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On some exact solutions
of the nonlinear Dirac equation

W.I. FUSHCHYCH, W.M. SHTELEN

Multiparametrical exact solutions of the nonlinear Dirac equation are found within the
framework of the group-theoretical approach. A procedure for generating new solutions
from known ones is presented. The solutions obtained are analytic in the coupling
constant, vanishing at infinity and describe the oscillations with the corresponding
solutions of the equation without self-interaction as amplitude.

1. Introduction
In this paper the multiparametrical exact solutions of nonlinear Dirac equations

are obtained with the help of the group-theoretical approach. The equations have the
form:

[
iγµ∂/∂xµ −m− λ(ψ̄(x)ψ(x))k

]
ψ(x) = 0, (1)

[
iγµ∂/∂xµ − λ(ψ̄(x)ψ(x))k

]
ψ(x) = 0, (2)

where γ are 4 × 4 Dirac matrices (see, for example, Bjorken and Drell [1]), µ, ν =
0, 1, 2, 3, m �= 0, k, λ are arbitrary real constants. We use the summation convention
for repeated indices.

It is worthwhile to distinguish equations (1) with m �= 0 from (2) because of their
considerable different symmetry properties.

In order to find the exact solutions, we exploit the fact that equation (1) is invariant
under the Poincaré group P (1, 3), equation (2) is invariant under the Weyl group
W (1, 3) = {P (1, 3),D} when k �= 1

3 and under the conformal group C(1, 3) when
k = 1

3 . We also show how to draw new families of solutions from known ones.
Fushchych [3] has obtained multiparametrical exact solutions of many-dimensional

nonlinear scalar sine-Gordon, Liouville, Hamilton–Jacobi, eikonal, Born–Infeld (Fu-
shchych and Serow [5]), Schrödinger (Fushchych and Moskaliuk [4]) equations by the
method recently proposed (Fushchych [3]). Here we slightly generalise this method
to fit it for the system of partial differential equations.

2. The method
Let Q be an infinitesimal operator of local transformations admitted by equations

(1) or (2). The general form of such an operator is

Q = ξµ(x)∂µ + η(x), (3)

where ξµ(x) are scalar functions of x, η(x) denotes the 4 × 4 matrix depending on x
and ∂µ ≡ ∂/∂xµ.

The operator Q gives the possibility to find exact solutions of equations (1) or (2)
in such a manner.
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For the solutions to be found we adopt the ansatz suggested by Fushchych [3]

ψ(x) = A(x)ϕ(ω), (4)

where the nonsingular 4 × 4 matrix A(x) can be defined from the equation

QA(x) ≡ (ξµ(x)∂µ + η(x))A(x) = 0, (5)

ω are invariants of the differential part of the operatorQ, i.e. functions satisfying

ξµ(∂ω/∂xµ) = 0 (6)

or the equivalent Lagrange–Euler system

dx0

ξ0(x)
=

dx1

ξ1(x)
=

dx2

ξ2(x)
=

dx3

ξ3(x)
def= dτ. (7)

ϕ(ω) is the new unknown four-component spinor field depending on new variables ω,
the number of which is one less than the number of variables x.

When A(x) and ω are known, then the substitution of expression A(x)ϕ(ω) in
place of ψ(x) in equations (1) and (2) leads to a system of differential equations for
ϕ(ω) which is often rather easy to solve.

Another procedure for determining the ansatz (4) explicitly is to solve, besides
equation (7), the following system of ordinary differential equations

dψ/dτ = −η(x(τ))ψ. (8)

If we insert in the general solution of this system, the value τ defined from (7), and
consider constants of integration as functions of ω then we shall obtain the ansatz
(4) possessing the properties (5) and (6). Let us discuss the procedure of generating
new solutions from known ones.

The general form of transformations generated by operator Q (3) is

x→ x′ = f(x, θ), ψ(x) → ψ′(x′) = R(x, θ)ψ(x), (9)

where R(x, θ) is a 4 × 4 matrix, θ is a parameter of transformations. Formula (9)
implies that

ψnew(x) = R−1(x, θ)ψold(x′) (10)

will be a solution of the equation which admits operator Q as well as ψold (R−1(x, θ)
denotes the inverse matrix).

