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On some exact solutions of the nonlinear
Schrödinger equation in three spatial
dimensions
W.I. FUSHCHYCH, S.S. MOSKALIUK

1. In 1881 Lie introduced the study of the solutions of partial differential equati-
ons, based, on the infinitesimal transformations of the continuous groups. Afterwards
these methods have been used for finding exact and approximate solutions of the nonli-
near partial differential equations by various authors [1]. In the main these solutions
were obtained in one spatial dimension. In this paper some exact similarity solutions
of nonlinear parabolic partial differential equations, possessing high symmetry, are
obtained, in three spatial dimensions.

Consider the nonlinear equation

i
∂u

∂x0
+

1
2M

∆u = F (u), (1)

where

u = u(x0,x), x ∈ Rn, M = const, ∆ ≡
n∑

i=1

∂2

∂x2
i

.

Lemma 1.∗ Equation (1) is invariant under a (n2 +3n+8)/2-parameter Schrödinger
group if

F (u) = λu|u|4/n, (2)

where λ is an arbitrary constant, n is a number of the spatial variables in eq. (1).
Lemma 2.∗ Equation (1) is invariant under a (n2 +3n+6)/2-parameter transforma-
tion group if

F (u) = λu|u|m, (3)

where λ, m are arbitrary constants.
This group consists of the Galilean group and the one-parameter group of scale

transformations.
Lemma 1 and lemma 2 can be proved by using the finite or infinitesimal transfor-

mations of the Schrödinger group [2]. By means of the Lie–Ovsjannikov method [3]
one can show that the above-mentioned groups are the maximal ones in the sense of
Lie which leave eq. (1) with the nonlinearities (2) and (3) invariant.

In the sequel we restrict ourselves to R3 and consider the infinitesimal transfor-
mations of the Schrödinger group

x′0 = x0 + εA0 +O
(
ε2

)
, x′i = xi + εAi +O

(
ε2

)
,
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∗ Misprints in formulations of Lemmas 1 and 2 are corrected.
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where

A0 = −cx2
0 + 2qx0 + b, Ai = (−cx0 + q)xi + εijkrjxk + vix0 + ai.

The parameters ai, b, c, q, vi, ri are arbitrary real constants. The parameter ai,
represents spatial translations, b represents time translations, c represents invariance
under the one-parameter group of projective transformations, q represents dilatations,
vi signifies Galilean invariance and ri denotes rotation invariance.

2. We need the invariants ω1, ω2, ω3 of the Schrödinger group for finding the
solutions of eq. (1). These invariants are obtained by solving the Lagrange equations

dx0

A0
=
dx1

A1
=
dx2

A2
=
dx3

A3
.

We will give the explicit form of these invariants.
Case I. cb+ q2 �= 0:

ω1 =
√

zizi

−cx2
0 + 2qx0 + b

, ω3 =
rizi√

rlrl (−cx2
0 + 2qx0 + b)

,

ω2 =

∣∣∣∣∣∣arcsin
z2

/√
−cx2

0 + 2qx0 + b− r2ω
3
/√

rlrl√
((r21 + r23) /rlrl) [(ω1)2 − (ω3)2]

∣∣∣∣∣∣ −
√
rlrl

x0∫
dt

−ct2 + 2qt+ b
,

(4)

where zi = xi − αix0 − βi,

αi =
qvi + cai − εijkvjrk

bc+ q2 + rlrl
+ ri

c(rkak) + q(rkrk)
(bc+ q2) (bc+ q2 + rlrl)

,

βi =
bvi − qai + εijkrjak

bc+ q2 + rlrl
+ ri

rk(bvk − qak)
(bc+ q2) (bc+ q2 + rlrl)

.

Here and in the sequel the summation convention is being employed.
Case II. cb+ q2 = 0, c �= 0:
1) r3 �= 0:

ω1 =
√
yiyi

τ
, ω3 =

riyi

τ
√
rlrl

,

ω2 =
∣∣∣∣arcsin

y2/τ − r2ω
3/
√
rlrl

((r21 + r23) /rlrl) [(ω1)2 − (ω3)2]

∣∣∣∣ +
√
rlrl
τ

,

(5)

where

yi = xi − γiτ − δi +
ηi

τ
, τ = −cx0 + q,

γi =
1

c(rlrl)
[εijkvjrk − (viq + cai) + rirk(vkq + cak)],

δi =
1

c(rlrl)
[εijkrj(qvk + cak) + ri(rkvk)], ηi =

1
2
rirk
rlrl

(vkq

c
+ ak

)
.

