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New symmetries and conservation laws
for electromagnetic fields
A.G. NIKITIN, W.I. FUSHCHYCH, V.A. VLADIMIROV

It is well known that classical conservation laws of energy, momentum, angular
momentum and center-of-energy movement of the electromagnetic field are the conse-
quences of the Maxwell equations invariance with respect to Poincare transformati-
ons. However, the relativistic invariance does not exhaust all symmetry properties of
these equations. A natural question arises whether there exist any other conservation
laws for electromagnetic fields different from those above. One could expect a positive
answer to this question to be obtained provided that Maxwell equations possess an
additional symmetry different from the relativistic and conformal invariances, because
the symmetry under the proper conformal transformations does not lead to any
new conserved quantities [1]. We will show in this paper that electromagnetic fi-
eld equations do possess an additional (nongeometric) symmetry with respect to the
GL(2) ⊗GL(2) group, which gives rise to new conservation laws.

1. It is well known [2] that the maximal symmetry group of Maxwell equations

∂E

∂t
= rot H,

∂H

∂t
= −rot E, div E = div H = 0 (1)

in the class of local transformations is the C(1, 3) ⊗ H Lie group where C(1, 3) is
a 15-parameter conformal group [3, 4] and H is one-parameter Larmore–Heaviside–
Rainich transformation group [5–7]:

E → E cosϕ+ H sinϕ,
H → H cosϕ− E sinϕ.

(2)

In 1970 a method was proposed (hereafter cited as the non-Lie method) in which no
restrictions are imposed on the order of operators available by systems of differential
equations under consideration [8, 9]. By means of this method the existence of ad-
ditional invariances was established for many important equations of relativistic and
nonrelativistic physics [10–16]. As for the electromagnetic field equations, the results
of the investigations of their symmetry properties obtained within the framework of
the non-Lie method are formulated below in Theorems 1 and 2.

Let us rewrite Eqs.(1) in matrix form:

L1ψ = 0, L1 = i
∂

∂t
+ σ2S · p,

L2 = 0, L2 = p1 − S · pS1, ψ =
(

E
H

)
,

(3)

where

Sa =
(
Ŝa 0̂
0̂ Ŝa

)
, σ2 = i

(
0̂ −1̂
1̂ 0̂

)
, a = 1, 2, 3, (4)
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1̂ and 0̂ are three-dimensional units and zero matrices, respectively, Sa are spin
matrices which correspond to spin s = 1, (Ŝa)bc = iεabc. Let us denote the set of
basic elements of a finite-dimensional Lie algebra by {QA}, A = 1, 2, . . . , j. The
{QA} form the invariance algebra (IA) of Maxwell equations if for every A = 1, . . . , j
operator QA is defined on the set of solutions of Eq.(3) and transforms this set into
itself, i.e., the following equations hold:

L1QAΨ = 0, L2QAΨ = 0, (5)

where Ψ is any solution of system (3). As an example of symmetry algebra of Eq.(3)
we have the well-known 16-dimensional Lie algebra of the C(1, 3) ⊗ H group. Yet
the Maxwell equations possess certain additional symmetry stated by the following
theorem.

Theorem 1. The Maxwell equations are invariant under the nine-dimensional Lie
algebra A8, basic elements of which have the form

Q1 = σ3S · p̂D, Q2 = iσ2, Q3 = σ1S · p̂D,
Q3+a = iσ2S · p̂Qa, Q7 = 1, Q8 = iσ2S · p̂, a = 1, 2, 3,

(6)

where

D =
∑

a�=b�=c

[(
p2

ap
2
b + p2

ap
2
c − p2

bp
2
c

)
(1 − Sa) + p1p2p3SaSbpc

]
ϕ−1, (7)

ϕ =
1√
2

[
p4
1

(
p2
2 − p2

3

)
+ p4

2

(
p2
1 − p2

3

)
+ p4

3

(
p2
1 − p2

2

)]1/2
, (8)

and σa are the Pauli matrices commuting with Ŝa, p̂a = pa/p, p =
√

p2. Operators
(6) satisfy the following relations:

[Qa, Qb] = −[Q3+a, Q3+b] = −εabcQc, a, b, c = 1, 2, 3,

[Q3+a, Qb] = εabcQ3+c, [Q7, QA] = [Q8, QA] = 0, A = 1, 2, . . . , 8
(9)

forming an algebra isomorphic to Lie algebra of the GL(2) ⊗GL(2) group.

