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The symmetry and some exact solutions
of the relativistic eikonal equation
W.I. FUSHCHYCH, W.M. SHTELEN

We discuss the symmetry group of the relativistic eikonal equation. It is found to be
the conformal group C1,4 of the (4 + 1)-dimensional Poincaré–Minkowski space. Some
exact multiparametrical solutions of the equation are obtained.

Introduction
The relativistic eikonal or the relativistic Hamilton–Jacobi equation
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is a fundamental one in theoretical physics.
Without loss of generality we shall put m = 1 and consider the equation
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In the study of partial differential equations one often gains deep insight by stu-
dying the symmetry of the equation both from the point of view of its physical
interpretation and from being able to find exact solutions and to generate new solu-
tions from known ones.

In this note we have shown that the maximally extensive local (in sense of Lie)
invariance group of eq. (2) is the conformal group C1,4 of the (4 + 1)-dimensional
Poincaré-Minkowski space with the metric

s2 = xAxA = gABxAxB = x2
0 − x2

1 − x2
2 − x2

3 − u2, (3)

where A,B = 0, 1, . . . , 4; x4 = u; gAB = gAB = {1,−1,−1,−1,−1}δAB , δAB is the
Kronecker delta.

Some exact multiparametrical solutions of eq. (2) are obtained with the help of
the method recently proposed [1]. A procedure of generating new exact solutions from
known ones is presented.

The symmetry group

Theorem. The maximally extensive local invariance group of eq. (2) is the 21-para-
metrical Lie group, basis elements of its Lie algebra having the form

P0 =
∂

∂x0
, Pa = − ∂

∂xa
, P4 = − ∂

∂u
, a, b = 1, 2, 3,

Jµν = xµPν − xνPµ, µ, ν = 0, 1, 2, 3,

J04 = x0P4 − uP0, Ja4 = xaP4 − uPa,

D = xAPA ≡ x0P0 − x1P1 − x2P2 − x3P3 − uP4,

Kµ = 2xµD − xBxBPµ, xBxB ≡ x2
0 − x2

1 − x3
3 − u2,

K4 = 2uD − xBxBP4,

(4)
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and satisfying commutation rules of the conformal algebra C1,4

[PA, PB ] = 0, [PA, JBC ] = gABPC − gACPA,

[JAB , JCD] = gBCJAD + gADJBC − gACJBD − gBDJAC , [PA,D] = PA,

[JAB ,D] = 0, [PA,KB ] = 2(gABD − JAB), [D,KA] = KA,

[JAB ,KC ] = gBCKA − gACKB , [KA,KB ] = 0, A,B,C,D = 0, 1, . . . , 4.

(5)

One can get the proof of this theorem living Lie’s method [2]. This being the case,
one has to solve the set of first-order coupled partial differential equations:
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which can be integrated in a straightforward manner to obtain the infinitesimal
transformations ξµ and η and then, from the formula

Q = ξµ(x, u)
∂

∂xµ
+ η(x, u)

∂

∂u
, (7)

the vector fields (4).
It is emphasized that because u is a dependent variable, the nonlinear represen-

tation of the conformal group C1,4 is realized on the manifold of the solutions of
eq. (2). Let us remind that the Klein–Gordon equation with m �= 0 is invariant under
the Poincaré group A1,3 ⊂ C1,3 ⊂ C1,4 only; the massless Klein–Gordon equation is
invariant under the conformal group C1,3. In both cases one has usual (linear) group
representations as contrasted with the case of eq. (2).

The finite group transformations
Below we present the finite transformations generated by the operators (4), which

can be obtained by direct integration of corresponding Lie equations:

Pµ : x′
µ = xµ + aµ, u′(x′) = u(x), µ = 0, 1, 2, 3,

P4 : x′
µ = xµ, u′(x′) = u(x) + a4,

(8)

Jab : x′
0 = x0, u′(x′) = u(x),

x′ = x cos α +
x × α

α
sin α +

α · (α · x)
α2

(1 − cos α),

x ≡ (x1, x2, x3), α ≡ (α1, α2, α3), α ≡ (
α2

1 + α2
2 + α2

3

)1/2
,

(9)

Ja4 : x′
0 = x0, x′

a = xa cos βa − u(x) sin βa,

x′
b = xb, x′

c = xc, a �= b �= c, a, b, c = 1, 2, 3,

u′(x′) = u(x) cos βa + xa sin βa,

(10)

