoB
0 Onfm B3 B4 0 Onfm ’
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and therefore

aq
(TB™")-Y =

0
This contradiction proves the lemma.

Proposition 2.1. Let F' be a completely reducible Lie algebra of linear transfor-
mations of vector space V over the field R, W is an irreducible F submodule of
module V. If FW £ 0, then algebra F possesses only splitting extensions in algebra
W &F.

Proof. Since F' is a completely reducible subalgebra of the algebra gl(V'), then F' =
Q @ Z(F), where @ is Levy’s factor and Z(F) is the center of F' [23]. Using Jacobi
identity it is not difficult to conceive that F = Fy & F5, where F1WW = 0 and every
direct surnmand of algebra Fy annuls in W only zero subspace. Further we may
restrict ourselves only with the case when F' = F5.

Let Q # 0; F such a subalgebra of the algebra W & F that its projection onto F
coincides with F. According to Whitehead’s theorem [23] H'(Q, W) = 0. From this it
follows that the algebra F contains Q. Let JeZ(F),YeW,Y #0,and J+Y € F.
Since [@,Y] # 0, then there exists such an element X € @ that [X,Y] # 0. Let
Y1 = [X,Y], Wi be the F submodule of module W, generated by Y7. Because of the
fact that W, £ 0 and W is the irreducible F' module we have W; = W. Hence J € F.
Therefore, if @ # 0 then F' C F, ie., Fisa splitting algebra.

Let @ =0, J € Z(F). Since J annuls in W the only zero subspace is then
[J,/W] = W. Whence for every Y € W there exists such element Y’ € W that
[J,Y'] = Y. Consequently we may suppose that .J € E. If E" contains .J; 4+ Y7, where
Y, € W and Y7 # 0, then [J, Y]] € F and [J,Y1] # 0. Arguing as in the case Q # 0,
we get that J; € F, i.e., F is a splitting algebra. The proposition is proved.

Proposition 2.2. Let

AE(n — 1) = <G1, caey Gn_1> @(AO(TL — 1) D <Jon>),

where Go = Joa — Jan (@ = 1,...,n —1). The subalgebra F' C AO(n — 1) © (Jon)
possesses only splittable extensions in AE(n — 1) if and only if F is a semisimple
algebra or F not conjugated to a subalgebra of the algebra AO(n — 2).

Proof. Let W = (G1,...,G_1). Since every subalgebra of the algebra AO(n — 1) is
completely reducible and [Jo,, Ga] = —Ga, then every subalgebra F' of the AO(n —
1) ® (Jo,) algebra is also a completely reducible algebra of linear transformations of
space W.

Let W = Wi @ --- ® W, be the decomposition of W into the direct sum of
irreducible F modules. If projection F onto (Jy,) is nonzero, then [F,W;] = W;
for every 7 = 1,...,s. Whence according to Proposition 2.1 F' has only splittable
extensions in AE(n —1). Let us assume that projection of F onto (Jy,) is equal to
0. If F is a semisimple algebra then by Whitehead’s theorem every extension of F'
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in AE(n — 1) is splitting. Let F not be a semisimple algebra. When dim W; > 2 for
every ¢ = 1,...,s we have [F,W;] # 0 and in view of Proposition 2.1 F' possesses
only splitting extensions in AE(n—1). When dimW; =1 (1 <i < s), the module W;
is annuled by the algebra F' and the algebra F' is conjugated to a subalgebra of the
algebra AO(n —2). If Z(F) is the center of F and X is a nonzero element of Z(F)
then for every nonzero Y € W; there exists a subalgebra F' of the algebra AE(n — 1),
which is obtained from F' by replacing X by X +Y. By Lemma 2.1 F is not splitting.
The proposition is proved.

From Theorem 2.1 and properties of solvable subalgebras of algebra AO(n) it
follows that if n is odd then AO(1,n) possesses with respect to O(1,n) conjugation
only one maximal solvable subalgebra

<G17 ey Gn—la J123 J347 ey Jn—Q,n—la J0n>
If n is even then AO(1,n) possesses two maximal solvable subalgebras
<J127 J34a ey Jn—l,n>a <G1; sy Gn—la J127 J347 ey Jn—3,n—27 J0n>

Since an extension of an Abelian algebra with the help of a solvable algebra is a
solvable algebra itself then maximal solvable subalgebras of the algebra AP(1,n)
are of the form U &F, where F is the maximal solvable subalgebra of the algebra
AO(1,n). Maximal solvable subalgebras of the AP(1,n) are exhausted by algebras
Ua&(Fe& (D).

Proposition 2.3. Let AH(t) be the Cartan subalgebra of the algebra AO(t). The
maximal Abelian subalgebras of the algebra AO(1,n) are exhausted with respect to
O(1,n) conjugation by the following algebras: AH(n—1)&(Jo,, D); AH(n)®(D) [n =
0 (mod 2)]; (G1,...,Gn-1,D); AH(2a) ® (Gog+1,---,Gn-1,D) (a=1,...,[n—2/2]).
The written algebras are pairwise nonconjugated.

Proof. If F is a maximal Abelian subalgebra of the algebra AO(1,n) then from
Proposition 2.2 F = Q@ L & (D), where L is a subalgebra of the algebra AO(l) ®
(Jon) or the algebra AO(n) and Q is a subalgebra of the algebra (Gy,...,Gp_1). If
projection L onto (Jp,) is different from O then ©Q = 0. Let projection L onto (Jp,)
be equal to 0. If L = AH(n), then Q =0. If L = AH(2a), 1 < a < [n—2/2], then
Q = {(G2q+1,-..,Gn-1). The proposition is proved.

3. Completely reducible subalgebras of the algebra AO(1,n)

In this section we shall prove a number of general results on completely reducible
subalgebras of the algebra AO(1,n) and shall indicate how to search invariant subspa-
ces of space U for these algebras. The main results of this section are Proposition 3.3
and Theorem 3.1.

Proposition 3.1. If n > 2 then any irreducible subalgebra of the algebra AO(1,n) is
semisimple and noncompact.

Proof. Let F be an irreducible subalgebra of the algebra AO(1,n), Z(F) the center
of F. If Z(F) # 0 then Z(F) = (J), where J> = —E, ;1. Let X be an arbitrary
element of the form (2.2) of the algebra AO(1,n). If X2 = —E,, 41, then a3, + a2, +
.-+ + a3, = —1. This contradiction proves that Z(F) = 0.

If F is a compact algebra then there exists such symmetric matrix C that
C~1FC Cc AO(n+1) [24]. Since

exp (CilFC’) =Cl.expF.-C
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then in O(n + 1) there exists an irreducible subgroup conserving simultaneously
w4t + 22 and Aad - Mol - \2a?

(Mo, A1, ..., A, are nonzero real numbers). This contradiction proves the second part
of the proposition.

Proposition 3.2. A reducible subalgebra of the algebra AO(1,n) is completely redu-
cible if and only if it is conjugated to L1 @ Lo or a subalgebra of algebra L & (D),
where Ly is an irreducible subalgebra of the algebra AO(1,k) (k > 2), Ly is a
subalgebra of AO'(n—k)®(D) and L is one of the algebras, AO(n), AO(n—1)®(Jon)-

Proposition 3.2 follows from Theorem 2.1, Propositions 2.2 and 3.1, and the fact
that G, acts noncompletely reducible onto the space (Py + P, P,).

Let L be a direct sum of the Lie algebras Lq,..., L, B a Lie subalgebra of L, and
m; the projection L onto L;. If m;(B) = L; fori=1,...,s then B is called a subdirect
sum of Lq,..., L.

Proposition 3.3. A completely reducible subalgebra ' C AO(1,n) has only splitting
extensions in AP(1,n) if and only if F is semisimple or F is nonconjugate to sub-
algebra of one of the algebras, AO(n) or AO(1,n —1).

The proof of Proposition 3.3 is analogous to that of Proposition 2.2.

Let A; be a Lie algebra over R (i = 1,2), f : Ay — As is an isomorphism,
B = {(X, f(X)|X € A;}. Here B is the Lie algebra over R with “componentwise”
operational rules,

(X, (X)), (X7, F(X))] = (1, X7 (X, X)),
(X, f(X)) + (X, f(XT) = (X + X', f(X + X)),
AX, F(X)) = (AX, F(AX),

where X, X’ € Ay, X\ € R. Let us denote it as (A, As, ¢). Evidently (A1, Ay, ) is the
subdirect sum of the algebras A; and As.