Proof. One can convince oneself that the statements of Theorem 1 are true by strai-
ghtforward calculation making use of the following relations:

Dσa = σaD, DS · p̂ = −S · p̂D,
D(S · p̂)2 = D − f(p1 + ip2S3 − ip3S2)S2, f = p2

1p
2
2 + p2

1p
2
3 + p2

3p
2
2,

D2S · p̂ = S · p̂, L2S · p̂ = 0, [D,L2] = −p2
2p

2
3L2.

(10)

It is obvious that the additional symmetry algebra of Eq.(3) could not be obtained
within the framework of the classical Lie method, which is based on the infinitesimal
approach.

Since QA in (6) are integro-differential operators, we give the corresponding finite
transformations for the Fourier components of E and H. From the relation

ψ̃ → ψ̃′ = exp(θAQA)ψ̃, ψ̃ = (2π)−3/2

∫
ψ(x) exp(−ip · x)d3x (11)
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we have

Ẽa → Ẽ′
a = Ẽa cos θ1 + iεabcp̂bDcdẼd sin θ1,

H̃a → H̃ ′
a = H̃a cos θ1 − iεabcp̂bDcdH̃d sin θ1,

(12a)

Ẽa → Ẽ′
a = Ẽa cos θ2 + H̃a sin θ2,

H̃a → H̃ ′
a = H̃a cos θ2 − Ẽa sin θ2,

(12b)

Ẽa → Ẽ′
a = Ẽa cos θ3 − iεabcp̂bDcdH̃d sin θ3,

H̃a → H̃ ′
a = H̃a cos θ3 − iεabcp̂bDcdẼd sin θ3,

(12c)

Ẽa → Ẽ′
a = Ẽa cosh θ4 −DabH̃b sinh θ4,

H̃a → H̃ ′
a = H̃a cosh θ4 −DabẼb sinh θ4,

(12d)

Ẽa → Ẽ′
a = Ẽa cosh θ5 + iεabcp̂bẼc sinh θ5,

H̃a → H̃ ′
a = H̃a cosh θ5 + iεabcp̂bH̃c sinh θ5,

(12e)

Ẽa → Ẽ′
a = Ẽa cosh θ6 −DabẼb sinh θ6,

H̃a → H̃ ′
a = H̃a cosh θ6 +DabH̃b sinh θ6,

(12f)

Ẽa → Ẽ′
a = Ẽa exp θ7,

H̃a → H̃ ′
a = H̃a exp θ7,

(12g)

Ẽa → Ẽ′
a = Ẽa cos θ8 + iεabcp̂bH̃c sin θ8,

H̃a → H̃ ′
a = H̃a cos θ8 − iεabcp̂bẼc sin θ8,

(12h)

where θA (A = 1, 2, . . . , 8) are real parameters,

Dab =
[
δab

(
p2

ap
2
d + p2

ap
2
e − p2

dp
2
e

)
+ p1p2p3pc

]
ϕ−1,

c �= d �= e, c �= e, c �= a, b.
(13)

Using the inverse Fourier transformation one can obtain the finite transformations
generated by (6) in the basic representation:

H ′
a(t,x) = (2π)−3/2

∫
H̃ ′

a exp(ipx)d3p,

E′
a(t,x) = (2π)−3/2

∫
Ẽ′

a exp(ipx)d3p.

(14)

Transformations (12a)–(12h) form the representation of the GL(2) ⊗ GL(2) group
which includes the one-parameter HLR group (2).

2. Recently [16] within the framework of the non-Lie approach, group properties
of the equations for vector-potential of the electromagnetic field,

�Aµ = 0,
∂µA

µ = 0, µ = 0, 1, 2, 3,
(15)



New symmetries and conservation laws for electromagnetic fields 575

were investigated. The additional symmetry of Eqs.(15) proved to be even higher than
that of the Maxwell equations.

Theorem 2. Equations (15) are invariant under the Lie algebra of the GL(3) group.
Basic elements of this symmetry algebra on the set of solutions of Eqs.(15) have the
form

(FabA)µ =
1
p2

(
gµ
0 p0pa − gµ

ap
2
0

)
Ab, a, b = 1, 2, 3, (16)

where gµ
ν is the metric tensor of the Minowski space and gνν = (1,−1,−1,−1); 1/p2

is the integral operator defined as

1
p2
f(t,x) =

∫
f(t,x′)
|x − x′|d

3x′. (17)

The proof of this theorem is given in Ref. [16]. Obviously, the additional symmetry
algebra of Eqs.(15) generated by nonlocal operators (16) cannot be obtained in the
classical Lie approach.

