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Relativistic particle of arbitrary spin
in the Coulomb and magnetic-monopole field
W.I. FUSHCHYCH, A.G. NIKITIN, W.M. SUSLOPAROW

Exact solutions of relativistic wave equations for any spin charged particle in the
Coulomb and magnetic-monopole fields are found.

1. Introduction
The description of interaction of charged spinning particle with external field is

important problem of quantum mechanics. The interest in such problems is stimulated
by the research of quark models with effective potential (see, e.q., [1]).

The experimental discovery of the relatively stable resonances with spins s > 1
2

and searches of the exotic atoms, in which these resonances play the role of an orbital
particles [2, 3] lead to the necessity of description of high-spin particle motion in
an external field. At the same time relativistic wave equations for such particles lead
to contradictions of principle — such as the absence of stable solutions in Coulomb
field [4], the causality violation [5], etc. (see, e.q., [6]).

In papers [7, 8] Poincaré-invariant wave equations for particles of arbitrary spin
are proposed which allow us to avoid many of these difficulties. By using these
equations the solutions of many problems connected with any spin particle motion
in an external field have been found for homogeneous magnetic field, Coulomb one
and also for Redmond field — i.e. the combination of plane wave and homogeneous
magnetic, field [9, 10]. In [11] the alternative possibility, of describing the spinning
particle in the Coulomb field is considered, one that makes use of Galilei-invariant
wave equations.

In present paper the problem of interaction of any spin relativistic particle with
magnetic-monopole field is solved, using the equations proposed in [7, 8]. Such a
problem for spinless particle was first considered by Dirac [12] and Tamm [13].
Harish-Chandra [14] obtained the exact solution of Dirac equation for electron in-
teracting with magnetic-monopole field. A number of publications, devoted to the
description of the motion of a charge in monopole field has appeared last time (see,
e.g., [15–18]), but the case of a particle of any spin was not yet considered.

Besides we obtain the exact solutions of Poincaré-invariant equations for particles
with arbitrary spin, interacting with the combination of the Coulomb and magnetic-
pole fields.

2. Poincaré-invariant equations for particles of arbitrary spin
We will start from the following equations, describing the relativistic particle of

spin s in an external electromagnetic field [7, 8]:[
Γµπµ − m +

e

4m
(1 − iΓ4)

(
1
s
Sµν − iΓµΓν

)
Fµν

]
Ψ = 0,

(Γµπµ + m)(1 − iΓ4)[SµνSµν − 2s(s − 1)]Ψ = 16msΨ,

(2.1)
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where Ψ = Ψ(x) is the 8s-component wave function, x = (x0, x1, x2, x3), πµ =
−i(∂/∂xµ)− eAµ, Aµ is the vector potential, Fµν is the electromagnetic-field tensor,
Γµ are (8s × 8s)-dimensional matrices satisfying the Clifford algebra

ΓµΓν + ΓνΓµ = 2gµν , (2.2)

Γ4 = Γ0Γ1Γ2Γ3, Sµν are the generators of the representation
[
D
(

1
2 , 0
)⊗ D

(
0, 1

2

)]⊗
D
(
s − 1

2 , 0
)
of Lorentz group.

In the case s = 1
2 the system (2.1) is reduced to Dirac equation for electron. If

s is arbitrary integer or half-integer, this system describes the causal motion of the
charged particle of spin s in an external electromagnetic field [7, 8].

To solve the above-mentioned problems it is convenient to pass from eqs.(2.1) to
the system of second-order equations. Multiplying eqs.(2.1) from the left by 1

2 (1±iΓ4)
and expressing Ψ+ = 1

2 (1 + iΓ4)Ψ via Ψ− = 1
2 (1 − iΓ4)Ψ we obtain

(
πµπµ − m2 − e

2s
SµνFµν

)
Ψ− = 0, (2.3a)

[SµνSµν − 4s(s + 1)]Ψ− = 0, (2.3b)

Ψ+ =
1
m

ΓµπµΨ−. (2.3c)

According to (2.3), solving of eqs.(2.1) is reduced to finding of the function Ψ−,
satisfying (2.3a), (2.3b) inasmuch as general solution of eqs.(2.1) may be presented
as Ψ ≡ Ψ+ + Ψ−, and Ψ− is expressed via Ψ+ in accordance with (2.3c).

