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On the new conformally invariant equations
for spinor fields and their exact solutions

W.I. FUSHCHYCH, W.M. SHTELEN, R.Z. ZHDANOV

The Poincaré and conformally invariant nonlinear generalizations of the Dirac equati-
on are discussed and, in particular, the conformally invariant version of the Dirac–
Heisenberg equation is obtained. For the latter equation some exact solutions are found
and among them there is a family which is invariant under the full 15-parameter
conformal group.

Consider the following Poincaré invariant nonlinear generalization of the Dirac
equation

γµ[i∂µ + F1ψ̄γµψ + F2ψ̄γ4γµψ + F3(ψ̄γµψ)γ4 + F4(ψ̄γ4γµψ)γ4]ψ+

+F5(ψ̄σµνψ)σµνψ + F6(ψ̄σµνψ)γ4σ
µνψ = (F7 + F8γ4)ψ,

(1)

where F1, . . . , F8 are arbitrary functions of ψ̄ψ and ψ̄γ4ψ,

γ4 = iγ0γ1γ2γ3, σµν =
1
4
i(γµγν − γνγµ).

The well-known Dirac–Heisenberg [1] and Dirac–Gürsey [2] equations belong to this
class.

We shall choose from (1) such equations which are invariant under the scale
transformation

x′µ = eθxµ, ψ′(x′) = ekθψ(x), k, θ = const. (2)

and under the conformal ones (see e.g. ref. [3])

x′µ =
xµ − cµx

2

σ(x)
, ψ′(x′) = σ(x)(1 − γcγx)ψ(x),

σ(x) = 1 − 2cx+ c2x2, cx ≡ cνxν , c2 ≡ cνcν , ν = 0, 1, 2, 3.
(3)

Theorem 1. Eq.(1) is invariant under the scale transformation (2) if and only if

F1 = φ1

[
(ψ̄γµψ)(ψ̄γµψ)

]−(1+2k)/4k
, F2 = φ2

[
(ψ̄γ4γµψ)(ψ̄γ4γ

µψ)
]−(1+2k)/4k

,

F3 = φ3

[
(ψ̄γµψ)(ψ̄γµψ)

]−(1+2k)/4k
, F4 = φ4

[
(ψ̄γ4γµψ)ψ̄γ4γ

µψ
]−(1+2k)/4k

,

F5 = φ5

[
(ψ̄σµνψ)ψ̄σµνψ

]−(1+2k)/4k
, F6 = φ6

[
(ψ̄σµνψ)ψ̄σµνψ

]−(1+2k)/4k
,

F7 = φ7(ψ̄ψ)−1/2k, F8 = φ8(ψ̄ψ)−1/2k,

(4)

where φ1, . . . , φ8 are arbitrary functions of ψ̄ψ/ψ̄γ4ψ.
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Proof. It is easy to see that transformations (2) leave eq.(1) invariant if

eθ(2k+1)FB

(
ψ̄ψe2kθ, ψ̄γ4ψe

2kθ
)

= FB

(
ψ̄ψ, ψ̄γ4ψ

)
, B = 1, 2, . . . , 6,

eθ(k+1)FC

(
ψ̄ψe2kθ, ψ̄γ4ψe

2kθ
)

= FC

(
ψ̄ψ, ψ̄γ4ψ

)
, C = 7, 8.

(5)

Taking into account the well-known identities [4]

(ψ̄ψ)2 + (ψ̄γ4ψ)2 − (ψ̄σµνψ)ψ̄σµνψ = 0,
(ψ̄ψ)2 − (ψ̄γ4ψ)2 − (ψ̄γ4γµψ)ψ̄γ4γµψ = 0,
(ψ̄γµψ)ψ̄γµψ − (ψ̄γ4γµψ)ψ̄γ4γ

µψ = 0,
(6)

the general solution of (5) can be written as (4). One can directly verify that eq.(1)
with functions (4) is invariant under transformations (2).

Theorem 2. Eq.(1) is invariant under the conformal group C(1, 3) if and only if
functions F1, . . . , F8 have the form (4) with k = −3/2.
Proof. Since the conformal group C(1, 3) contains the extended Poincaré group
P̃ (1, 3) = {P (1, 3),D}, we can use the result of theorem 1. Then one can make
sure that transformations (3) leave eq.(1) with functions (4) invariant when k = −3/2
and this proves the theorem.