Let W; be a left A; module (i = 1,2). It is easy to see that W; is the B module if
we put

(X>f(X>>'Y1:X'Y1a (X7f<X))Y2:f(X)}/2>

for every X € Ay, Y; € W; (i = 1,2). Let W be a B submodule of the module
Wy @We. I W = W] @ W), where W/ C W; (i = 1,2) then W is called a splitting B
module. Otherwise the module W is called nonsplitting B module.

Lemma 3.1. Let B = (A1, As,p) and V; be a left A; module (i = 1,2). In the B
module Vi @& Vs, exists a nonsplitting B submodule if and only if the B modules V
and Vo have isomorphic composition factors.

Proof. Let W be a nonsplitting B submodule of the module V3 & V5. Then W is the
subdirect sum of the modules Wy and Wy, where W; C V; (i =1,2). Let S; =W NV,
(1 = 1,2). Evidently, S; is the B submodule of the module W. The module W/(S1®.S52)
is nonsplitting B submodule of the module V;/S; @ V5/S,. Whence we shall assume
that WNV; =0 (i =1,2).

For every element Y; € W; there exists only one such element Y5 € W5 such that
(Y1,Y) € W. We put ¢(Y1) = Y,. The mapping ¢ is the isomorphism of B modules
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Wi and Ws. In this case modules W7 and W5 have isomorphic composition factors.
The necessity is proved.

Let W; be a left B submodule of the module V; (i = 1,2) and let the composition
factor W /Ny of the module W7 be isomorphic to the composition factor Wy /Ny of the
module W5. We denote as W the vector space over the field R generated by the pairs
(Zl,O), (O,ZQ), (Yl,}/g), where Z; € N;, Y; € W; (Z = 1,2) and gO(Yl -‘er) =Y+ N,
for the isomorphism ¢ : W7 /Ny — Wy /Ns. It is easy to see that W is a nonsplitting
B module. The sufficiency of the lemma is proved.

Let T' : X — X be the trivial representation of the completely reducible algebra
F ¢ AO(1,n), the projection of which onto AO(1,n) has not any invariant isotropic
subspaces in the space U or annuls the isotropic subspaces. Then I" is O(1,n) equiva-
lent to diag [I'y,...,I'y], where T'; is an irreducible subrepresentation (i = 1,...,m).
One may suppose that algebra F; = {diag|0,...,T;(X),...,0]|X € F} is an irreducib-
le subalgebra AO(W;), where

WL' = <Pk1:71+1vpki71+27 e -aPk1:> (k‘o = —1, ]{im =n, 1= 1, e .,m).

If F; # 0 then we shall call algebra F; an irreducible part of the algebra F'. It is
well known that if representations A and A’ of the Lie algebra L by skew-symmetric
matrices are equivalent over R, then C'- A(X)-C~! = A’(X) for some orthogonal
matrix C' (X € L). Whence and from Proposition 3.1 we conclude that if I'; and
I'; are equivalent representations then we can assume that for every X € F the
equality I';(X) = I';(X) takes place. Having united equivalent nonzero irreducible
subrepresentations we shall get a nonzero disjunctive primary subrepresentation of
the representation I'. Corresponding to those subalgebras of the algebra AO(1,n),
built by the same rule as the irreducible parts of F;, we shall call them primary parts
of the algebra F. If F' coincides with its primary part then F' is called a primary
algebra.
Theorem 3.1. Let K1, K>, ..., K, be primary parts of a subalgebra F of the algebra
AO(1,n), and V a subspace of the space U invariant under F. Then V = Vi &
@V, ®V, where V; = [K;,V] = [K;,Vi], [K;,Vi] =0 when j #i (i,j =1,...,q),
V = {X € V|[F,X] = 0}. If the primary algebra K is the subdirect sum of the
irreducible subalgebras of the algebras AO(W1), AO(W>), ..., AO(W,), respectively,
then nonzero subspaces W of the space U with the condition [K,W] = W are
exhausted with respect to O(1,n) conjugation by the spaces W1, W1 & Wa, ..., W1 ®
Wo®---oW,.
Proof. From the complete reducibility of algebra F it follows that V = V' @ V",
where V" is the maximal subspace of the space V, annulled by F. Further we shall
suppose that V' = V’. From Proposition 3.1 one can suppose that F ¢ AO(m), m < n.
Let K; be a subdirect sum of irreducible parts Kj1,..., K, Vi; = [K;;,V], mq be a
projection of V onto Za: BVy;.
j=1
In view of Lemma 3.1 7,(V) C V and that is why

V= i@ﬂa(V).

Since K, annuls in m,(V) only the zero subspace, then [K,,V] = [K,, 7.(V)] =
o (V).
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_Let primary algebra K be a subdirect sum of irreducible subalgebras of algebras
AO(Wy), AO(W3), ..., AO(W,), respectively. If W is a nonzero subspace of the space

Q= Z @Wj
=1

and [K,W] = W then in view of Witt’s mapping theorem there exists such isometry
B e O(9Q) that BW) =W1®---@W; (1 < s <r) and the space Wj is invariant under
BKB™! (i=1,...,s). Whence BKB~! is a subdirect sum of irreducible subalgebras
of algebras AO(W,), AO(Ws),..., AO(W,), respectively. Since irreducible parts of
the algebra L ¢ AO(n) are defined uniquely up to conjugation then one may consider
that BKB~! = K. The theorem is proved.

On the basis of Theorem 3.1 the description of splitting subalgebras F' AP(l,n),
for which 7(F) is a completely reducible algebra and has no isotropic invariant
subspaces in the space U, reduces to the description of irreducible subalgebras of
the algebras AO(1,k) and AO(k) (k = 2,3,...,n). The rest of the cases can be
reduced to the case of the algebra AG(n —1) @& (Jo,, D).

4. On the subalgebras of the extended Galilei algebra

The aim of this section is to study subalgebras of the algebra AG(n — 1) with
respect to P(Ln) conjugation. The main result concerning this problem is contained
in Theorem 4.1. Theorem 4.2 gives a description of all Abelian subalgebras of the
algebra AG(n —1). As a corollary, we obtain the list of maximal Abelian subalgebras
and one-dimensional subalgebras of the algebra AG(n — 1).

The basis elements of the extended Galilei algebra Aé(n— 1) satisfy the following
commutation relations:

[Jab; ch} = gadec + gbCJad - gaCde - gdeacv [Paa ch} = gach - gachv
[Paa Pb] = 07 [Gaa ch} = gach - gach7 [Gm Gb] = 0; [Paa Gb] = 5abM7
[PaaM] = [GG7M} = [‘]abaM] = Oa [P07 Jab] = [P07M] = [P07Pa] = Oa
[-P(hGa]:Pa (aabvc7d:17'~'7n_1)'

Let Vi = (G1,...,G,—1) be a Euclidean space with orthonormal basis Gy, ...,
Gr-1, Vo = [P0, V1] (n > 3), M = Vi + Vo + (Py, M). We settle on identifying the
group O(n — 1) with the isometry group O(V7), O(Va). If W is a subspace of V; and
dim W = k then according to Witt’s theorem for every a, 0 < a < n —k — 1, there
exists an isometry B, € O(V7) such that

Ba(W) = Vl(a + 17(1-’— k) = <Ga+1,Ga+2, .. ~7Ga+b>~

Further, in spaces V4, V2 we shall consider only subspaces Vi(a,b), Va(a,b) = [Po,
Vi(a,b)]. We call them elementary spaces. The basis G,,Gu41,-..,Gp of the space
Vi(a,b) and the basis P,, P,y1,..., P, of the space Va(a,b) we shall call canonical.

Let W3, W5 be subspaces of some vector space W over the field R and Wy NW, =
0. If ¢ : W3 — Wy is an isomorphism then we denote as (Wi, Ws, ) the space
{Y +o)|Y € Wy}. As I(W7,Ws) we denote the isomorphism of elementary spaces
Wi and Wy, by which the canonical basis of W is mapped to the canonical basis of
W5 with numeration of the basis of elements maintained.
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Let AG(n—1) = AG(n—1)/(M). For the generators of the AG(n—1) we preserve
the notation of the generators of the algebra Aé(n— 1). By 7, 70, 71, and 7 we denote
the projection of AG(n — 1) and AG(n — 1) onto AO(n — 1) @ (Py), Py, Vi, and Va,
respectively.

Let F" be a subalgebra of the AO(n —1) & (Py), F' an subalgebra of the AG(n—1)
such that 7(F) = F. If algebra F is conjugated to the algebra W &F, where W is
the F-invariant subspace of space V; + Vi, then F is called splitting in the algebra
AG(n — 1). The notion of a splitting subalgebra of the algebra AG(n — 1) is defined
analogously.