Remark. Equation (5) is the consequence of the following obvious condition: the
solutions having the form (4) do not produce new solutions by virtue of the procedure
stated above when transformations (9) are generated by the same operator Q (3).
Indeed, we have according to (4) and (10)

R−1(x, θ)A(x′)ϕ(ω′) = A(x)ϕ(ω). (11)

ω′ = ω because ω are invariants of the operator Q:

A(x′) = A(x) + θξµ(x)(∂A(x)/∂xµ) + · · · , (12)

R(x, θ) = I − θη(x) + · · · . (13)
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If we substitute (12) and (13) into (11) and retain terms linear in θ then we obtain (5).
It is clear now that it is the form of transformations (9) that leads to the

ansatz (4).

3. The solutions
First of all we give an example of a conformally invariant solution to the Di-

rac equation (2) with Gursey [6] nonlinearity k = 1
3 which ensures the conformal

invariance of the equation. This solution has the form

ψ(x) =
γx

(xνxν)2
exp[iλκ(γβ)ω)]χ ≡

≡ γx

(xνxν)2

(
cos(λκβω) + i

γβ

β
sin(λκβω)

)
χ,

(14)

where ω = βx/xνx
ν , βν are arbitrary real constants, β ≡ (βνβ

ν)1/2 > 0. χ denotes a
space-time independent spinor,

χ̄χ = a = constant, κ = a1/3/βνβν , βx ≡ βνxν , etc.

The solution (14) was sought for in the form

ψ(x) =
[
γx/(xνx

ν)2
]
ϕ(ω), ω = βx/xνx

ν (15)

obtained with the help of the conformal transformation operator

Qconf = cµkµ = 2(cx)x∂ − x2c∂ + (γcγx+ 2cx),
Qconf

[
γx/(xνx

ν)2
] ≡ 0,

[
2(cx)x∂ − x2c∂

]
ω = 0,

ω = βx/xνx
ν , βc = 0,

(16)

where cµ are arbitrary real constants, x2 ≡ xνx
ν , x∂ = xν(∂/∂xν), cx = cνxν . After

the substitution of the expression (15) into equation (2) with k = 1
3 it implies that

ϕ(ω) must satisfy the following system of nonlinear ordinary differential equations

dϕ/dω = i(λ/βνβ
ν)(ϕ̄ϕ)1/3(γβ)ϕ

for which it is easy to obtain the general solution

ϕ = exp[iλκ(γβ)ω]χ ≡ [cos(λκβω) + i(γβ/β) sin(λκβω)]χ

and then (14).
It will be noted that the solution (14) is analytic in the coupling constant λ,

in contrast to the solution obtained by Merwe [8] with the help of the Heisenberg
ansatz [7]. Besides that

ψ̄(x)ψ(x) = a/(xνx
ν)3,

i.e. ψ̄ψ dies off very fast when xνx
ν → ∞. It is also noteworthy that such a solution is

easy to generalise to the case of n spatial variables, the conformally invariant equation
being

[
iγ∂ − λ(ψ̄(x)ψ(x))1/n

]
ψ(x) = 0,
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and the solution takes the form

ψ(x) =
γx

(xνxν)(n+1)/2
exp[iλκ(γβ)ω]χ, ν = 0, 1, . . . , n

(here γ-matrices have appropriate structure (see e.g. Boerner [2]). Using straight-
forward calculations one can make sure that the functions (18), stated below, satisfies
equation (1) as well as equation (2) if m = 0. This solution has been obtained by
virtue of operator QL which is a linear combination of the Lorentz rotation generators

QL = θaJ0a, a = 1, 2, 3,

J0a = x0∂a + xa∂0 − 1
2
γ0γa,

(17)