Corollary. If F7 = λ(ψ̄ψ)1/3 and FA = 0, A = 1, . . . , 6, 8 then eq.(1) coincides with
the Dirac–Gürsey (2) one:[

iγ∂ − λ(ψ̄ψ)1/3
]
ψ = 0, λ = const. (7)

In another case when F4 = λ[(ψ̄γµψ)ψ̄γµψ]−1/3, FB = 0, B = 1, 2, 3, 5, . . . , 8, we
obtain a conformally invariant version of the Dirac–Heisenberg equation{

iγ∂ + λ(ψ̄γµψ)γµ/[(ψ̄γνψ)ψ̄γνψ]1/3
}
ψ = 0. (8)

As is well known the original Dirac–Heisenberger equation (1) is not invariant under
the conformal transformations.

Now we use the symmetry properties of eq.(8) to construct its exact solutions.
Following refs. [5, 3] we take the anzatze

ψ = ϕ(βx), βx ≡ βνxν , βν = const, (9)

ψ =
[
γx/(xνxν)2

]
φ(βx/xνxν), (10)

which are translationally and conformally invariant respectively. The substitution of
(9), (10) into (8) gives rise to the following system of ordinary differential equations

iγβdu/dω + ν(ūγµu)γµu/[(ūγνu)ūγνu]1/3 = 0, (11)

where u = {ϕ(ω), ω = βx or φ(ω) = βx/xνxν}, ν = λ for ϕ and ν = −λ for
φ. Depending on ν, there are three different cases (χ is a constant spinor, βµ =
χ̄γµχ/[(χ̄γνχ)χ̄γνχ]1/3)

(a) Im v = 0, u = eivωχ,

(b) Re v = 0, u =
(
c+ 2

3zω
)−3/2

χ, z = Im v,
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(c) Im v Re v �= 0, u = (f1 + if2)χ, v = v1 + iv2,

f1 = ± [
(w − 2v)1/2 + (w + 2v)1/2

]
,

f2 = ∓ [
(w − 2v)1/2 − (w + 2v)1/2

]
,∫

dv

[c1 − 2(v2/v1)v2]2/3
= 2v1ω + c2, w =

[
c1 − 2(v2/v1)v2

]1/2
.

(12)

Remark. Let us show that the conformally invariant ansatz (10) can be obtained
from (9) by applying the procedure of generation of solutions if one uses the conformal
transformations (3). As is shown in ref. [3] the formula of generating solutions in this
case has the form

ψnew(x) =
[
(1 − γxγc)/σ2(x)

]
ψold(x′),

x′µ = (xµ − cµx
2)/σ(x), σ(x) = 1 − 2cx+ c2x2.

(13)

Applying (13) with c0 = 1, c1 = c2 = c3 = 0 to (9) and then changing x0 in x0 + 1 at
the expense of translation invariance we obtain the ansatz (10).

Now let us use the procedure of generating solutions to the conformally invariant
one (10), for the case (12a),

ψ(x) =
[
γx/(xνxν)2

]
exp(−iλβx/xνxν)χ,

βµ = χ̄γµχ/[(χ̄γνχ)χ̄γνχ]1/3.
(14)

Having done transformations of translations we obtain from (14) another family of
solutions of eq.(8)

ψ(x) =
[
(γx+ γa)/

(
x2 + 2ax+ a2

)]
exp

[−iλ(βx+ βa)/
(
x2 + 2ax+ a2

)]
,

βµ = χ̄γµχ/[(χ̄γνχ)χ̄γνχ]1/3.
(15)

It is a remarkable family of solutions, because it is invariant within the transformati-
ons of the parameters under the full 15-parameter conformal group. Indeed, it is
obvious that (15) is invariant under displacements. Let us also show that it cannot be
generated by the procedure (13). Applying (13) to the solution (15) we obtain

ψ(x) =
1 − γxγc

σ2(x)

(
γx− γcx2

)
/σ(x) + γa

[a2 + 2 (ax− acx2 + x2) /σ(x)]2
×

× exp

[
−iλ

(
βx− βcx2

)
/σ(x) + βa

a2 + 2 (ax− acx2 + x2) /σ(x)

]
χ.

(16)

One can make sure that (16) can be rewritten in the form (15) only with the new
parameters

aµ → ãµ = − (
aµ − cµa

2
)
/σ(a, c), χ→ χ̃ = (1 − γcγa)/σ2(a, c),

βµ → β̃µ = ¯̃χγµχ̃
/

[(¯̃χγν χ̃)(¯̃χγν χ̃)]1/3
.

(17)

It is also clear that (15) cannot be generated by the remaining transformations of the
conformal group.

In conclusion let us note that we have used symmetry to obtain exact solutions
of nonlinear Dirac equation [3], nonlinear equations of quantum electrodynamics [6],
Yang–Mills equations [7] and some scalar nonlinear equations [8, 9].
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