Proposition 4.1. Let Ly be a subalgebra of the AO(n—1), Ly be a subalgebra of the
(Py), and F be the subdirect sum of L1 and Lo. If Py ¢ F then the algebra F only
has splitting extensions in the algebra AG(n — 1) if and only if Ly is a semisimple
algebra or L is not conjugated to any subalgebra of the algebra AO(n — 2). When
Py € F, the algebra F only has splitting extensions in the AG(n — 1) if and only if
Ly is not conjugated to any subalgebra of the algebra AO(n — 2).

Proof. If L, is a semisimple algebra and Ly = (Py) then by Whitehead’s theorem [23]
Py € F. Let us assume that Ly = (Py) and Py ¢ F. Let F' be an subalgebra of the
AG(n — 1) such that 7(F) = F. If Ly is not conjugated to any subalgebra of the
AO(n — 2) then by Proposition 2.2 the algebra F' is splitting. If L is conjugated to
some subalgebra of AO(n — 2) then F = (X) & F; where X # 0, (X), and F; are
subalgebras of the algebra AO(n — 2) & (FPy). The algebra

F:<P1a~'~7Pn71aG17"'an727X+Gn71> am

is not splitting by Lemma 2.1. The case Ls = 0 can be treated similarly.

Let Py € F. If Ly € AO(n — 2) then algebra (FPy + G,,—1) &L is nonsplitting.
If Ly is not conjugated to any subalgebra of the algebra AO(n — 2) then by way of
complete reducibility of the algebra L, we get that P, € ' and whence algebra Fis
splitting. The proposition is proved.
Proposition 4.2. The subalgebra F of the algebra AO(n—1)®(Py) has only splitting
extensions in the Aé(n — 1) if and only if F is a semisimple algebra.
Lemma 4.1. Let Wy = (Y1,...,Yy), Wo = (Z1,...,Z,,) be Euclidean spaces over
the field R, O(W;) the isometry group of W (i=12),0<a <ay < <oy
S6=0,8=(Zy1,-- -, Zeyj) (G =1,. —t). The subspaces of the space W1 ®W,
are exhausted with respect fo O(Wl) X O(WQ) conjugation by the following spaces:

O, (Y1,....Y.), (Z1,...,Zs), Y1,.... Y, Z1,..., Zs) (r,s=1,...,m),
Y, Y, Ve +aaZy, o Yoy + i Zy) © S}
(k=1,....m—=1,t=1,....om—k, j=0,1,...,m—t),

WM+aZy,....Yi+aZy) @St (t=1,...,m, j=0,1,...,m—1).
Proof. Let N be a subspace of Wy @ Wy and N # W{ @ W3, where W/ is a subspace
of W; (i = 1,2). If B, = NnNW;, N; is a projection of N onto W; (i = 1,2)
and then Ni/B; = N;/Bs. Let dim B; = k. By Witt’s theorem the space B is
conjugated to the space (Y7,...,Y%). If dim (Ny|By) = ¢ then N contains elements
Yit; +a1; 21 + -+ oy Zy (7 = 1,...,t), and moreover the matrix A = (a;;) is
nonsingular. The matrix A can be represented uniquely in the form CT, where C' is
an orthogonal matrix and 7" is a positively definite symmetric matrix.
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The isometry diag [E,,,C~!, E,,—¢] maps N onto the space to which the matrix
C~1(CT) = T corresponds. There exists such orthogonal matrix C; that C;TC;* =
diag [A1,. .., A¢]. The isometry diag [Ex, C1, Ey—k—t, C1, Em—t] maps N onto the space
to which the matrix C;TC; ' corresponds. Therefore N is conjugated to the space

Bl @ <Yk-+1 —|— alZl, e ,Yk+t + O(tZt> @ BQ,

where 0 < a3 < ag < -+- < 4. The lemma is proved.

Let K be the primary subalgebra of the algebra AO(n — 1) which is a subdirect
sum of irreducible subalgebras of the algebras AO(Vi(1,q)), AO(Vi(q + 1,2q)), ...,
AO(Vi((r —1)q + 1,7q)), respectively, and W nonzero subspace of the space 9 with
the property [K, W] = W. If (W) = 0 then by way of Theorem 3.1 W is conjugated
to the space Va(1,iq) (1 < i < r). If (W) = 0 then W is conjugated to Vi(1,iq)
(1 <4 < r). Let us suppose that 71 (W) # 0, (W) # 0. Then W is a subdirect
sum of 7 (W), 72(W), where 7 (W) = V4 (1,m) and 7 (W) coincides with V5(1, k) or
Va(m + 1,m +1) or a subdirect sum of Vo(1,k) and Vo(m 4+ 1,m +1) (k <m). Every
number of k, m, and [ is divisible by ¢. Let us consider the case when 7o(W) is a
subdirect sum of V2(1,k) and Va(m + 1,m +1). In the space W we choose the basis
in the following form:

Gy +alP;, BLP;

4.1
(a=1,....om, c=m+1,....om+t i=1,....k,km+1,...,m+1). (.1

The coefficients of the decomposition we write down as the corresponding columns of
the matrix

(A B
= (% 5)
having m + ¢ columns and k + [ lines. We call the matrix I" a coupling matrix of
elementary spaces in the space W. With the coupling matrix we shall carry out the
transformations corresponding to definite O(n—1) automorphisms and transformations
to new bases of the form (4.1). Let Cy € O(k), C2 € O(m — k), C3 € O(l), S =

diag [Cy,Cs], T be a t x m matrix, and T» a nonsingular matrix of degree ¢. The most
general admissible transformations of the coupling matrix have the form

A1 B1 - 01A1571 + ClBlTl ClBlTQ
A2 B2 03A2571 + CngTl CgBQTQ ’

If By # 0 then according to Theorem 3.1 for some matrices C5, Ts, the following
equality is correct:

0 O
C3ByT5 = ( 0 A >7

where Ay = diag (1 Ey, ..., By, p1 = -+ = pie = 1. By this transformation algebra
K is left invariant. Applying Theorem 3.1 again we get that with & = m the matrix
Ao can be transformed into matrix

Ay 0
0 0 )’
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where A, is a square matrix of degree bg. For simplicity we shall assume that A, is
a coupling matrix of elementary spaces in the subdirect sum of the spaces Vi(1,bq)
and Va(bg + 1,2bqg). One can admit that

K = diag[A®, A”] = {diag[X,..., X |X € A},
———
2b

where A is an irreducible subalgebra of the algebra AO(q). Since for every matrix
Y € A® the equality AsY = YA, takes place then Ay = QS, where S is a symmetric
matrix, @ is an orthogonal matrix, and Y - Q = @ - Y. Applying the automorphism
diag [E, Q'] we transform the coupling matrix A, into S. There exists such matrix
C € O(bq) that

cSCc—! = diag [)\lE(l), AEy, .., )‘tE(t)]’

where \; # \; when i # j, and E(;) is the unit matrix (4,5 = 1,...,t). The
automorphism diag [C, C|] transforms K into diag [CA*C~!,CA*C~!] and the coup-
ling matrix S into CSC~L. I Y € CA*C~! then Y(CSC~!) = (CSC~1)Y. Whence
Y = diag[Y1,Ya,...,Y:], where deg Y; = deg E(;. The further decomposition of
the blocks Y; by O(2bq) automorphisms diag [C,C], where C = diag[C1,...,Ct,
deg C; = deg E;y does not change the coupling matrix. Since irreducible parts of an
algebra are defined uniquely then by the considered transformations of the coupling
matrix the algebra K is left invariant. That is why one can suppose that with £k =m

C3455~1 + CoBoTy = ( A02 8 > ,
where Ay =diag [MEq, ..., By, 0< A <--- < Ny, and (a+b)jg=lor A\ =--- =
Ay =0 and ag = [. If By # 0 then for some C;, T> we have

0 O
CiBiT5 = ( 0 As >7

where Az = diag [Ey, ..., E,].
The complete classification of coupling matrices one can get for large n.
Further we shall use the following notation:

m:<P0,M,P1,...,Pn,17G17...,Gn,1>, m = [(n—l)/Q],

In—-1)= {Z’)’iJQil,Qih/i =0, 1} )

i=1

XoNX,=0if X,, Xy €'(n—1) and have no common summand.