J0a : x′
0 = x0 cosh θa + xa sinh θa, x′

a = xa cosh θa + x0 sinh θa,

x′
b = xb, x′

c = xc, a �= b �= c, a, b, c = 1, 2, 3,

u′(x′) = u(x),
(11)
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J04 : x′
0 = x0 cosh θ4 + u(x) sinh θ4, x′

a = xa, a = 1, 2, 3,

u′(x′) = u(x) cosh θ4 + x0 sinh θ4,
(12)

D : x′
µ = eκxµ, u′(x′) = eκu(x), µ = 0, 1, 2, 3, (13)
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,
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)
1 − 2Cνxν + 2C4u(x) + CACA (x2 − u2(x))

,

x2 ≡ xµxµ = x2
0 − x2

1 − x2
2 − x2

3,

CACA ≡ C2
0 − C2

1 − C2
2 − C2

3 − C2
4 , A = 0, 1, 2, 3, 4,

(14)

where aµ, a4, αa, βa, θa, θ4, κ, CA are arbitrary real constants.
Contrary to the usual (linear with respect to the dependent function) transforma-

tions hare we have the nonlinear ones. Hence it is the nonlinear representation of
the conformal group C1,4, previously mentioned.

Some exact solutions of the equation
One can make sure by the straightforward calculations that the following functions

satisfy eq. (2):

u(x) = F (ανxν) + βνxν , ανxν = ανβν = 0, βνβν = 1, (15)

where F is an arbitrary differentiable function;

u(x) =
[
(ανxν)2 + xνxν

]1/2
, αναν = −1, (16)

u(x) =
[
x2

0 − (α · x)2
]1/2

, α · α = 1, (17)

u(x) = (xνxν)1/2 ≡ (
x2

0 − x2
)1/2

, (18)

where αν , βν are arbitrary real constants satisfying the mentioned conditions.
Equation (2) is invariant under the transformations

x → x′ = f(x, u(x), {θ}), u(x) → u′(x′) = g(x, u(x), {θ}), (19)

where {θ} are parameters of transformations; the functions f and g are defined by
(8)–(14). It is obvious that if u(x) = ϕ(x) is a solution of eq. (2), then the new
solutions can be obtained from the functional equation

g(x, unew(x), {θ}) = ϕ (x′ = f(x, unew(x), {θ})) . (20)

For example, the functions

u(x) =
−1 ± [1 + 4A(Axνxν + βνxν)]1/2

2A
,

A ≡ C4 − βνCν �= 0, βνβν = 1,

(21)
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u(x) =
C4 ±

[
C2

4 + CACA(1 − 2Cνxν + CACAxνxν)
]1/2

CACA
,

CACA = C2
0 − C2

1 − C2
2 − C2

3 − C2
4 �= 0

(22)

are obtained from (16) with F = 0 and (18), respectively, by means of eqs. (14)
and (20).

Formulae (21), (7) imply that the function

u(x) = (2A)−1[1 + 4A(Axνxν + βνxν)]1/2, (23)

where βνβν = 1, A �= 0 and are arbitrary real constants, satisfies eq. 2.
Upon application of (20) and (12) to (23), we have another solution of eq. (2):

u(x) = (2A)−1β0 sinh θ4 ±
[(

β0 sinh θ4

2A

)2

+
(

1
2A

)2

+ xνxν+

+
1
A

(β0x0 cosh θ4 − β · x)
]

, A �= 0, βνβν = 1.

(24)

It is obvious that one can use the rest of finite group transformations to generate
more exact solutions of eq. (2).

Remarks
Firstly, it id important to note that what has been said about the symmetry of eq.

(2) holds true for the equation

∂u

∂x0
±

(
∂u

∂xa

∂u

∂xa
+ m2

)1/2

= 0

recently proposed [1] as the most natural relativistic generalization of the Hamilton–
Jacobi equation.

Secondly, the symmetry group of eq. (1) with m = 0 turns out to be an infinite-
dimensional one because of the arbitrary dependence of ξµ and η from (7) on u.
The arbitrary dependence of η on u implies that the arbitrary differentiable function
F (u(x)) will be a solution of eq. (1) with m = 0 as well as u(x). The contrary is the
case m �= 0.
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