It follows from (2.3b) that the function Ψ− has only 2s + 1 nonzero components
and is spinor from the space of D(s, 0) representation of the Lorentz group. On the
set of such functions the matrices Sµν are reduced to (2s + 1)× (2s + 1)-dimensional
generators of the irreducible representation D(s) of O3 group (indicated below as
S = (S1, S2, S3)), and eq.(2.3a) comes to the following form:[

πµπµ − m2 − e

m
S(H − iE)

]
Φs = 0, (2.4)

where Φs is (2s + 1)-component function (including nonzero components of Ψ−), E
and H are the vectors of electric and magnetic fields, respectively. For s = 1

2 eq.(2.4)
coincides with well-known Zaiteev–Feynman–Gell-Mann equation [19, 20].

3. Arbitrary-spin particle in the magnetic-monopole field
In the spherical co-ordinates the vector potential and the corresponding vectors of

the electric and magnetic-field strength created by the magnetic monopole are [14]

A0 = Ar = Aθ = 0, Aϕ =
n

2c
(1 − cos θ),

E = 0, H =
n

2e
· r

r3
,

(3.1)

where n is integer, r = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ).
Writing eqs.(2.4), (3.1) in the spherical co-ordinates one obtains

1
r2

∂

∂r
r2 ∂

∂r
Φ +

1
r2

∆∗Φ + (ε2 − m2)Φ =
n

2s

S · r
r3

Φ, (3.2)



Relativistic particle of arbitrary spin 511

where ε is the stationary-state energy,

∆∗ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2
+

in

1 + cos θ

∂

∂θ
− n2

4
1 − cos θ

1 + cos θ
.

Equation (3.2) may be solved by separation of variables for any value of spin s.
With the help of the unitary transformation Ψ → Ω = V Ψ, where

V = exp[−iL3ϕ] exp[i(S2 cos ϕ − S1 sin ϕ)θ], L3 = −i
∂

∂ϕ
, (3.3)

eq.(3.2) comet to such a form, in which the matrix S · r/r3 on the r.h.s. is diagonal
and equal to S3/r2:

1
r2

∂

∂r
r2 ∂

∂r
Ω +

1
r2

∆′∗Ω + (ε2 − m2)Ω =
n

2s

1
r2

S3Ω. (3.4)

Here

∆′∗ = K2 − S2 − 2S2
3 + nS2 +

n2

4
+ 2iS2(1 − w2)1/2 d

dw
−

−2S1
1

(1 − w2)1/2

[
L3 +

(n

2
+ S3

)
−
(n

2
+ S3

)
w
]
,

(3.5)

where

K2 = (1 − w2)
d2

dw2
− 2w

d

dw
−

− [L3 + (n/2 + S3) − (n/2 + S3)w]2

1 − w2
−
(n

2
+ S3

)2

,

w = cos θ.

(3.6)

The solutions of eq.(3.4) can be represented as an expansion in Jacobi polino-
mials [14] and eigenfunctions of the operator L3

Ω =
∑

σ

Fσ(r)P k
n/2+j,n/2+σ(w) exp[−i(j − σ)ϕ], (3.7)

where P k
n/2+j,n/2+σ is the complete set of the normalized eigenfunctions of the

commuting operators J3 = L3 + S3, S3 and K2 (3.6) which correspond to the ei-
genvalues j, σ and −k(k + 1), respectively, moreover

k ≥ ∣∣n2 + σ
∣∣ , ∣∣n

2 + j
∣∣ and k − (n

2 + σ
)

are integers,

σ = −nsk,−nsk + 1, . . . , nsk, nsk = min(s, k).
(3.8)

Using recurrent relations [14]
{

(1 − w2)1/2 d

dw
+

ν′ − µ′w
(1 − w2)1/2

}
P k

ν′µ′(w) =

= [(k + µ′)(k − µ′ + 1)]1/2P k
ν′µ′−1(w),

(3.9a)
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{
(1 − w2)1/2 d

dw
− ν′ − µ′w

(1 − w2)1/2

}
P k

ν′µ′(w) =

= −[(k − µ′)(k + µ′ + 1)]1/2P k
ν′µ′+1(w),

(3.9b)

and formulae for the matrices S1 and S2 in Gel’fand–Zeytlin basis [21], we come to
the following equations for radial function Fσ(w):

DFσ(r) = r−2Aσσ′Fσ′(r), (3.10)

where

D = (ε2 − m2) +
d2

dr2
+

2
r

d

dr
− k(k + 1) − n2/4

r2
, (3.11)

Aσσ′ =
[
s(s + 1) − 2σ2 +

1 − 2s

2s
nσ

]
δσσ′ − Λσσ′ ,

Λσσ′ = 0, σ′ �= σ ± 1,

Λσσ−1 = Λσ−1σ = −
[
(s + σ)(s − σ + 1)

(
k +

n

2
+ σ
)(

k − n

2
− σ + 1

)]1/2

.