ψ = A(x)ϕ(ω),

A(x) =




θ3
θ
s+ −θ−

θ
s− −θ3

θ

1
s+

θ−
θ

1
s−

θ+
θ
s+

θ3
θ
s− −θ+

θ

1
s+

−θ3
θ

1
s−

s+ 0
1
s+

0

0 s− 0
1
s−




,

ϕ(ω) =




ω−1/2[F0 cos(α+ α0) + iG0 sin(α+ α0)]

ω−1/2[F1 cos(α+ α1) + iG1 sin(α+ α1)]
−[G0 cos(α+ α0) + iF0 sin(α+ α0)]
−[G1 cos(α+ α1) + iF1 sin(α+ α1)]


 ,

(18)

where θ = {θ1, θ2, θ3}, α0, α1, F0, F1, G0, G1, c = 4(F0G0 +F1G1) > 0 are arbitrary
real constants:

ω = (θx0)2 − (θ · x)2, s± = (θx0 ± θ · x)1/2,

θ± = θ1 ± iθ2, θ =
(
θ21 + θ22 + θ23

)1/2
,

α =
λck

θ(k − 1)
ω(1−k)/2 − m

θ

√
ω, k �= 1,

α = −λc
2θ

lnω − m

θ

√
ω, k = 1.

(19)

This solution is also analytic in the coupling constant λ and in the mass term, and

ψ̄(x)ψ(x) =
c√
ω

=
4(F0G0 + F1G1)

[(θx0)2 − (θ · x)2]1/2
, (20)

i.e. ψ̄ψ dies off when xνx
ν → ∞.

The next solution has been obtained by means of the operator

QLD = QL + κD, κ = constant,

D = xν∂ν − 1/2k
(21)

which is admitted only by equation (2) and not by equation (1). We found an explicit
solution in the case k = 1 in such a form
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ψ(x) = A(x)ϕ(ω),

A(x) =




−θ3
θ
eλ−s −θ−

θ
eλ−s θ3

θ
eλ+s θ−

θ
eλ+s

−θ+
θ
eλ−s θ3

θ
eλ−s θ+

θ
eλ+s −θ3

θ
eλ+s

eλ−s 0 eλ+s 0

0 eλ−s 0 eλ+s



,

ϕ(ω) =




G0ω
iβ + F0ω

−iβ

G1ω
iβ + F1ω

−iβ

ω−1/2

(
θ + κ

θ − κ

)1/2 (
G0ω

iβ − F0ω
−iβ

)

ω−1/2

(
θ + κ

θ − κ

)1/2 (
G1ω

iβ − F1ω
−iβ

)



,

(22)

where θ = {θ1, θ2, θ3}, κ are arbitrary real constants and F0, F1, G0, G1 are complex
ones:

θ± = θ1 ± iθ2, θ =
(
θ21 + θ22 + θ33

)1/2
,

ω = (θx0 − θ · x)(θx0 + θ · x)(θ−κ)/(θ+κ), s = ln(θx0 + θ · x)/θ + κ,

β =
λc1
2θ

(
θ + κ

θ − κ

)1/2

, λ± =
−κ ± θ

2
, θ > κ,

c1 = 4
(
θ + κ

θ − κ

)1/2

(F ∗
0 F0 + F ∗

1 F1 −G∗
0G0 −G∗

1G1).

(23)

This solution is also analytic in the coupling constant and

ψ̄(x)ψ(x) = c1/
[
(θx0)2 − (θ · x)2

]1/2
, (24)

i.e. ψ̄ψ dies off as was previously the case (see (20)).
When k �= 1 some particular exact solutions of equation (2) analogous to those

given in (22) are provided by the ansatz (4) with A(x) and ϕ(ω) having the form:

A(x) =




−θ3
θ
eµ−s −θ−

θ
eµ−s θ3

θ
eµ+s θ−

θ
eµ+s

−θ+
θ
eµ−s θ3

θ
eµ−s θ+

θ
eµ+s −θ3

θ
eµ+s

eµ−s 0 eµ+s 0

0 eµ−s 0 eµ+s



,

ϕ(ω) =




ϕ0(ω)
ϕ1(ω)

ωµ+/(κ−θ)ϕ2(ω)

