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On the new conservation laws
for vector field equations
W.I. FUSHCHYCH, V.A. VLADIMIROV

The new conservation laws corresponding to the non-Lie symmetry of vector field
equations are obtained.

1. Introduction
The classical Lie method (see e.g. Ovsyannikov [11]) which is commonly used to

investigate the group theoretical properties of differential equations has one essential
disadvantage. Based on the infinitesimal approach, it does not permit one to find
out the maximal Lie algebra available by a given system of differential equations if
among its basic elements there are operators of higher order. A method was proposed
(Fushchych [2]), hereafter quoted as the non-Lie method, in which no restriction is
imposed on the order of operators available, by the systems of differential equation
under consideration.

By means of the non-Lie method additional invariances were established: Dirac
(Fushchych [2]); Maxwell (Fushchych [3]); Kemmer–Duffin–Petiau (Fushchych and
Nikitin [4]) and many other theoretical and mathematical physics equations.

Recently (Fushchych and Vladimirov [5]) within the framework of the non-Lie
(approach, group properties of the equations for the potential of an electromagnetic
field have been investigated:

pµp
µAν(x) = 0, x ∈ R4,

pµAµ(x) = 0, µ, ν = 0, 1, 2, 3,
(1)

where pµ = i∂/∂xµ = igµν∂/∂xν and gµν = gµν the metric tensor of Minkowski
space, g00 = −g11 = −g22 = −g33 = 1.

The maximal invariance algebra of equation (1) generated by first-order differential
operators is the eleven-dimensional Weyl algebra which includes the Poincaré algebra
P (1, 3) and operator D = xµp

µ + 2i. It has been shown recently (Fushchych and
Vladimirov [5]) that equations (1) are additionally invariant under the nine-dimensio-
nal GL(3) algebra with basic elements being integro-differential operators; defined on
the set of solutions by the following formula

(DabA)µ = p0/|p|2(gµ
0 pa − gµ

ap0)Ab,

|p|2 = p2
1 + p2

2 + p2
3, a, b = 1, 2, 3.

(2)

The operators (2) are non-local so there is no such point transformation of independent
variables (xµ): (x′µ) = (Tx)µ, which would give rise to a continuous group represen-
tation generated by Dab on the set of solutions of (1).

The existence of additional symmetry for systems of differential equations which
describe elementary particles is strictly connected with their polarisation properties.
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Thus, there is no additional symmetry in the case of the Klein–Gordon equation
which describes a spin-zero relativistic particle, the additional symmetry algebra of
the Dirac equation is GL(2) ⊕GL(2), and generally the greater the spin, the greater
the dimension of the additional symmetry algebra.

One of the most important consequences of the invariance of the evolution equation
is the existence of integral quantities conserved in time. The purpose of this paper is
to construct new conserved quantities which correspond to the non-Lie symmetry of
vector field equations.

For the equations obtained from variational principles, the correspondence between
local transformation groups which preserve the action integral and conservation laws
is established by the well known Noether theorem. It is obvious that, because of
non-locality of the transformation group generated by the operators (2), the Noether
theorem is of no use in our case. However, there is another method of building up
conserved quantities. Good [6] succeeded in obtaining all classical conserved quanti-
ties for the Maxwell equations without reference to the Noether theorem. Later
O’Connell and Tompkins [8, 9, 10] and several other authors extended this result on
some other Poincaré-invariant equations. Employing the same techniques as in the
above mentioned papers it is possible to construct conserved quantities corresponding
to the non-local additional symmetry of the vector field equations.

In § 2 we perform such a construction for the four-vector potential of the electro-
magnetic field equation. In § 3 analogous conserved quantities are obtained for the
Proca equation. In § 4 we discuss the results obtained.

2. The new conserved quantities for the equations (1)

Theorem 1. Integrals

Sa =
i

2
εabc

∫
{Ab(t,x)p0Ac(t,x)−[p0Ab(t,x)]Ac(t,x)} d3x, a, b, c = 1, 2, 3,(3)

Σjk =
1
2

∫ [
Aj(t,x)p0

(
p0

|p0|Ak

)
(t,x) − [p0Aj(t,x)]

(
p0

|p0|Ak

)
(t,x)+

+Ak(t,x)p0

(
p0

|p0|Aj

)
(t,x) − [p0Ak(t,x)]

(
p0

|p0|Aj

)
(t,x)

]
d3x, j, k = 1, 2, 3,

(4)

are conserved in time.
Proof. Let us consider the following operator:

W = exp

{
(ln

√
2)

[
1 +

(
εkjli

pkSlj

2|p|
)2

]
+
π

4
p0

2|p|2 pn(S0jSjn + SjnS0j)

}
, (5)

where j, k, l, n = 1, 2, 3, Sµν , µ, ν = 0, 1, 2, 3 are the matrices of the D
(

1
2 ,

1
2

)
repre-

sentation of the Lie algebra of the O(1, 3) group*. It can be easily shown that matrix
elements of symbols of this operator and the inverse one are

[W (p)]µν =
(
p0/|p|2

)
(p0g

µ
ν − pµgν0 − gµ

0 pν + 2gµ
0 gν0p0) ,[

W−1(p)
]µ

ν
=

(
1/2|p|2) [

2p2
0(g

µ
ν − gµ

0 gν0) + pµpν

] (6)

*Matrix elements of Sµν have the form

(Sµν)α
β = i(gα

µgνβ − gα
ν gµβ), α, β = 0, 1, 2, 3, µ, ν = 0, 1, 2, 3.
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(for symbols see e.g. Shubin [12]).
Using the operators (5) we are allowed to transform (1) into the equivalent diagonal

form

pµp
µÃ

ν
= 0, p0Ã

0
= 0, µ, ν = 0, 1, 2, 3, (7)

where Ã
ν

= (W−1A)ν . It is not difficult to show that for every Ã
′
, Ã

′′
satisfying

(7) the following equation holds

pµ

[
Ã

′
νp

µÃ
′′ν − (pµÃ

′
ν)Ã

′′ν
]