(3.12)

Since the matrix Aσσ′ is diagonalizable, system (3.10) can be reduced to the
system of noncoupled equations

DF̂σ(r) = r−2Bsk
σ F̂σ(r), F̂σ = uσσ′Fσ′ , (3.13)

where Bsk
σ are the matrix Aσσ′ eigenvalues, which coincide with the roots of the

characteristic equation

det ‖Aσσ′ − Bsk
σ δσσ′‖ = 0, (3.14)

uσσ′ is the operator diagonalizing the matrix Aσσ′ .
Each of eqs.(3.13) by the replacement of the variable ρ = (ε2 −m2)1/2r reduces to

the wen-known one [14]

d2F̂

dρ2
+

2
ρ

dF̂

dρ
+
[
1 − k(k + 1) − n2/4 + Bsk

σ

ρ2

]
F̂ = 0, (3.15)

the solution of which (limited at the point ρ = 0) is expressed via Веssеl’s function

F̂ =
1√
ρ
J√

(k+n/2+1/2)(k−n/2+1/2)+Bsk
σ

(ρ), (3.16)

where k satisfies of the conditions (3.8).
One can make sure by the direct verification that at least for s < 3

2 , (k + n/2 +
1/2)(k − n/2 + 1/2) + Bsk

σ > 0. This means that ε > m, and so particle with spin
s < 3

2 in magnetic-pole field has continuous energy spectrum and has not coupled
states. In the саses s = 0 and s = 1

2 the absence of coupled states was demonstrated
by Dirac [12] and Harish-Chandra [14].
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According to the above the explicit solution of the wave eq.(2.4) for the case in
which the external field source is a magnetic monopole has the form

Φs(t, r) =
N√

(ε2 − m2)1/2r
exp[−iεt] exp[i(S2 cos ϕ − S1 sinϕ)θ]×

× exp[−i(j − σ)ϕ]u−1
σσP k

n/2+j,n/2+σ′(θ)J√(k+n/2+1/2)(k−n/2+1/2)+Bsk
σ′

(
√

ε2 − m2 · r),
(3.17)

where N is the normalization constant. Solutions of the starting system (2.1) may be
expressed through the function (3.17) with the help of the relations (2.3c).

Let us give the explicit expressions for Bsk
σ and usk

σσ′ , if s ≤ 1:

B
1
2 k

± 1
2

=
1
4
±
[(

k +
n

2
+

1
2

)(
k − n

2
+

1
2

)]1/2

,

B1k
σ = 2

√
−p/3 cos[(γ + σπ)/3],

cos γ =
q

2
√−(p/3)2

, p = −(2k + 1)2 +
3
4
n2 − 1

3
,

q = −8
3
k(k + 1) − 16

27
, σ = 0,±1;

u
1
2 k

σσ′ =
(

c1 −c1

c2 c2

)
, σ, σ′ = ±1

2
;

u1k
σσ′ =




p1

n/2 + B1k
1

β1 β1
p2

B1k
1 − n/2

β1

p1

n/2 + B1k
0

β2 β2
p2

B1k
0 − n/2

β2

p1

n/2 + B1k
−1

β3 β3
p2

B1k
−1 − n/2

β3




, σ, σ′ = 0,±1;

p1 = −
[
2
(
k − n

2

)(
k +

n

2
+

1
2

)]1/2

, p2 = −
[
2
(
k +

n

2

)(
k − n

2
+

1
2

)]1/2

.

Нere c1, c2, β1, β2, β3 are arbitrary nonzero constants.

4. Arbitrary spin particle in the Coulomb field
In the case of Coulomb potential A0 = Ze/r, A = 0, eq.(2.4) in spherical co-

ordinates takes the following form:

1
r2

∂

∂r
r2 ∂

∂r
Φ +

1
r2

∆Φ +
[(

ε +
α

r

)2

− m2

]
Φ = − iα

sr3
(S · r)Φ, (4.1)

where α = Ze2, ∆ is an angular part of Laplace operator.
Equation (4.l), as eq.(3.2), has exact solutions in separated variables. In [9] eq.(4.1)

is solved by using of the spherical spinor basis. Here we shall obtain the expressions
of eq.(4.1) solutions through Jacobi polinomials which are more convenient basis in
more general case of combination of the Coulomb and magnetic-pole potentials.
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In such a way, as was done in previous section, we shall pass to the representation,
in which the matrix S · r/r3 is diagonal. Using for this purpose the transformation
operator (3.3), we obtain

1
r2

∂

∂r
r2 ∂

∂r
Ω +

1
r2

∆′∗
n=0Ω +

[(
ε +

α

r

)2

− m2

]
Ω = − iα

sr2
S3Ω, (4.2)

where ∆′∗
n=0 is the operator (3.5) with n = 0.