ωµ+/(κ−θ)ϕ3(ω)


 ,

(25)
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where ϕ0, ϕ1, ϕ2, ϕ3 are defined from the following system of ordinary differential
equations

ϕ∗
0ϕ2 + ϕ0ϕ

∗
2 + ϕ∗

1ϕ3 + ϕ1ϕ
∗
3 = −1

2
c2 = constant,

dϕ0

dω
=
iλ

2θ
ck2ω

µ+(k+1)/(κ−θ)ϕ2(ω),

dϕ2

dω
=
iλ

2θ
ck2ω

[µ+(k−1)/(κ−θ)]−1 θ + κ

θ − κ

ϕ0(ω),

dϕ1

dω
=
iλ

2θ
ck2ω

µ+(k+1)/(κ−θ)ϕ3(ω),

dϕ3

dω
=
iλ

2θ
θ + κ

θ − κ

ck2ω
[µ+(k−1)/(κ−θ)]−1ϕ1(ω),

(26)

µ± = (−κ± θk)/2k, c2 is an arbitrary real constant, and s, ω, θ± and θ3θ are defined
in (23).

Below we present the explicit form of transformations admitted by equations
(1) or (2). They can be used to generate new exact solutions of the equations in
accordance with the formula (10).

The conformal transformations

x′µ =
(
xµ − cµx

2
)
/σ(x), σ(x) ≡ 1 − 2cx+ c2x2,

ψ′(x′) = Rconfψ(x) = σ(x)(1 − γcγx)ψ(x), R−
conf = σ−2(x)(1 − γxγc).

(27)

The transformation dilatation

x′µ = eαxµ, ψ′(x′) = RDψ(x) = e−α/2kψ(x), R−1
D = eα/2k. (28)

The transformations of rotations

x′0 = x0, x′ = x cos δ +
x × δ

δ
sin δ +

δ(δ · x)
δ2

(1 − cos δ),

ψ′(x′) = Rrotψ(x) =
(

cos
1
2
δ +

i

δ
(Σ · δ) sin

1
2
δ

)
ψ(x),

Rrot = cos
1
2
δ − i

δ
(Σ · δ) sin

1
2
δ,

(29)

where δ = (δ1, δ2, δ3), δ =
(
δ21 + δ22 + δ23

)1/2
, Σ = σ0 × σ, σ = {σ1, σ2, σ3} are Pauli

matrices, σ0 is the identity 2 × 2 matrix.
The Lorentz transformations

x′0 = x0 cosh θ1 − x1 sinh θ1,
x′1 = x1 cosh θ1 − x0 sinh θ1,

ψ′(x′) = RL1ψ(x) =
(

cosh
1
2
θ1 + γ0γ1 sinh

1
2
θ1

)
ψ(x),

R−1
L1

= cosh
1
2
θ1 − γ0γ1 sinh

1
2
θ1.

(30)

The rest of the Lorentz transformations are analogous to those given above.
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The transformations of displacements

x′µ = xµ + aµ, ψ′(x′) = ψ(x). (31)

In formulae (26)–(31) cµ, α, δa, θa, aµ are arbitrary real constants.
In conclusion we would like to give a simple example of the transformation of

the well known plane-wave solution of the free massless Dirac equation into the new
solution using formulae (10) and (27).

ψpw(x) = exp(ikx)χ, k2 ≡ kµk
µ = 0,

χ is a space-time independent spinor, χ̄χ = constant:

ψpw(x) → ψ(x) =
1 − γxγc

σ2(x)
exp

{
ikµ

[(
xµ − cµx

2
)
/σ(x)

]}
χ, kµk

µ = 0.

It is easy to verify that it is a solution of the free massless Dirac equation but it is
no longer a plane-wave solution because of the nonlinear character of the conformal
transformations. Moreover,

ψ̄(x)ψ(x) = χ̄χ/σ3(x) ≡ constant/
(
1 − 2cx+ c2x2

)3

and dies off very fast when x2 ≡ xνx
ν → ∞ while

ψ̄pw(x)ψpw(x) = χ̄χ = constant.
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