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On the new symmetries of Maxwell equations
W.I. FUSHCHYCH, A.G. NIKITIN

The known symmetries of the Maxwell equations are summarized. Then new symmetri-
es of these equations found by the authors are reviewed. These symmetries are generated
by infinitesimal integrodifferential operators of the eight-dimensional Lie algebra. Their
physical meaning is not clear.

Before considering the new symmetries of the Maxwell equations

∂E

∂t
= −rotH,

∂H

∂t
= rotE,

divE = divH = 0
(1)

it is natural to remind shortly the well-known data on symmetry properties of eqs. (1).
In 1890 Heaviside wrote the original Maxwell equations in the modern form (1)

(independently it has been done by Hertz) and paid attention to their invariance under
the transformation

E → H, H → −E. (2)

Larmor [1] and Rainich [2] demonstrated that this symmetry may be extended to
one-parametrical group of the following transformations

E → E cos θ + H sin θ,
H → H cos θ − E sin θ.

(3)

In 1904 Lorentz found the linear transformations of space and time variables
and the corresponding transformations for E and H, under which the free Maxwell
equations remain invariant. In 1905 Poincaré and Einstein have demonstrated that
the Maxwell equations are invariant under the Lorentz transformations also in the
presence of charges and currents. Poincaré first established and studied in detail one
of the most important properties of these transformations — their group structure
and demonstrated that “Lorentz transformations are nothing but the rotations in the
space of four dimensions, a point of which has coordinates (x, y, z,

√−1t)”. So it was
Poincaré who united the space and time into the four-dimensional space-time three
years before Minkowski [3].

In 1909 Bateman [4] and Cunningham [5] proved eqs. (1) to be invariant under
non-linear conformal transformations. Bateman demonstrated the conformal group
C(1, 3) to be the maximal symmetry group of Maxwell equations with charges and
currents.

One hundred years ago, S. Lie created the mathematical methods of group analysis
of differential equations [6]. It is a surprising fact that these methods have only
recently been used for the investigation of group properties of eqs. (1). It turned
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out that the maximal local invariance group of eqs. (1) is the direct product of the
conformal group and of the Heaviside–Larmor–Rainich one (3), i.e. C(1, 3) ⊗H [7].

In connection with the facts mentioned above the impression may arise that the
symmetry properties of eqs. (1) have been completely investigated and there is no
hope to discover any new symmetry of these equations. But it is not true. It appears
that all the relativistic equations of motion for spinning particles possess an additional
non-geometrical symmetry under the group U(2) ⊗ U(2) (the only exception is the
Weyl equation) [9–11]. The basis elements QA (A = 1, 2, . . . , 8) of Lie algebra of
this group are not the first-order differential operators, but the integro-differential
ones. That is why this non-geometrical symmetry could not be discovered by the
infinitesimal Lie method.

In general case the non-geometrical symmetry of the relativistic equations of
motion is more extensive than the symmetry U(2) ⊗ U(2) and increases with the
rise of spin [9, 15].

Let us denote by {QA} the basis elements of a finite-dimensional Lie algebra. This
algebra is by the definition the invariance algebra of Maxwell equations if QA are
defined on the set of solutions of eqs. (1), i.e. satisfy the conditions

L1QAψ = 0, L1 = i
∂

∂t
− σ2S · p, ψ = column (E,H),

L2QAψ = 0, L2 = p1 − S · pS1,

(4)

where

Sa =
(
Ŝa 0
0 Ŝa

)
, σ2 = i

(
0̂ I

I 0̂

)
, (5)

I and 0̂ are unit and zero 3 × 3 matrices, Ŝa are the spin matrices, (Ŝa)bc = iεabc.

