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Some exact solutions of the
many-dimensional sine-Gordon equation
W.I. FUSHCHYCH, Yu.N. SEHEDA

In the present paper we construct the multiparametrical families of exact solutions
of the many-dimensional nonlinear d’Alembert equation

�U = sinh U, (1)

where � = ∂2/∂x2
0 − · · · − ∂2/∂x2

n. This equation is concerned with some problems
of field theory [1]. In the case of n = 1 the analysis and the physical interpretation of
solutions of this equations are given in [2].

Up to date the inverse-scattering method is applied for solving two-dimensional
nonlinear equations (KdV, sine-Gordon, nonlinear Schrödinger and some others) main-
ly and the attempts to extend this method for solving many-dimensional equations
are not so successful.

To construct some classes of exact solutions of the many-dimensional equation (1),
we use group-theoretical ideas of Lie which were applied fruitfully by Birkhoff [3],
Sedov [4] and Ovsyannikov [5] to nonlinear equations of hydrodynamics.

The maximal local invariance group of eq.(1) is the Poincaré group P (1, n) of
rotations and translations of the (1 + n)-dimensional space R1,n.

We look for the solutions to eq.(1) of the form

U(x) = ϕ(ω), (2)

where ϕ is a function of the invariant variable ω only (for more details see [6]). We
use the following set of invariants which were presented in [7]. (Below the summation
convention is employed. The parameters αν , βν , . . . are arbitrary real constants.)

ω = (xνxν)1/2, (3a)

ω =
[
(βνyν)2 + yνyν

]1/2
, βνβν = −1, (3b)

ω =
[
(βνyν)2 − yνyν

]1/2
, βνβν = 1, (3c)

ω = ανxν , αναν = l = ±1, , (3d)

ω =
1
2
(ανyν)2 + aβνyν , αναν = ανβν = 0, βνβν = l = ±1, (3e)

ω = βνyν + a ln ανyν , a �= 0,

αναν = ανβν = 0, βνβν = l = ±1, yν = xν + aν ,
(3f)

a, aν are arbitrary constants.
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Substituting (2) into the many-dimensional partial differential eq.(1) we reduce it
to the ordinary differential equations

U ′ +
N1

ω
U ′ = sinh U (4a)

(cases (3a), (3b))

−U ′ − N2

ω
U ′ = sinh U, (4b)

(case (3c))

U ′ = l sinh U, l = ±1 (4c)

(cases (3d), (3e)).
Here N1 and N2 are natural numbers depending on the value of the space dimen-

sion n.
When N1 �= 0 and N2 �= 0 eqs.(4a) and (4b) cannot be solved in explicit form.

Taking l = 1 we have from (4c)

w =
∫

du√
2 cosh U + C

,

C is an arbitrary constant. The solutions of eq.(1) are found by in inversion of elliptic
integrals [8]:

U = 2 tgh−1{sn (z, k)}, z =
√

C + 2
2

ω, k2 =
C − 2
C + 2

, C > 2, (5a)

U = 2 tgh−1{sin z}, z =
√

2ω, C = 2. (5b)

Writing the integration constant in the form

w =
∫

du√
2 cosh U − C

we have analogously

U = cosh−1 2 − C sn2(ω, k)
2 cn2(ω, k)

, k2 =
C + 2

4
, 0 < C < 2, (5c)

U = cosh−1 C/2 − sn2(z, k)
cn2(z, k)

, z =
√

C + 2
2

ω, k2 =
4

C + 2
, C > 2, (5d)

U = 4 tgh−1 exp[ω], C = 2, (5e)

U = cosh−1{cn (ω, k)}−1, C = 0, k2 =
1
2
. (5f)

When l = −1 we have the solution

U = cosh−1

{
C

2
cn2(z, k) + sn2(z, k)

}
,

z =
√

C + 2
2

ω, k2 =
C − 2
C + 2

, C > 2.

(5g)

Here sn z and cn z are Jacobi elliptic functions.
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We add that in ref. [6, 7] the same way some solutions of the many-dimensional
equation �U = sin U are found. In [9] the solutions of this equation were obtained by
symmetry reduction.
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