Lemma 4.2. Let T = on Xy + -+ ap Xy + Z, Z = BJon + YD + 6Py, where X; €
Pn—1), ai # 0, af # o}, Xi # Xj when i # j (i,j = 1,...,k). If W is a
subspace of the space M and [T,W] C W then W = W1 & --- Wy & W; where
W, = [XZ‘,W] = [Xi,WZ‘], [Z, Wz] c W;, [Xj,Wi] = 0 when ] 75 7, [X“W} =0,
[Z,W]CW.

Proof. Let X =7 — Z, ' = [X,M], M={Y e IMN|[X,Y] =0}, W' be a projection
of W onto 9V, and W a projection of W onto 9. Evidently, 9 = 9 @ M (as
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spaces). Since composition factors of the (Z) module 90t are one dimensional, then the
composition factors of the (Z) module 1V are one dimensional, too. Let M(P) = {P, €
M|[X, P,] # 0}. It is easy to see that (9(P)) and ' /(M(P)) can be represented as
direct sums of two-dimensional irreducible (T") submodules. Whence the dimensions
of composition factors of the (T") module W’ are equal to 2, too. When we now apply
Lemma 3.1 we conclude that W =W’ @ W.

Let 9, = [X;,9M] and W; be a projection of W’ onto 9M;. Clearly 9 = My &
oo @ My, At first let us establish that [Z, W;] C W;. Since for any Y; € W; we have
[Jon — D, Y;] = —Y;, then we may assume that 8 = 0. Obviously

[Ta [Tv YZH = —OZ?Yi + 2041‘[Xi7 [Z, Yz]] + V[Z» Yz]
Let

)/i/ = 2ai[Xia [Za }/l]] + 7[Z7Y;}7
Y/ = 20X, [2,Y]) + (2.7,

K2

The space W; contains Y/, Y. It is easy to check that
Y;'N = 4%"72 [Xla [Za YL” + 7(72 - 40[?)[Za K]

The determinant constructed by the coefficients of [X;,[Z,Y;]], [Z,Y:] in Y/, Y/ is
equal to —2c;y(v% + 4a2). 1T v # 0 then [Z,Y;] € W,. If v = 0 then W, contains
Y/ = (X, [6Fo. Yi]) and ¥{' = [T, Y] = ~a;[6 Py, Yi].

In the composition factors of the (T') module 91, one can choose the basis so that
the matrix of the operator T' is one of the matrices

vy -8 —oy
o ’ o —p )

If for ¢ # j the modules 9; and M; are possessed by isomorphic composition factors
then one of the following conditions is satisfied: af = a2; 2y = =28, v* + af =
6%+ a?. Since it is impossible then on the basis of Lemma 3.1 we conclude that
W' =W, @ ---® Wy. The lemma is proved.
Proposition 4.3. Let Ly be a subalgebra of the AO(n—1), Ly = (BJon +7D+ 0 Fp),
and F a subdirect sum of Ly and Ls. If W is a subspace of MM and [F,W] C W then
[L;, W] CW (j=1,2).

This is proved by virtue of Lemma 4.2.
Theorem 4.1. Let Vi = (G1,...,Gy_1), Vo = [Py, V1], Vi, be a subspace of Vi,
Voo = [Po, Vi,a]; K1, Ko, ..., Ky be primary parts of nonzero subalgebra L. of the
algebra AO(n—1); R be the maximal subalgebra of algebra M, annulled by L1; and
Loy be a subalgebra of the algebra R &(Jo,, D). If F is the subdirect sum of L, and
Loy, and W is a subspace of M invariant under F, then W = W1 & --- @ W, ® W,
where W; = [K;, W] = [K;, Wi], [La, W;] C Wi, [K;, W;] = 0 when j # i, [K;, W] =0,
(Lo, W] CW (i,j=1,...,q).

If a primary algebra K is a subdirect sum of irreducible subalgebras of the
algebras AO(V11,...,AO(V1,.), respectively, then nonzero subspaces W of the
space M with the property [K,W| =W are conjugated to

ZVLU Z‘/g’l (a:L...,r)
i=1 i=1
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or to subdirect sums of such spaces

a b a c
> Viioand Y Vai > Vii o and Y Vag;
i=1 i=1 i=1

1=a+1

ZVU’ Z‘/sz and zc: Vz,i

=1 i=1 i=a+1
(a=1,...,r, b=1,...,a, a=1,....,r—1, b=1,...,a, c=a+1,...,7).

The subdirect sums of the spaces

> Vi > Vai
=1

1=a+1

are exhausted with respect to O(n — 1) conjugation by the following spaces:

Ve Y Vays

i=1 j=a+1

b a c
Z(m,ivv2,a+17)\il(vl,ivv2,a+1))EB Z Vij® Z Vo ok
i=1 j=b+1 k=a+b+1

O< << X, b=1,...,min{a,c— a}).

The written spaces are mutually nonconjugated.

Proof. Let Q = [L1, W], S be a projection of W onto R. It is easy to see that W is
the subdirect sum of @ and S. Since the composition factors of the Lo module R are
one dimensional and the composition factors of the L; module [L,, ] have dimension
not less than 2 then in view of Lemma 3.1 W = @ + S. In virtue of Proposition 4.3
[L2,Q] C Q. We can show, as in Theorem 3.1, that Q = W7 @ --- & W,, where
W, = [K;,Q], W; = [K;,W;] (i =1,...,q). The truthfulness of the further statements
is established earlier when considering the transformations of the coupling matrix of
elementary spaces in the space W. The theorem is proved.

Theorem 4.2. Let oy < s < -+ < a5, a3 = 0, and a5 € {0,1}, AH(0) = 0,
AH(2d) = (J12,J34,. .., J2d—1,24), and L be a nonzero Abelian subalgebra of the
algebra AG(n — 1). If the projection To(L) of the algebra L onto (P,) is equal to
0 then L is conjugated to the subdirect sum of the algebras Li, Lo, L3, and Ly,
where L, C AH(Qd) (O <d< m), Lo =0 or Ly = <G2d+1 + a1P2d+1,G2d+2 +
a2P2d+2, ey G2d+s —+ Oéspgd+s>, L3 = O or L3 = <P2d+3+1, ey ]Dl>, L4 = O or L4 =
(M). If 7o(L) # 0 then L is conjugated to the subdirect sum of the algebras Ly,
Lo, L3, and L4, where Ly C AH(2d), Ly = (Py + aGaq41) (o € {0,1}), L3y = 0
or Ly = (Pr,...,P), Ly=00r Ly = (M) (0<d<m; r=2d+1 when o = 0;
r=2d+ 2 when o = 1).

Proof. Let

2d+s
Xi=G;+ Z BjiPj, L= (Xoat1,.--, Xodts)-
j=2d+1
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Obviously, [X;, Xx] = (Bki — Bik)M. Since L is an Abelian algebra then G = O
and therefore B = (Bi) (i,k = 2d + 1,...,2d + s) is a symmetric matrix. Hence,
there exists a matrix C € O(s) such that CBC~1 = diag[\1,...,\s]. Whence we
can assume up to conjugacy under O(n — 1) that Xogy; = Gagqj + AjPedy; ( =
1,...,8). O(n — 1) automorphisms permit us to change the numeration of generators
G2d+1,---,Goq+s. That is why we can suppose that Ay < --- < A;. Applying the
automorphism exp(—X1 Py) we get generators Gogt; + p;Pogyj (7 =1,...,s), where
wr=0,0<ps <. <. If pg >0 then us = expb (6 € R). Evidently,

exp(—0Jon)(Gaa+j + tjPadayj) exp(0Jon) = exp 0 - (Gaasj + pj exp(—0) Paay ;).

Therefore when us > 0 we can assume that p, = 1.
The rest of the assertion of the theorem follows from Proposition 4.1. The theorem
is proved.

Corollary 1. Let
A(Ta t) = <Gr + aer Gr+1 + ar+1PT+17 teey Gt + atPt7 M>7

where o < oy <o <y, ap =0 and oy = 1 when oy # 0. The maximal Af)elian
subalgebras of the algebra AG(n — 1) are exhausted up to conjugacy under P(1,n)
by the following algebras:

U; A(ln—1); A(l,s)®Va(s+1,n—1) (s=1,...,n—2);

(Gy + Py, M) & Va(2,n — 1); AH(n —2) @ (Gp_y1 + Py, M) [n =0 (mod 2)];
AH(2d) & (Py) @ Va(2d+1,n) (d=1,....[(n —1)/2));

AH2d) & A2d+1,n—1) (d=1,...,[(n—2)/2]);

AH(2d) ® A2d +1,8) @ Va(s+1,n— 1) (d=1,...,[(n — 3)/2));

AH(2d) & (Gaqrr + Po, M) & Va(2d +2,n — 1) (d=1,...,[(n—3)/2]).