Theorem 1 [11, 14, 16]. The Maxwell equations (1) are invariant under the 8-
dimensional Lie algebra A8, basis elements of which are the integro-differential
operators of the form

Q1 = σ3
S · p
p

D, Q2 = iσ2, Q3 = σ1
S · p
p

D,

Q3+a = −iσ2
S · p
p

Qa, Q7 = I, Q8 = iσ2
S · p
p

,

(6)

where

D =



∑

a�=b�=c

[(
p2

ap
2
b + p2

ap
2
c − p2

bp
2
c

) (
1 − S2

a

)
+ p1p2p3SaSbpc

]−

−pp1p2p3

[
1 −

(
S · p
p

)2
]}

ϕ−1,

ϕ =
1√
2

[
p4
1

(
p2
2 − p2

3

)2
+ p4

2

(
p2
3 − p2

1

)2
+ p4

3

(
p2
1 − p2

2

)2]1/2

,

(7)



On the new symmetries of Maxwell equations 167

σa are the Pauli matrices, commuting with Sa, p =
(∑

p2
a

)1/2. The operators (6)
satisfy the algebra

[Qa, Qb] = −[Q3+a, Q3+b] = −εabcQc,

[Q3+a, Qb] = εabcQ3+c, [Q7, QA] = [Q8, QA] = 0,
(8)

which is isomorphic to the Lie algebra of the group U(2) ⊗ U(2).

Proof. The correctness of the Theorem, i.e. that the operators (6) satisfy the com-
mutation relations (8) and the conditions of invariance (4), may be verified by the
direct calculations. But it is necessary to note that such a verification is very compli-
cated. There exists another, more constructive proof of Theorem 1, which explains
the nature of the non-geometrical symmetry of the relativistic equations of motion.
This proof consists in the diagonalization (decomposition) of the Maxwell equations
into independent subsystems [11, 14, 15]. Such a diagonalization of the operator L1 is
carried out by the operator

W = U4U3U2U1, W−1 = W †, (9)

where

U1 =
1
2

[
1 + σ2 − (1 − σ2)D

S · p
p

]
, U2 = exp(−iSaθ̃a),

U3 =
[
1 − i

(
S1S2 + S2S1 + 1 − S2

3

)]/√
2, U4 = exp

[
(S2 − S1)iπ/4

√
2
]
,

θ̃a = εabc(pb − pc) arctg [p̃/(p1 + p2 + p3)] /2p̃,

p̃ =
[
(p1 − p2)2 + (p3 − p1)2 + (p2 − p3)2

]1/2
.

As a result one obtains

L′
1 = WL1W

−1 = i
∂

∂t
− Γ0p, (10)

where Γ0 is the diagonal matrix

Γ0 = −i(S1S2 + S2S1)S3 = diag (1,−1, 0, 1,−1, 0). (11)

Now it is not difficult to find eight linearly independent matrices Q′
A, which

commute with the operator L′
1. These matrices may be chosen in the form

Q′
a = iσa, Q′

3+a = −iΓ0Q
′
a, Q′

7 = I, Q′
8 = iΓ0. (12)

The matrices (12) satisfy the algebra (8) and are connected with QA (6) by the
transformation QA = W−1QAW . It is obvious that the matrices (12) operating on
the vector-function ψ′ = Wψ change their components but do not alter the variables
(t, x). The theorem is proved.

Since QA (6) are integro-differential operators, we give the finite transformations,
generated by QA, for the Fourier-components of Ea and Ha

Ẽa → Ẽ′
a = Ẽa cos θ1 + iεabcp̂bDcdẼd sin θ1,

H̃a → H̃ ′
a = H̃a cos θ1 − iεabcp̂bDcdH̃d sin θ1,

(13a)
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Ẽa → Ẽ′
a = Ẽa cos θ2 + H̃a sin θ2,

H̃a → H̃ ′
a = H̃a cos θ2 − Ẽa sin θ2,

(13b)

Ẽa → Ẽ′
a = Ẽa cos θ3 − iεabcp̂bDcdH̃d sin θ3,

H̃a → H̃ ′
a = H̃a cos θ3 − iεabcp̂bDcdẼd sin θ3,

(13c)

Ẽa → Ẽ′
a = Ẽa ch θ4 −DabH̃b sh θ4,

H̃a → H̃ ′
a = H̃a ch θ4 −DabẼb sh θ4,

(13d)

Ẽa → Ẽ′
a = Ẽa ch θ5 + iεabcp̂bẼc sh θ5,

H̃a → H̃ ′
a = H̃a ch θ5 + iεabcp̂bH̃c sh θ5,

(13e)

Ẽa → Ẽ′
a = Ẽa ch θ6 −DabẼb sh θ6,

H̃a → H̃ ′
a = H̃a ch θ6 +DabH̃b sh θ6,

(13f)

Ẽa → Ẽ′
a = Ẽa exp θ7, H̃a → H̃ ′

a = H̃a exp θ7, (13g)

