Симметрия и некоторые точные решения многомерного уравнения Монжа-Ампера

В.И. ФУЩИЧ, Н.И. СЕРОВ

При решении многомерной проблемы Минковского А.В. Погорелов пришел к естественному обобщению классического уравнения Монжа-Ампера (МА) для двух переменных на случай n переменных (см. [1])

$$|u_{\mu\nu}| = 0,\tag{1}$$

где $|u_{\mu\nu}|$ — определитель из вторых производных $u_{\mu\nu}=\frac{\partial^2 u}{\partial x_\mu \partial x_\nu}, \; \mu,\nu=0,1,\ldots,$ $n-1,\; u=u(x),\; x=(x_0,x_1,\ldots,x_{n-1}).$

Ниже будет показано, что уравнение MA обладает уникальными симметрийными свойствами, которые не присущи линейным дифференциальным уравнениям. Это свойство дает возможность, используя теоретико-алгебраические идеи [2], построить классы точных решений уравнения (1) и получить формулу "размножения" решений.

1. Симметрия уравнения **МА.** Методом С. Ли [3] можно доказать следующее утверждение.

Теорема 1. Уравнение (1) инвариантно относительно группы $\{JGL(n+1,R), C(n+1)\}$, базисные элементы алгебры Ли которой имеют вид

$$p_A = ig^{AB} \frac{\partial}{\partial x_B}, \qquad L_{AB} = x_A p_B, \qquad A, B = 0, 1, \dots, n,$$

$$K_A = x_a D, \qquad D = ig^{AB} x_A \frac{\partial}{\partial x_B}, \qquad x_n \equiv u,$$
(2)

где g^{AB} — метрический тензор в (n+1)-мерном пространстве, JGL(n+1,R) — группа линейных неоднородных преобразований пространства R_{n+1} , C(n+1) — конформная группа в R_{n+1} .

Замечание 1. Уравнение (1) при n=1 совпадает с уравнением Ньютона

$$u_{00} = 0,$$
 (3)

групповые свойства которого полностью изучил еще С. Ли [6]. Алгебра (2) при n=1 совпадает с 8-мерной алгеброй, построенной С. Ли для уравнения (3). Групповые свойства уравнения Монжа-Ампера для двух переменных изучены Овсянниковым [3].

2. Точные решения уравнения (1). Решения уравнения МА, следуя [2], ищем в виде

$$u = f(x)\varphi(\omega) + g(x), \tag{4}$$

Доклады академии наук СССР, 1983, **273**, № 3, С. 543–546.

где $\varphi(\omega)$ — неизвестная функция, зависящая от n-1 инвариантных переменных $\omega=\omega(x)=\{\omega_1(x),\omega_2(x),\ldots,\omega_{n-1}(x)\},$ а $f(x),\ g(x)$ — некоторые заданные функции.

В том частном случае, когда $f(x)=1,\ g(x)=0,\ \omega(x)=\omega_1(x),\$ уравнение (1) редуцируется к линейному обыкновенному дифференциальному уравнению (ОДУ) для функции φ с переменными коэффициентами

$$M(\omega)\varphi'' + N(\omega)\varphi' = 0, (5)$$

где $N(\omega)=|\omega_{\mu\nu}|$, а $M(\omega)$ строится из $N(\omega)$ и представляет собой сумму следующих детерминантов:

$$M(\omega) = \begin{vmatrix} \omega_{0} & \omega_{0} & \omega_{01} & \dots & \omega_{0 \, n-1} \\ \omega_{0} & \omega_{1} & \omega_{11} & \dots & \omega_{1 \, n-1} \\ \dots & \dots & \dots & \dots & \dots \\ \omega_{0} & \omega_{n-1} & \omega_{n-1} & \dots & \omega_{n-1 \, n-1} \end{vmatrix} + \\ \frac{\omega_{00}}{\omega_{01}} & \frac{\omega_{0}}{\omega_{1}} & \frac{\omega_{1}}{\omega_{1}} & \dots & \frac{\omega_{0}}{\omega_{1}} & \dots & \omega_{0} & \frac{\omega_{n-1}}{\omega_{10}} \\ \frac{\omega_{10}}{\omega_{11}} & \frac{\omega_{1}}{\omega_{11}} & \frac{\omega_{10}}{\omega_{11}} & \frac{\omega_{10$$

Рассмотрим в качестве инвариантной переменной и линейную комбинацию переменных x_{μ} , т.е.

$$\omega = \alpha x \equiv a_{\mu} x^{\mu},\tag{7}$$

 $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$ — постоянный вектор. В этом случае, как это следует из (5), получаем решение

$$u = \varphi(\omega), \qquad \omega = \alpha x,$$
 (8)

где φ — произвольная функция из C^2 . Обобщая (8), можно построить следующие решения уравнения (1):

$$u = \varphi(\omega_1, \omega_2, \dots, \omega_{n-1}), \tag{9}$$

где $\omega_k=\alpha_{\nu}^kx^{\nu},\ \alpha^k=(\alpha_0^k,\alpha_1^k,\dots,\alpha_{n-1}^k)$ — произвольные постоянные векторы, $k=1,2,\dots,n-1.$

Рассмотрим в качестве инвариантной переменной $\omega = x^2 \equiv x_\mu x^\mu$. В этом случае

$$M(\omega) = 2^{n+1}\omega, \qquad N(\omega) = 2^n.$$

Уравнение (5) имеет вид

$$2\omega\varphi'' + \varphi' = 0, (10)$$

общим решением которого является функция

$$\varphi = c_1 \sqrt{\omega} + c_2. \tag{11}$$

В неявном виде решения (1) можно записать так:

$$u^2 - x^2 = 0.$$

Приведем еще несколько семейств решений уравнения (1) в явном и неявном виде:

$$u = (\alpha x)^2 - \alpha^2 x^2; \tag{12}$$

$$u = \frac{x^2}{\alpha x},\tag{13}$$

при этом $M(\omega) \neq 0$, $N(\omega) = 0$;

$$u^{2} = x_{\nu}x^{\nu} - c(\alpha_{\nu}x^{\nu} - \alpha_{n}u)^{2},\tag{14}$$

где $c, \alpha_{\nu}, \alpha_{n} = \text{const};$

$$\alpha_{\nu}x^{\nu} - \alpha_{n}u = \varphi(\beta_{\nu}x^{\nu} - \beta_{n}u), \tag{15}$$

 $\varphi \in C^2$, β — произвольная постоянная.