The written algebras are not mutually conjugated.

Corollary 2. Let n > 3, Xy = anJis +aodsa+ -+ Xor—10;, 00 =1, 0 < g <
<o <Lit=1,...,[(n=1)/2; s=1,...,[(n—2)/2].

The one-dimensional subalgebras of the algebra AG(n — 1) are exhausted with
respect to P(1,n) conjugation by the following algebras: (Py); (M); (P1); (G1);
(G1 + P); (G1+ Po); (Xe); (Xi + Po); (X + M); (Xy + Poryr); (Xs 4+ Gasya)s
(Xs +Gosq1 + Po); (Xy + Gorgr + Porg2) (r=1,...,[(n—3)/2]).

The written algebras are not mutually conjugated.

Let
®(0) = (M), (i) =(M,Py,...,P;), Q0)=(M,PFy),
Q@) = (M, Py, Py,..., B, Va(s,t) =(Ps,..., Py) (s <t), (4.2)

A1 j41(J) = (Prga + AaPryald =1,2,..., ),

where 0 <A <--- <X (1<j<k—r).
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Proposition 4.4. Let L = (G, ..., Gy). The subspaces of the space U = (Py, P, . . .,
P,), which are invariant under L, are exhausted with respect to O(1,n) conjugation
by the following spaces:

0, ®(i), Qk), Va(k+1,t), ®(i) @ Va(k + 1,1), Q(k) © Va(k +1,1),
O(r) © A1 k41(d), ©(r) @ Ay k1) @ Va(k+37+1,5),

where i = 0,1,...)k, t=k+1,....n—1, r=0,1,...;k—1, 5 =1,....k—r,
s=k+j+1,...,n—1

Proof. Let W be a subspace of the space Q(k) invariant under L. Since [P,,G,] = M
then with W # 0 we have M € W. The normalizer of the algebra L in O(n — 1)
contains O(k). It follows from this and Witt’s theorem that if W # (M) and Py ¢ W
then W =@(i) (1 <i<k). If Py e W then W = Q(k).

For a description of all subspaces of the space U which are invariant under L
we shall use the Goursat twist method [25]. Since by Witt’s theorem the nonzero
subspaces of the space Va(k + 1,n — 1) are exhausted with respect to O(n — 1)
conjugation by the spaces Vo(k+ 1,¢) (t =k +1,...,n— 1) we need to classify the
subdirect sums of the following pairs of spaces Q(k), Va(k + 1,¢); ®(i), Va(k + 1,1)
(i=0,1,...kt=k+1,...,n—1).

Let N be the subdirect sum of Q(k) and Va(k + 1,t). If Py + APxyr1 € N (A #£0)
then N contains Py, Py = —[G1, Py + APx+1], and whence it contains M, too. Let

N’ = exp(0Gr+1) - N - exp(—0Gj11).

The space N’ contains Py+ (A —0)Pjy1+ (0?/2—X0)M. Since M € N’ then Py+ (A—
0)Py+1 € N'. Putting 6 = )\ we get that Py € N’ and whence Q(k) C N’. Therefore
N =Qo Va(k+1,t).

Let N be the subdirect sum of ®(i) and Va(k +1,¢). lf i =0, M + APxy1 € N
(A # 0) then N’ contains (1 — OA\)M + APyy1. Putting 1 — X = 0 we get that
N' =Va(k+1,t). I i # 0 then M € N. Let us assume that N # ®(i) ® Va(k + 1,¢).
Then ®(i)/S1 = Va(k + 1,t)/S2, where S; = NN ®(i), So = NN Va(k+1,t). Let
dim (®(#)/S1) = ¢ —r = j. Within the conjugation we can assume that S; = ®(r)
and Sy = 0 or So = Vo(k + j + 1,s) and that is why by means of Lemma 4.1 N is
conjugated to one of the spaces,

O(r) ® Ary1k+1(7); (1) @ Apyrk+1(J) © Valk +5 +1,5).

The proposition is proved.

5. On subalgebras of the normalizer of isotropic space

In virtue of Theorem 2.1 the normalizer of the isotropic space (Py+P,) in AP(1,n)
coincides with the algebra K = AG(n—1) @& (Jy,, D). In this section we shall establish
a number of assertions on subalgebras of the algebra K possessing nonzero projection
onto (Jon, D). On the grounds of these results in Theorem 5.1 we describe all Abelian
subalgebras of the algebra K that are nonconjugate to the subalgebras of AG(n — 1).
As a corollary, we obtain the list of maximal Abelian subalgebras and one-dimensional
subalgebras of the algebra K as well as one-dimensional subalgebras of the algebra
AP(1,n).

Further ¢ denotes the projection of K onto (Jy,,D) and £ denotes the projection
of K onto AO(n — 1) & (Jon, D).
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Proposition 5.1. Let L = (G1,...,Gg) (1 <k <n-1), and F be a subdirect sum
of L and (D). The algebra F has only splitting extensions in AP(1,n).

Proof. Let F' be a subalgebra of A]5A(1,n) such that m(F) = F. Up to an O(n — 1)
automorphism one can assume that F' contains the generator

X :G1+ZaVPl,+'y}D) (v #0).

v=0

Clearly,

exp (Z b#Pﬂ> - X1 -exp (— Z bMPM> =G1+D + (g — vbo + b1) Po+

n=0 n=0
n—1
—|—(041 + bO - bn - ’Ybl)Pl + (an + bl - ’ybn>Pn + Z(ai - 'ybz)Pz
=2

We put

g —vbo+b1 =0, ay+by—by,—7b =0,

5.1
n+by —9b, =0, a;—79b;=0 (i=2,...,n—1). (5.1)

The determinant of coefficients by by, by, and b, is equal to —7>. Since v # 0 then
the systems (5.1) has a solution. Therefore one can assume that X; = G; + yD. Let

a#1,

Xo=Gq+ zn:a#Pﬂ + 4D.

1=0

Since

(X1, Xo] = —(a0 — )P —a1 M + 7> a,P,,

[X1, Xa] — 7Xo = —7Go — ¥0D — (g — o) Py — 0y M,
we shall assume that

X, = Gy +aM + BP, + 6D.
Then

(X1, Xo] = (ya = B)M +yBP1 (2<a<k).

If vy — 3 # 0 then we shall consider that a = 0, 8 # 0. Since
(X1, [X1, Xa]] = —298M + 6Py,

tpen F containts M —~Py, —2M +~P; and whence M, P, € F. That is why G,+46D €
F.

Let ya —3 = 0.1f 3 # 0 then Py € F.. Since [X1, P1] = [G1 +9D, Pi] = =M +~ Py
then M € F and therefore G, + D € F. If 8 = 0 then a = 0. It proves that F' is a
splitting algebra. The proposition is proved.
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The record F: W1,..., W, means that we deal with the subalgebras W; &F, ...,
Ws & F.

In virtue of Propositions 4.4 and 5.1 we conclude that the subalgebras of the
algebra 9t @D possessing a nonzero projection onto (D) are exhausted with respect
to P(1,n) conjugation by the following algebras [see notations (4.2)]:

DY : 0, B(i), Va(s,?) (¢=0,1,..., —1,s=0,1, t=s,5+1,...,n);
(G1 + 1D, ..., Gy + a;D, D) : ®(1), Qk), Vo(k+1,1),
®(i) & Va(k + 1,1), Q(k )@VZ(/{‘Fl t), e(r )@A’r‘+1 k+1(7),

S(r)d A1 ()@ Velk+5i+1,8) (k=1,...,n—1,i=0,1,...,k,
t=k+1,...,n —1,r:O,l,...,k—l,]fl,...,k—r,
s=k+j+1,...,n—1).

These algebras must then be simplified using transformations contained in the nor-
malizer of each algebra in the group of O(1,n) automorphisms. If, for example, the
normalizer contains exp(fJi2) then instead of (G + a1D,Gs + asD) we can take
<G1 + a1 D, G2>
Proposition 5.2. Let L be a subalgebra of AO(n), and F be the subdirect sum of L
and (D). The algebra F possesses only the splitting extensions in AP(1,n).
Proposition 5.2 is proved by virtue of Propositions 2.1 and 3.2.
Proposition 5.3. Let Ly be a subalgebra of AO(n — 1), Ly = (D, Jy,) or Ly =
(D + vJon), where v = 0, 42 # 0, 2y+ 1 # 0. If F is a subdirect sum of the
algebras Ly and Lo then every subalgebra F of the algebra K with the property
§(F) = F is conjugated to the algebra (W1 + Ws) & F, where Wy, C U, Wy C V] =
<G1, ey Gn_1>.
Proof. Let Ly = (D, Jo,). On the basis of Propositions 2.2 and 5.1 algebra F contains
the elements

n n—1
Xi=Jon+ D P, Xo=D+Y_ BG,
i=0 j=1
Since [Xl,Xg] S vP— ZBJG then D+ S ~;P; € F'. Therefore one can suppose
that D € F. Whence Jy,, € F and F C F.