Representing the solutions of eq.(4.2) in the form (3.7) one comes to eq.(3.10) for
the radial wave function, where

D =
(
ε +

α

r

)2

− m2 +
d2

dr2
+

2
r

d

dr
− k(k + 1)

r2
, (4.3)

A∗
σσ′ =

[
s(s + 1) − 2σ2 − iα

s
σ

]
δσσ′ − Λ∗

σσ′ , (4.4)

Λ∗
σσ′ is the matrix (3.12) corresponding to n = 0.
The matrix A∗

σσ′ is diagonalizable, so the system of equations (3.10), (4.3), (4.4) is
equivalent to noncoupled eqs.(3.13), (4.3), where Bsk

σ are the roots of the matrix (4.4)
characteristic equation (for explicit expressions for the coefficients Bsk

σ see [9]). Each
of these equations in its turn is reduced to the well-known equation of the for [22]

z
d2y

dz2
+

dy

dz
+
(

δ − z

4
− l2

4z

)
y = 0, (4.5)

where

z = 2(m2 − ε2)1/2r, y =
1
2

(
z

m2 − ε2

)1/2

F̂ ,

δ =
εα

(m2 − ε2)1/2
, l2 = (2k + 1)2 + 4(Bsk

σ )2 − 4α2.

(4.6)

In the case ε2 − m2 < 0 (boundary states) the allowed values of δ are

δ = (l + 1)/2 + n′, n′ = 0, 1, 2, . . . ,

hence

ε = m


1 +

α2(
n′ + 1

2 +
[(

k + 1
2

)2 − α2 + Bsk
σ

]1/2
)2




−1/2

(4.7)

and the solutions of eq.(4.5) are

y = exp[−z/2]zl/2Ql
n′(z), (4.8)

where Ql
n′ are Laguerre polynomials [22].

For the continuous spectrum ε2 − m2 > 0 the solution of eq.(4.5) limited at the
point z = 0 has the form

y = exp[−iτ/2]τ l/2F

(
l + 1

2
+ iγ, l + 1, iτ

)
, (4.9)

where F is a degenerated hypergeometric function, τ = −iz, γ = iδ.
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So we have obtained the solution of Kepler problem for quantum-mechanical parti-
cle of any spin. The energy spectrum of such a particle is determined by formula (4.7)
(for coupled states), and radial wave function in representation, where matrix A∗

σσ′ is
diagonal, has the form (4.8) or (4.9). The discussion of the spectrum (4.7) is given
in [9].

5. Arbitrary spin particle in the combined field
Now we shall consider the motion of a charged particle in central field which is

the combination of Coulomb and magnetic monopole ones, when

A0 =
ze

r
, A = − n

2e

r × n

r(r + r · n)
,

E = −αr

r3
, H =

n

2e

r

r3
.

(5.1)

Writing down the corresponding eq.(2.4) in spherical co-ordinates and representing
the solution in the form (3.7), one comes to the radial equation in the form (3.10),
where

D =
(
ε +

α

r

)2

− m2 +
d2

dr2
+

2
r

d

dr
− k(k + 1) − n2/4

r2
,

Aσσ′ =
[
s(s + 1) − 2σ2 +

1 − 2s

2s
− iα

s
σ

]
δσσ′ − Λσσ′ ,

(5.2)

and the matrix elements Λσσ′ are defined by eq.(3.12).
The system (3.10), (5.2) in its turn is reduced to the set of noncoupled eqs.(3.13),

where Bsk
σ are the matrix (5.2) eigenvalues. So the energy values, corresponding to

the coupled states, are

ε = m




1 +
α2(

n′ + 1
2 +
[(

k + 1
2

)2 + n2/4 − α2 + Bsk
σ

]1/2
)2




−1/2

, (5.3)

where n′ = 0, 1, 2, . . ., n = 0, 1, 2, . . ., and possible values of k are given in (3.8).
Formula (5.3) generalizes the relation, obtained in [15] for s = 1

2 , for the case of
any spin values. For n = 0 the spectrum (5.3) is reduced to the one for a particle of
any spin in Coulomb field (see (4.7)). We see that an arbitrary-spin particle as well
as a spin- 12 one has the coupled states in the considered combined field.

So we have obtained exact solutions of relativistic wave equations, describing
the motion of any spin particle in some central external fields. Such solutions may
be useful, e.q. in investigations connected with scarches of coupled states of exited
atomic nucleus in magnetic-pole field and so on.
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