3. What conservation laws correspond to the symmetries stated by Theorems 1
and 2? Since basic elements of the additional symmetry algebras are nonlocal ope-
rators the traditional method for construction of conserved quantities based on the
Noether theorem is of no use. Another possibility of building up the conserved quan-
tities is to put every element of the invariance algebra of Maxwell equations into
correspondence with a four-vector:

JA
0 = ψ+MQAψ, JA

a = −ψ+Mσ2SaQ
Aψ (18)

satisfying the continuity equation

∂µ(JA)µ = 0, (19)

where ψ is vector-function from (3), σ2, Sa are matrices introduced in (4), M is an
operator which satisfies the following equation[

i
∂

∂t
+ σ2S · p,M

]
ψ = 0. (20)

Employing the Gauss–Ostrogradsky theorem we can conclude from (19) and (20) that
the integrals

〈QA〉 =
∫
d3xJ0

A =
∫
d3xψ+MQAψ (21)

are independent of time. In this way it is possible to obtain all classical conserved
quantities as well as new conserved quantities which correspond to the non-Lie sym-
metry of Maxwell equations. Operator M must be chosen in accordance with the
demand for integrals (21) to have a clear physical interpretation. The following opera-
tor does satisfy this requirement:

M =
p0

p
= −σ2S · p

p2
, (22)

where 1/p2 is the integral operator defined in (17). As a matter of fact, substituting
(22) into (21) and choosing QA = {Pµ, Jµν}, where Pµ and Jµν are basic elements of
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the Poincaré algebra, we obtain classical expressions for energy, momentum, angular
momentum and center-of-energy of the electromagnetic field. Inserting (6) into (21)
one obtains

〈Q1〉 =
∫
d3p

ϕp

{
fẼ(t,−p) · H̃(t,p) +

∑
a

p2
a

˙̃Ea(t,−p) ˙̃Ha(t,p)

}
, (23a)

〈Q2〉 =
∫
d3p

2p2

{
p ·

[
Ẽ(t,−p) × Ẽ(t,p) + H̃(t,p) × H̃(t,p)

]}
, (23b)

〈Q3〉 =
∫

d3p

2ϕp

{∑
a

f
[
H̃a(t,p)H̃a(t,−p) − Ẽa(t,p)Ẽa(t,−p)

]
+

+
∑

a

p2
a

[
˙̃Ha(t,p) ˙̃Ha(t,−p) − ˙̃Ea(t,p) ˙̃Ea(t,−p)

]}
,

(23c)

〈Q8〉 =
∫
d3p

2p

[
Ẽ(t,p) · Ẽ(t,−p) + H̃(t,p) · H̃(t,−p)

]
, (23d)

〈Q4〉 = 〈Q5〉 = 〈Q6〉 = 〈Q7〉 = 0, Ȧ =
∂A

∂t
. (23e)

Thus, the existence of additional symmetry algebras for the electromagnetic field
equations gives rise to the new conserved quantities independent of classical ones.

In a similar way we can show that the additional symmetry (16) of Eqs.(15) leads
us to the following conserved quantities:

S̃a =
i

2
εabc

∫
Ab(t,x)

↔
p0Ac(t,x)d3x, a, b, c = 1, 2, 3, (24a)

Σ̃ab =
1
2

∫ {
Aa(t,x)

↔
p0

[
p0

p
Ab(t,x)

]
+Ab(t,x)

↔
p0

[
p0

p
Aa(t,x)

]}
d3x. (24b)

Formulas (24a) express the spin of the vector field [17]. The time independence of
spin components (24a) was originally derived by consideration of properties of energy-
momentum tensor of the vector fields having nothing to do with their symmetry
properties. Now we see that conservation of (24a) as well as the existence of six new
conserved quantities (24b) are the consequences of the non-Lie symmetry of Eqs.(15).

In conclusion we discuss briefly a physical meaning of the new conserved quanti-
ties (23) and (24). It is readily shown that if a monochromatic wave solution of Eq.(1)
is substituted into the following expression

Ka =
〈Qa〉
〈Q8〉 , a = 1, 2, 3, (25)

the Stokes parameters describing polarization of this wave are obtained. In general
integrals (23a)–(23d) can be regarded as a generalization of these parameters for
arbitrary solutions of Maxwell equations. Equations (24) can be reduced to matrix
elements of the polarization density matrix for the field with nonzero spin provided
that (Aµ) is the solution of (15) corresponding to a monochromatic wave.
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Thus, the non-Lie symmetry of the equations of motion can be employed to descri-
be the polarization properties of the electromagnetic field. The analogous statement
holds in the case of any relativistic equation for particles with non-zero mass and
arbitrary spin, e.g., the additional symmetry of the Dirac equation [8, 9] was used in
Ref. [18] to describe polarization of the electron. More extended discussion of non-Lie
symmetry of Maxwell equations is given in Refs. [19, 20].
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