Let Lo = (D + vJo,). Since [D + vJon, Pa] = Pa, [D + vJon, Ga] = =G (a =
1,...,n — 1), then by virtue of Proposition 5.2 one can admit that F' contains the
subdlrect sum of F and subalgebra of the algebra (P, P,,). Evidently

exp(@oPg + 9nPn) . (]D) + ’}/J()n + OL()PO + Olnpn) . exp(—GOPO — GnPn) =
=D + ’YJOn + (aO - 90 + Ven)PO + (an + ’790 - 0n)Pn
Since 2 # 1, then coefficients by Py, APn can be :[ransformed into zero. On the basis
of the conditions v # 1, [D+vJon, FNIM] € F NI it is not difficult to get that
F CF. .
Let W=FnNM, Y =5 6,Goa+>. p; P, € W. Since

D +5Jon, Y] = =7 > 6aGa = Y(po P + puPo) + > piP;
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and 42 # 1 then one can assume that Y = Y 8,G, + poPy + pnPy. By the direct
calculations we find that

D+ vJon, Y] = =7 8aGa + (o = 19u) Po + (pn — 7p0) Pas

D+ vJon, [0+ vJon, Y]] =
=97 6aGa+ (¥’p = 270 + po)Po + (72 pn — 27p0 + pn) Pa.

The determinant A constructed by the coefficients of > 6,Gq, Py, P, in Y and the
vectors received is equal to y(2y + 1)(p2 — p2). II A # 0 then > 3,Go, Py, P, € W.
If A =0 then p, = £po. When p,, = pp we get that

D+ 7Jon, Y] = (1 =Y = = 6.Ga.
If p, = —po then
D+ 7Jon, Y] = (1+7)Y = (=27 = 1) ) _ 8.

The proposition is proved.

Proposition 5.4. The subalgebras of the algebra M & (Jo,,D) containing Jo, or
having the property that their projection F onto (Jon,D) coincides with (D +~vJoy),
where v # 0, ¥2 # 1, 2y + 1 # 0, are exhausted with respect to P(1,n) conjugation
by the following algebras [see notation (4.2)]:

F: 0, ®(a), Qa), Vo(l,d) (a=0,1,...,n—1,d=1,...,n—1);
(Gy,...,Gy) &F: 0, (1), Qk), Valk+1,t), ®(3) & Va(k + 1,1),

Q(k) & Va(k +1,1), @(r) @ Arrk+1(5), (1) © Arsr o1 (F) @ Va(k + 7+ 1,5)
(i=0,1,....k t=k+1,....,n—1, r=0,1,....k—1, j=1,....k—r,
s=k+j+1,....n=1, k=1,...,n—1).

The proof of Proposition 5.4 is based on Proposition 5.3.

Proposition 5.5. Let Ly be a subalgebra of AO(n — 1), Ly = (2D — Jy,), F a
subdirect sum of Ly and Lo, and F such subalgebra of K that £(F) = F. The
algebra Fis conjugated to the algebra W &F, where W C I and satisfies the
following condition: if Y € W and projection of Y onto Vi = (G1,...,Gp_1) is
equal to > 6,G, then W contains > 0,Gqo + pPy and pM or > 6,Gq + p(Py — Pp).
Proposition 5.6. Let Ly be a subalgebra of AO(n — 1), Ly = (D + Jo, + vM)
(v € {0,1}), and F the subdirect sum of L1 and Lo. If a subspace W of the space
M is invariant under F then W = W1 + Wy, where W, Cc U, Wy C V4.

The proof of Propositions 5.5 and 5.6 is similar to that of Proposition 5.3.
Let 8 = (vo — vn)/2. Since

1
exp(0F) - (D + Jon + 70 L0 + 1) - exp(—0F0) = D + Jo, + 5(70 + )M,
then further we shall suppose that the projection of the algebra F' ¢ AP(1,n) onto
(D + Jon, Po, P,,) contains D+ Jy,, + oM, where o € {0,1}. Proposition 5.6 gives the
considerable information on the structure of such algebras.
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Proposition 5.7. Let Ly be a subalgebra of AO(n — 1), Ly = (D — Jo, + vFPo)
(v €{0,1}), and F the subdirect sum of the algebras Ly and Lo. If a subspace W of
the space M is invariant under F, then W contains its own projection onto (Py, P,,)
and (L1, W) C W, [vPy,, W] C W.

Proof. On the basis of Proposition 4.3 [L;,W] C¢ W (i = 1,2). Let M = {V €
9M|[L1,Y] = 0}, and W be a projection of W onto M. It is easy to see that the matrix
diag [2,0] is the matrix of the operator D — Jy, in the basis Py + P,, Py — P, of
the space (P, P,) and in the basis of the space 9|(Py, P,) the matrix of the same
operator is the unit one. Whence by Lemma 3.1 we conclude that T contains its own
projection onto (P, P,). It remains for us to note that for arbitrary

n—1
Y =3 (P +5G))

j=1
we have [D — Jo, + vPo, Y] =Y + [yFo,Y]. The proposition is proved.
Proposition 5.8. Let F be a subalgebra of the algebra AO(1,n) generated by Jyy,
and G,, where a runs through some subset I of the set {1,2,....n —1}. I} F
is a subalgebra of AP(1,n) with n(F) = F, then within the conjugation with
respect to the group of translations the algebra F contains elements G, (a€l)and
J0n+25ipi (Z =1,...,n—1).
Proposition 5.9. Let L be a subalgebra of the algebra AP(1,n), X = Ju + dJon, +
BP., Y =G.+> vP (i =1,...,n), where 3 #0, 6 # 0, and a, b, and c are
different numbers of {1,2,...,n—1}. If XY € L then L contains G..
Theorem 5.1. Let L be an Abelian subalgebra of the algebra K and (L) # 0. If
e(L) = (Jon) then L is P(1,n) conjugated to the subdirect sum of algebras Ly, Lo,
(Jon), where Ly C AH(2d), Ly =0, or Ly = (Pogs1,- -, Paars). If e(L) = (D) then
L is P(l,n) conjugated to the subdirect sum of L1, Lo, (D), where L1 C AH(2d),
L2 =0 or L2 = <G2d+1, .. .,G2d+5>. If E(L) = <]D), J0n> or E(L) = <D+’7J0n>, where
v #0, v2 # 1 then L is P(1,n) conjugated to the subdirect sum of algebras (L)
and Ly C AH(2d). If (L) = (D+ Jy,), then L is conjugated to the subdirect sum of
the algebras Ly, Lo, L3, where Ly C AH(2d), Lo C (M), L3 = (Jo, + D).
Proof. If ¢(L) = (Jon) then in view of Propositions 2.2 and 4.3 the algebra L
contains its own projection onto (M, Py — P,,,G1,...,Gnr_1). Since [Jon, Go] = —Ga,
[Jon, M| = =M, [Jon, Py — P,] = Py — P, then this projection is equal to zero.
Therefore L is the subdirect sum of Ly C AH(2d) and Ly C (Pagt1,..., Pn1). If
Ly # 0 then by Witt’s theorem Lo is conjugated to (Pagy1, ..., Pagss).

If (L) = (D) then in virtue of Propositions 4.3 and 5.2 the projection of L onto
U is equal to 0.

If (L) = (D, Jon) or e(L) = (D+~Joy), where v #£ 0, v # 1, 2y+ 1 # 0, then by
Proposition 5.3 the algebra L is conjugated to the subdirect sum of the algebras (L)
and Ly C AH(2d). With (L) = (2D — Jy,,) Proposition 5.5 is applicable.