Ẽa → Ẽ′
a = Ẽa cos θ8 + iεabcp̂bH̃c sin θ8,

H̃a → H̃ ′
a = H̃a cos θ8 − iεabcp̂bẼc sin θ8,

(13h)

So the formulae (13) give the explicit form of the transformations from the group
U(2) ⊗ U(2) which remain (1) invariant. The transformation (13b) coincides with the
Heaviside–Larmor–Rainich one (3). The transformations for E(t, x) and H(t, x) may
be obtained from (13) by the Fourier integral

E′(t, x) =
1

(2π)3/2

∫
d3p Ẽ′ exp(ipx),

H ′(t, x) =
1

(2π)3/2

∫
d3p H̃ ′ exp(ipx).

(14)

One can make sure that from the invariance of eqs. (1) under the algebra (6) it follows
the existence of the following new constants of motion for the electromagnetic field

I1 =
∫
d3x

∑
a,b,c,b �=c

(
∂2Ea

∂x2
b

∂2Ha

∂x2
c

− ∂Ėa

∂xa

∂Ḣa

∂xa

)
,

I2 =
∫
d3x

∑
a,b,c,b �=c

(
∂2Ea

∂x2
b

∂2Ea

∂x2
c

− ∂2Ha

∂x2
b

∂2Ha

∂x2
c

− ∂Ėa

∂xa

∂Ėa

∂xa
+
∂Ḣa

∂xa

∂Ḣa

∂xa

)
,

Ȧ =
∂A

∂t
.

(15)

Theorem 2. The Maxwell equations (1) are invariant under the 23-dimensional Lie
algebra, basis elements of which have the form (6) and (16):

Pµ = pµ, Jµν = x′µpν − x′νpµ, D = x′µp
µ + i, Kµ = 2x′µD − x′νx

′νpµ, (16)

where

x′a = W−1xaW, x′0 = x0 = t.
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This theorem may be considered as unification of the results of Bateman and of
the ones, established in Theorem 1. Proof is adduced in [14, 16].

In conclusion we note that the equations for the electromagnetic potential Aµ

possess the non-geometrical symmetry U(3) [17].

1. Larmor I., Collected papers, London, 1928.

2. Rainich G.I., Trans. Am. Math. Soc., 1925, 27, 106.

3. Minkowski G., in Principle of relativity, Atomizdat, Moscow, 1973 (in Russian).

4. Bateman H., Proc. London Math. Soc., 1909, 8, 223.

5. Cunningham E., Proc. London Math. Soc., 1909, 8, 77.

6. Ovsjannikov L.V., Group analysis of differential equations, Nauka, Moscow, 1978 (in Russian).

7. Ibragimov N.H., Group properties of some differential equations, Nauka, Novosibirsk, 1967 (in
Russian).

8. Danilov Yu.A., Group properties of Dirac equation, Preprint N 1736 of Kurchatov Atomic Energy
Institute, Moscow, 1968 (in Russian).

9. Fushchych W.I., On additional invariance of relativistic equations of motion, Preprint 70-32E of
Institute for Theoretical Physics, Kiev, 1970.

10. Fushchych W.I., Teor. Mat. Fiz., 1971, 7, 3 (in Russian); Theor. Math. Phys., 1971, 7, 3 (in English).

11. Fushchych W.I., Lett. Nuovo Cimento, 1974, 11, 508.

12. Nikitin A.G., Segeda Yu.N., Fushchych W.I., Teor. Mat. Fiz., 1976, 29, 82 (in Russian); Theor.
Math. Phys., 1976, 29, 943 (in English).

13. Fushchych V.I., Nikitin A.G., Lett. Nuovo Cimento, 1977, 19, 347.

14. Fushchych W.I., Nikitin A.G., J. Phys. A: Math. Gnen., 1979, 12, 747.

15. Fushchych W.I., in Group-Theoretical Methods in Mathematical Physics, Institute of Mathematics,
Kiev, 1978, 5–44 (in Russian).

16. Fushchych W.I., Nikitin A. G., in Group-Theoretical Methods in Mathematical Physics, Institute of
Mathematics, Kiev, 1978, 45–80 (in Russian).

17. Fushchych W.I., Vladimirov V.A., Dokl. Akad. Nauk of USSR, 1981, 257, № 5, 1105–1108.