3. Размножение решений. Линейные и нелинейные уравнения, инвариантные относительно нетривиальных групп преобразований $x'=f_1(x,u,a),\ u'=f_2(x,u,a),\ a$ — параметры группы, обладают важным свойством: если u=h(x) является решением уравнения (1), то новое решение уравнения (1) находится из функционального уравнения

$$f_2(x, u, a) = h(f_1(x, u, a)).$$
 (16)

Явные формулы типа (16) для уравнений Гамильтона-Якоби, Дирака приведены в [2, 4].

Воспользовавшись формулой (16) и инвариантностью уравнения (1), например, относительно конформных преобразований

$$x'_{\mu} = \sigma^{-1}(x, u)x_{\mu}, \qquad \mu = 0, 1, \dots, n - 1,$$

 $u' = \sigma^{-1}(x, u)u,$

где

$$\sigma(x, u) = 1 + b_{\mu}x^{\mu} - b_{n}u,$$

получаем

$$\sigma^{-1}(x,u)u = h\left(\sigma^{-1}(x,u)x\right). \tag{17}$$

Если $b_n = 0$, то u можно явно определить:

$$u = \sigma(x)h\left(\sigma^{-1}(x)x\right), \qquad \sigma(x) = 1 + b_{\mu}x^{\mu}.$$

Из формулы (17) следует, что функции

$$u = \sigma(x, u)\varphi\left(\sigma^{-1}(x, u)\omega_1, \sigma^{-1}(x, u)\omega_2, \dots, \sigma^{-1}(x, u)\omega_{n-1}\right),$$

$$u = \sigma^{-1}(x, u)\left\{(\alpha x)^2 - \alpha^2 x^2\right\}$$

будут решениями уравнения (1).

В заключение рассмотрим следующее нелинейное обобщение уравнения (1):

$$|u_{\mu\nu}| = F(x, u),\tag{18}$$

F — произвольная функция x, u. Оказывается, что среди множества уравнений вида (18), уравнение MA инвариантно относительно алгебры (2), т.е. справедлива

Теорема 2. Для того чтобы уравнение (18) было инвариантно относительно алгебры (2), необходимо и достаточно, чтобы $F(x,u) \equiv 0$.

Если рассмотреть подалгебру алгебры (2)

$$p_{\mu} = ig^{\mu\nu} \frac{\partial}{\partial x_{\nu}}, \qquad L_{\mu\nu} = x_{\mu}p_{\nu},$$
 $K_{\mu} = x_{\mu}D, \qquad D = x_{\nu}p^{\nu}, \qquad \mu, \nu = 0, 1, \dots, n-1,$
(19)

то, кроме уравнения MA, инвариантного относительно алгебры (19), существует еще одно уравнение, т.е. имеет место

Теорема 3. Для того чтобы уравнение (18) было инвариантно относительно алгебры (19), необходимо и достаточно, чтобы

$$F(x,u) = \lambda u^{-(n+2)}, \qquad \lambda = \text{const.}$$

Если же рассмотреть подалгебру алгебры (2)

$$p_A = ig^{AB} \frac{\partial}{\partial x_B}, \qquad J_{AB} = x_A p_B - x_B p_A,$$

$$D = x_A p_A, \qquad A, B = 0, 1, \dots, n,$$
(20)

то имеет место

Теорема 4. Максимальной алгеброй инвариантности уравнения

$$\lambda_1 \left[\Box u (1 - u_{\nu} u^{\nu}) + u_{\mu\nu} u^{\mu} u^{\nu} \right]^{(n+4)/3} + \lambda_2 \left[(1 - u_{\nu} u^{\nu}) |u_{\mu\nu}| \right] = 0 \tag{21}$$

при $\lambda_1\lambda_2\neq 0$ является алгебра (20).

Заметим, что при $\lambda_2=0$ (21) является многомерным аналогом уравнения Борна–Инфельда, а при $\lambda_1=0$ уравнение (21) распадается на два уравнения эйконала и MA.

Теоремы 2–4 доказываются методом С. Ли [3]. Вопрос о линеаризации уравнений Монжа-Ампера-Борна-Инфельда и некоторых других рассмотрен в [5].

- 1. Погорелов А.В., Многомерная проблема Минковского, М., 1975.
- Фущич В.И., В кн.: Теоретико-алгебраические исследования в математической физике, Киев, 1981, 5-28.
- 3. Овсянников Л.В., Групповой анализ дифференциальных уравнений, М., 1978.
- Fushchych W.I., Shtelen W.M., J. Phys. A, 1983, 16, № 2, 271; Lett. Nuovo Cim., 1982, 34, № 16, 498.
- Фущич В.И., Тычинин В.А., О линеаризации некоторых нелинейных уравнений с помощью нелокальных преобразований, Препринт № 33, Киев, Ин-т математики АН УССР, 1982.
- 6. Lie S., Math. Ann., 1885, 25, № 1, 71–151.