Let ¢(L) = (D — Jyp). On the basis of Propositions 2.2 and 4.3 the projection of L
onto (G1,...,Gn—1) is equal to 0. Applying the O(1,n) automorphism corresponding
to the matrix diag [1,...,1,—1] we get that £(L) = (D + Jy,). According to Proposi-
tion 5.2 the projection of L onto (P, ..., P,_1) is equal to 0. Since [Jo,+D, Py+P,] =
0, [Jon +D, Py — P,] = 2(Py — P,) then by Propositions 2.1 and 4.3 the projection of
L onto (Py, P,,) belongs to (Py + P,,). The theorem is proved.
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Corollary 1. The maximal Abelian subalgebras of the algebra K with the condi-
tion e(K) # 0 are exhausted with respect to P(1,n) conjugation by the following
algebras:

AH(n —1) @ (Jon, D), AH(n — 1)@ (M, Jon, D),
AH(2d) @ (Pogsr,- -, Po_1, Jon),
AH(2d) & (Gagsr,- .., Gn1,D) (d=0,1,...,[(n —2)/2).

The written algebras are not conjugated mutually.

Corollary 2. Let n > 3, Xy = anJig +aodaa+ -+ adJar—120; a1 =1, 0 < g <
<o <Lt=1,....[(n=-1)/2; s=1,...,[(n—2)/2]; @ > 0. The one-dimensional
subalgebras of the algebra K with the condition e(K) # 0 are exhausted with respect
to P(1,n) conjugation by the following algebras:

(Jon); (D); (D4 adon); (Jon + P1); (D4 Gr); (D + Jon + M);
(X + oD+ BJon) (B2 0); (X¢+ adon); (Xi + a(D+ Jop + M));
<Xt + G25+1 + Oé]D)>; <Xs + P2s+1 + O‘*]On>~

The written algebras are not conjugated mutually.

Proposition 5.10. The one-dimensional subalgebras of the algebra P(1,n) are ex-
hausted wtih respect to the P(1,n) conjugation by the one-dimensional subalgebras
of the algebra K and the [ollowing algebras:

(Jiz + Bidsa + - + Bnja—1Jn—1n + VD),
(Jig + B1dsa + -+ Brja—1Jn—1,n + Po),

wheren=0(mod2), v>0,0< B <---<fB,/0-1 < 1.

6. Subalgebras of the algebras AP(1,4)
In this section we make use of the previous results to provide a classification of
all subalgebras of AP(1,4) with respect to P(1,4) conjugation.
Let F be an subalgebra of AP(1,4) such that m(F) = F. An expression F' + W
means that W is a subspace of U, [F,W] C W, and FNU C W. As concerns the
algebras F+Wy,...,F + W, we will use the notation F': Wy, ..., W,.

Lemma 6.1. Let o,8,y € R, a >0, 3 >0, v # 0, and F run through the full
system of representatives of the classes of O(1,4)-conjugated subalgebras of the
algebra AO(1,4) [4]. The subalgebras of the algebra AO(1,4) ® (D) are exhausted
with respect to O(1,4) conjugation by the algebras F, F & (D) and the following
algebras:
(Ji2 + aD); (Ji2 + cJsq +aD) (0 < ¢ < 1); (Jog + aD); (Ji2 + cJos + aD) (¢ > 0);
(G3+D); (Gz—Jio+aD); (Jig+aD, Jsu+6D); (Joa+aD, Jio+6D); (Jos, Ji2+aD);
(G3+ D, Ji2 + OD); (Gs, J12 + aD); (G1 + D, Ga; (Gs, Joa + yD);
<G37 Jio + cdog + 7D> (C > O); <G3, Joa + YD, J12 + ﬁ]D)>; <G3, Joa, J12 + OzD>;
(G1,Ga, J1z + aD); (G1, G2, Joa +vD); (G1, Ga, J12 + cJos + D) (¢ > 0);
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(G1+D,Gs,G3); (G1,Ga,G3 — Ji2 + ab); (Jos, Joa, J3a, J12 + ab);

(Ji2 + J34, J13 — Jou, Jog + Jia, J34 + YD); (G1, G, J12 + oD, Jos + 6D);
(G1,G2, J12, Joa +D); (G1,G2,Gs + D, Jig + fD); (G1, Ga, Gs, Ji2 + aD);
(G1,G2,G3, Jos +D); (G, Ga, G3, Jiz + cJos + D) (c > 0);

(J12, J13, Jo3, Joa + aD); (G1, G2, G3, J12 + aD, Jos + 6D);
(G1,G2,Gs, Ji2, J13, J23, Jos + VD).

Lemma 6.1 is proved with the Goursat method [25] and the result on the classifi-
cation of subalgebras of the algebra AO(1,4) [4].

Theorem 6.1. Let A(T') be the system of representatives of the classes of conjugated
subalgebras of the algebra AO(1,4) (respectively, AO(1,4)) found in Lemma 6.1.
The splitting subalgebras of the algebra AP(1,4) are exhausted with respect to
P(1,4) conjugation by the following algebras:

() W &F, where FeT, W CU, and [F,\W] C W;

(2) W @&F, where F € A and the projection of F onto AO(1,4) coincides with
F, Fel;

(3) <J12, J34 + OZD> <P1, P2>, <P07P1, P2> (Oé > O),

(4) <G1 + OZD,GQ + ,6]]])> <M, P1>, <M, P1 + (.UP3>, <M,P1,P3>, <M, P1 +WP3,P2>
(wW>0,a>0, >0, a®>+ 3% #0);

(5) (G1 +aD,Gy + 8D, G3, M, P1) (>0, B3>0, a® + (32 #0);

(6) <G1 +OZD,G27G3 +5D,M7P1,P2> (O[ Z 0, ﬁ 2 0, Ck2+,62 7& O)

Proof. Let F' be the subdirect sum of F € T and D, and W a subspace of U
invariant under F. Then [F,W] c W and on the contrary, il [F,W] C W then
[F',W] C W. Therefore we can use the results on the classification of the splitting
subalgebras of AP(1,4) [9]. Only the cases of the algebras F' € A simplified by
0O(1,4) automorphisms demand an additional consideration. Such algebras correspond
to the algebra F' coinciding with (Jy2, J34), (G1, G2), or (G1, G2, G3). i, for example,
F = (Gy + a1D, Gy + oD, G3 + asD) then this algebra must be simplified using
transformations contained in the normalizer of (M, Py), (M, Py, P,), respectively, in
the group of O(1,4) automorphisms. The theorem is proved.

We conceive the classification of nonsplitting subalgebras of AP(1,4) with respect
to P(1,4) conjugation by virtue of the known classification of the nonsplitting sub-
algebras of AP(1,4) with respect to P(1,4) conjugation [11]. The application of the
automorphism exp(6D) allows us to substitute one of the continuous parameters by
the translation generators onto 1.

Let (Zl,,lq) = <PZ‘1,...,P

5o s (awb) = (Py 4+ wPy) (w > 0); (04) = (M).
Theorem 6.2. The nonsplitting subalgebras of the algebra AP(1,4) are exhausted
with respect to P(1,4) conjugation by the nonsplitting subalgebras of the algebra
AP(1,4) and the following algebras:

(Joa — D+ Pp): 0, (1), (04), (1,2), (04,1), (1,2,3), (04,1,2), (04,1,2,3);

(Ji2 + c(Joas — D + Py)): 0, (04), (3), (04,3), (1,2), (1,2,3), (04,1,2), (04,1,2,3)
(¢ >0);

<J04 +D+ ]\47 Jio + aM}: 0, (3), (1,2), (1,2,3) (a > 0),

(Joa +D, J12 + M): 0, (3), (1,2), (1,2,3); (Joa + D+ M, J12): 0, (3), (1,2), (1,2,3);

(Joa — D+ Py, Jiz + aFp): (04), (04,3), (04,1,2), (04,1,2,3) (o > 0);

(Joa — D, Jiz + Py): (04), (04,3), (04,1,2), (04,1,2,3);
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(Jos — 2D, G5 + Py): (04), (04,1), (04,1w3), (04,3), (04,1w3,2), (04,1,2), (04,1,3),
(04,1,2,3):

(Joa = 2D, Gz + Po — Py): 0, (1), (1,2); (Joa —D,G3 + P1): 0, (04), (04,3), (0,3,4);

(Joa — D, Gs + P5): (1), (04,1), (04,1w3), (04,1,3), (0,1,3,4);

<G3 + abPy, Jos — D + Po,M,P3> (Oé > O); <J04 — D+ Py,Gs + aPy, M, Pl,P3>
(a > 0);

(G, Jos — D+ Py): (04,3), (04,1,3), (04,1,2,3); (G, Jos + D + M): 0, (1), (1,2):

(G + Py, Jia + c(Jos — 2D)): (04), (04,3), (04,1,2), (04,1,2,3) (¢ > 0);

<G3 + Py — Py, J1o + C(J04 - 2D)>Z 0, (1,2) (C > 0);