= 0. (8)

If we restrict ourselves to those solutions Ã
′
, Ã

′′
which tend to zero quickly enough

with their first derivatives when |x| → ∞, then by the Green–Gauss–Ostrogradsky
theorem∫ [

Ã
′
µp0Ã

′′µ − (p0Ã
′
µ)Ã

′′µ
]
d3x = constant. (9)

In canonical representation (equation (7)) basic elements of the symmetry algebra can
be chosen as

(S̃α)µ
ν = −iεabcg

µ
b gνc, a, b, c = 1, 2, 3, µ, ν = 0, 1, 2, 3, (10)

(Σ̃jk)µ
ν = −(gµ

j gνk + gµ
k gνj), j, k = 1, 2, 3, µ, ν = 0, 1, 2, 3. (11)

Setting Ã
′

= W−1A, Ã
′′

= f(p)Q̃αW−1A in (9) where f(p) is a scalar function
and Q̃α belongs to the symmetry algebra of equation (7), we can get∫

{(W−1A)µp0[f(p)Q̃αW−1A]µ−(p0W
−1A)µ[f(p)Q̃αW−1A]µ}d3x = const.(12)

Inserting into the above integral Q̃α = S̃a, a = 1, 2, 3, f(p) = − 1
2 one obtains formu-

la (3). Substitution f(p) = −p0/2|p0|, Q̃α = Σ̃jk, j, k = 1, 2, 3 gives us expression (4).
Now we see that besides such well known conserved quantities for the Ãµ as

energy, momentum etc, integrals (3) and (4) are also independent of time.

Remark 1. Expression (3) represents three components of spin of the real vector
field (see e.g. Bogoliubov and Shirkov [1]). Formula (4) gives us six new conserved
quantities for equation (1) corresponding to the non-Lie (additional) symmetry.

3. The new conserved quantities for the Proca equation
In the paper of Fushchych and Vladimirov [5] the non-Lie symmetry of the Proca

equation was also investigated(
pµp

µ −m2
)
ψν(t,x) = 0, pµψ

µ(t,x) = 0,

(t,x) ∈ R4, m > 0.
(13)

It was shown that equation (13) is also invariant under the nine-dimensional Lie
algebra of the GL(3) group.

Theorem 2. Integrals

Sa = iεabc

∫
[ψ∗

bp0ψc − (p0ψ
∗
b )ψc] d3x, a, b, c = 1, 2, 3, (14)
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Σjk =
∫ [

ψ∗
j (t,x)p0

(
p0

|p0|ψk

)
(t,x) − [p0ψ

∗
j (t,x)]

(
p0

|p0|ψk

)
(t,x)+

+ψ∗
k(t,x)p0

(
p0

|p0|ψj

)
(t,x) − [p0ψ

∗
k(t,x)]

(
p0

|p0|ψj

)
(t,x)

]
d3x, j, k = 1, 2, 3,

(15)

are conserved in time.
The proof of this theorem is not different from that of the previous one. To

diagonalise (13) we can use operators U , U−1 with symbols

[U(p)]µν = (1/p0) (p0g
µ
ν − gµ

0 pν − pµg0ν + 2gµ
0 gν0p0) ,[

U−1(p)
]µ

ν
=

[
1/

(
p2
0 + |p|2)] [(

p2
0 + |p|2) (gµ

ν − gµ
0 gν0) + pµpν

]
.

(16)

Remark 2. Integrals (14) express spin components of the complex vector field (Bo-
goliubov and Shirkov [1]).

4. Conclusions
We have obtained the conserved quantities corresponding to non-Lie symmetry of

equations (1) and (13) without reference to the Noether theorem. It is worth noting
that classical conserved quantities for vector fields such as energy, momentum etc
can also be obtained in this way by substitution of generators of Weyl (Poincaré)
symmetry algebras into (9).

As has already been mentioned, integrals (3) and (14) are attributed to the spin
of the classical vector fields. Conservation of (3) and (14) along with total angular
momentum was obtained as a consequence of symmetry of the energy-momentum
tensor for vector fields, namely Tµν = Tνµ (see e.g. Bogoliubov and Shirkov [1]).
Generally this is not true and such conserved quantities connected in fact with non-
Lie symmetry could not be obtained using the Noether theorem.

The natural question is what physical interpretation can be proposed for the new
conserved quantities. It is well known that by substitution

Ek = − [(
∂A0/∂x

k
)

+
(
∂Ak/∂x

0
)]
, Hk = εkjr(∂/∂xj)Ar, k, j, r = 1, 2, 3,

the energy and momentum integrals for Aµ can be expressed in terms of E and H
which satisfy the Maxwell equations. As for the integrals (3) and (4), their explicit
dependence on the Aµ could not be eliminated by similar substitution, therefore any
interpretation in terms of measurable classical quantities is hardly possible. Never-
theless the interpretation of (3), (4) and (14) and (15) is possible in terms of quantum
field theory.

In conclusion we want to say a few words about the independence of the integrals
obtained. There exist several non-equivalent definitions of the independence of conser-
ved quantities. According to Ibragirnov [7] a set of conserved quantities (Fi)N

i=1,

Fi =
∫
fi(t, x1, . . . , xk) dkx

is independent if functions fi are linearly independent. Following this definition it is
not difficult to show that classical conserved quantities pµ, Jµν(D) and new conserved
quantities (3), (4), (14) and (15) are independent.
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