<G3,J12+C(J04—]D)+P0)>Z (04,3), (04,1,2,3); <G3,J12—|—C(J04 —|—D—|—M)>Z 0, (1,2),

<G3 + Po, J12,J04 — 2]D)> (04), (04,3), (04,1,2), (04,1,2,3);

<G3 + Py — Py, J19, Jos — 2]D)>I 0, (1,2);

(G3, J12 + aPy, Jos — D + Py): (04,3), (04,1,2,3) (o > 0);

<G3, J12 + Po, J04 — D> (04,3), (04,1,2,3);

(Gs,J12a +aM, Jos + D+ M): 0, (1,2) (a > 0); (Gs, J12 + M, Jos + D): 0, (1,2);

(G1,G2 + Py, Jos — 2D): (04,1), (04,1,2), (04,1,2w3), (04,1,3), (04,1,2,3);

<G1 =+ P3,G2 + /,LP2 + (5]337 Joa — D> (/.L >0,0> O); <G1 + P37G2, Joa — D>;

<G1,G2 + Py 4+ 0P3, Jog — D> (5 > O), <G1,G2 + Py, Jos — ]D),P3>;

<G1+P2+)\P3,G2—P1 +,UP2+5P3,J04—]D),M> (/J >0, A>0V A=0,6 ZO),

<G1 4+ P4+ AP35, Gy — Py, Jog —D,M) ()\ > 0); <G1 + P3,Ga, Jos — ]D),M>;

<G1 —|—)\P3,G2+P2+6P3,J04—D,M> (/\ >0V A=0,0> 0),

(Gi1+ Py,Go — Py + puPs, Joa — D, M, P3) (> 0); (G1, G2 + P2, Joa — D, M, Ps);

<G1+P2,G2 —P1 +MP2,J04—D,M,P3> (MZ 0),

<G1+OéP2+ﬁP3,G2—|—P3,J()4—]D),M,P1> (Oé>0 vV a=0, ﬁZO),

(Gh+ Py + P3,Go, Jos — D, M, Py) (8 >0); (G1 + P3,G2, Jos — DD, M, Py);

<G1 +aPy + BP3, Gy + P3, Joy — D, M, P, +LUP3> (w > 0),

<G1+P2+/6P3,G2,J04—]D),M,P1 —l—wP3> (w >0),

<G1 + P3,Go, Jos — D, M, P, —‘er3> (w > 0); <G1 + P3,Go, Jos — D, M, Pl,P2>;
<G1 4+ Py, Go, Jos — D, M, Pl,P3>; <G1,G2 + P3,Jos — DD, M, P, +UJP3,P2> (w > 0),
(G1+P3,Go, Joa—D, Py, P1, Py, Py); (G140P3, G2, Joa—D+Py, M, P1, Py) (8 > 0);

<G1,G2, Joua — D+ Py, M, Pl,PQ,P3>; <G17G27 Joga + D+ M>; <G1,G2, Joga + D+
M, P3>;

<G1 + Py,Goy — Py, Jio + C(J04 - D)> (04), (04,3) (C > O),

<G1,G2,J12 + C(J04 —D+ PQ),M, P17P2,5P3> (C >0, s=0, 1);

(G1,Ga, J12 + c(Joa + D+ M)): 0, (3) (¢ > 0);

<G1,G2,J12 +P0,J04 — D,M,Pl,PQ,SP?,) (S = O,l);

(G1,Ga, J12a+ M, Jos +D): 0, (3);

<G1,G2,J12 + 0Py, Joua — D+ Py, M, Pl,PQ,SP3> (5 >0,s=0, 1);

<G1 4+ Py,Gy — Py, J12, Jos — D, M, SP3> (8 =0, 1);

(G1,Ga, J1a+aM,Jos + D+ M): 0, (3) (> 0);

<G1,G2,G3 + Py, Jos — 2D, M, PI’P27SP3> (8 =0, 1);

(G1,G2 + P2, G3 + aP3, Jos — D); (G1, G2 + P2, G3 + aP3, Joys — D, M);

<G1 + P+ BP3,Go — Py + uPs 4+ vP3,G3+ B8P + P>+ 6 P3, Joy —]D)7M> (/1, >0,
>0V =0 v=0)

<G1 +P2+ﬂp3,G2 —Pl,Gg—FﬂPl +5P3,J04 —D,M) (ﬁZO),

<G1 +ﬁP2,G2+P3,G37P2,J047]D,M,P1> (/BZ 0),
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<G1+ﬁP2+’yP3,G2+P3,G3—P2+MP3,J04—D,M,P1> (M>0, 8>0V =0,
v > 0);

(G1+ B8Py +vP3,G2,G3 + P3,Joa — D, M, Py) (B3>0 V 3=0,v2>0);

<G1 + Py, Go,G3, Jog —]D),M,P1>; <G1 4+ P3,Go,G3, Jos — D, M, Pl,P2>;

(G1,G2,G3,Joa — D+ Py, M, Py, Py, Ps); (G1,Go,G3, Joa + D+ M);

<G1,G2,G3 +P0,J12 + C(J04 — 2]D)),M,P1,P2,SP3> (C > 0, s = 071);

(G1+ Py,Go — P1,G3 + BPs, Ji12 + c(Joa — D), M) (c > 0);

<G1 + Py,Goy — Py,G3, Jio + C(J04 — ]D)),M, P3> (C > 0),

(G1,G2,G3 + Ps, J1z + ¢(Jos — D)): 0, (04);

<G1,G2,G3,J12+C(Jo4+]D)+M)> (C> 0),

<J127J13,J23,J04 —D+P0>Z O, (04), (1,2,3), (04,1,2,3);

<G1,G2,G3 + Py, Ji2, Jos — 2D, M, Py, Py, SP3> (S =0, 1);

(G1,Ga,G3,J12 + Po, Jos — D, M, Py, Py, P3);

(G1,G2,G3,J12 4+ 0Py, Jou — D+ Py, M, Py, P>, P3) (6 > 0);

<G1 + Py,Gy — P1,G3 + BP3, J12, Josa — D,M);
<G1 +P2,G2—P1,G3,J12,J04—D, M, P3>; <G1,G2,G3+P3,J12,J04—D>1 0, (04),
(G1,Ga,G3, J12 + M, Jos +D); (G1,Ga,G3, J12 + M, Jog + D+ M) (6 > 0);
(G1,G2,G3, J12, J13, J23, Joa — D + Py, M, Py, Py, P3);
(G1,Ga, G3, J12, J13, Jaz, Joa + D + M).

7. Conclusions

The results of the present paper may be summarized in the following way.

(1) The maximal Abelian subalgebras of the algebra AP(1,n) have been explicitly
found in Corollary 1 to Theorem 4.2 and Corollary 1 to Theorem 5.1.

(2) The full classification of one-dimensional subalgebras of algebra AP(1,n) is
contained in Corollary 2 to Theorem 4.2, Corollary 2 to Theorem 5.1 and Proposition
5.10.

(3) The completely reducible subalgebras of AO(1,n) which possess only splitting
extensions in the algebra AP(1,n) have been picked out. We have established in
Theorem 3.1 that the description of the splitting subalgebras F' of AP(1,n) whose
projection F' onto AO(1,n) does not have any invariant isotropic subspaces in the
space of translations or annul such subspaces, could be reduced to the description of
the irreducible parts of the algebra F'.

(4) A number of assertions on the subalgebras of the algebra U & K’ has been
proved where K is the normalizer of (Py+ P,) in AO(1,n). These assertions concern
the following matters: The splittability of all extensions of the subalgebra L C K’ in
Ap(l,n) or in some other algebras (Propositions 4.1, 4.2, 5.1, and 5.2); the decompo-
sition of invariant subspaces into a direct sum of its projections onto certain subspaces
(Propositions 5.3, 5.5, 5.6, 5.7, and 5.8); the explicit description of some classes of
the conjugated subalgebras of the algebra AP(1,n) (Theorem 4.1, Propositions 4.4
and 5.4).

(5) The full classification with respect to P(1,4) conjugation of the nonsplitting
subalgebras of AP(1,4) which are nonconjugate to the subalgebras of AP(1,4) has
been carried out.

Note added in proof: In Refs. [26-28] the subalgebras of the algebra AP(1,n)
were used to construct the exact solutions of many-dimensional nonlinear d’Alembert
and Dirac equations. The invariants of subgroups of the generalized Poincaré group
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P(1,n) were constructed in Ref. [29]. A number of general results on continuous
subgroups of pseudoorthogonal pseudounitary groups had been obtained [30].
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