2) r1 = r2 = r3 = 0:

ωi =
1
τ

[
xi − vi

c
+

1
τ

(viq

c
+ ai

)]
. (6)
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Case III. c = 0, q = 0, b �= 0:
1) r3 �= 0:

ω1 =
√
SiSi, ω3 =

riSi

τ
√
rlrl

,

ω2 =

∣∣∣∣∣arcsin
S2 − (r2ω3)/

√
rlrl√

((r21 + r23) /rlrl) [(ω1)2 − (ω3)2]

∣∣∣∣∣ +
√
rlrl
b

x0,

(7)

where

Si = xi − x2
0

2brlrl
ri(rkvk) − x0

b(rlrl)
[ri(akrk) + bεijkrjvk]−

− 1
rlrl

{εijkrjak + b[vi − (zkvk)τi]}.

2) r1 = r2 = r3 = 0:

ωi = xi − vi

2b
x2

0 −
ai

b
x0. (8)

Case IV. c = 0, q = 0, b = 0, vix0 + ai �= 0:
1) r3 �= 0, r2 �= 0, r1 �= 0:

ω1 = x0, ω2 =
√
wiwi, ω3 =

riwi√
rlrl

, (9)

where

wi = xi +
εijkrj(vkx0 + ak)

(rirl/(vix0 + ai))(vlx0 − al) − rkrk

(there is no summation over i).
2) r3 �= 0, r2 = 0, r1 = 0:

ω1 = x0, ω2 = x2
1 + x2

2 +
2
r3

[(v2x0 + a2)x1 − (v1x0 + a1)x2],

ω3 = (v3x0 + a3) arcsin

∣∣∣∣∣ r3x1 + v2x0 + a2√
(v1x0 + a1)2 + (v2x0 + a2) + r23ω

2

∣∣∣∣∣ − x3.

(10)

3) r1 = r2 = r3 = 0:

ω1 = x0, ω2 = x1(v2x0 + a2) − x2(v1x0 + a1),
ω3 = x1(v3x0 + a3) − x3(v1x0 + a1).

(11)

Case V. c = q = b = 0, vix0 + ai = 0, ri �= 0:

ω1 = x0, ω2 =
√
xixi, ω3 =

rixi√
rlrl

. (12)

Now we construct the solutions of the eq. (1) of the form

u = ϕ
(
ω1, ω2, ω3

)
f(x0,x), F (u) = λu|u|m. (13)
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Substituting (13) into eq. (1), we require the functions ϕ and f to satisfy the non-
coupled equations. In accordance with this requirement the following equations are
obtained:

1
2M

ϕωlωkψlk(ω1, ω2, ω3) + ϕωkψk(ω1, ω2, ω3) + ϕψ(ω1, ω2, ω3) = λϕ|ϕ|m, (14)

i
∂f

∂x0
+

1
2M

∆f = f |f |mψ(ω1, ω2, ω3), (15)

ωl
xi
ωk

xi
= |f |mψlk(ω1, ω2, ω3), (16)

(
iωk

x0
+

1
2M

∆ωk

)
f +

1
M
ωk

xi
fxi

= f |f |mψk(ω1, ω2, ω3), (17)

where

ϕωk ≡ ∂ϕ

∂ωk
, ϕωkωl ≡ ∂2

∂ωk∂ωl
, ωk

x0
≡ ∂ωk

x0
.

In fact, the nonlinear equation (15) with the additional conditions (16) and (17) is the
inhomogeneous linear Schrödinger equation which one can easily integrate. Substituti-
ng the solution of eq. (15) into eq. (14), we obtain for ϕ a nonlinear partial differential
equation. Thus the solution of eq. (14) is a function of only three variables ω1, ω2,
ω3.

3. Let us consider some exact solutions of eqs. (14)–(17).
For the invariants (4) and the nonlinearity F = λu|u|4/3, the functions f and ϕ

take the form (c �= 0)

f =
(−cx2

0 + 2qx0 + b
)−3/4

[
−cx0 + q −

√
bc+ q2

−cx0 + q +
√
bc+ q2

]iρ

×

× exp

[
iM(αizi) +

iM

2
−cx0 + q −

√
cb+ q2

−cx2
0 + 2qx0 + b

zizi +
iM

2
(αiαi)x0

]
,

ϕ =
[

1
2λM

(
9
4
−B2

)]3/4 [
(ω1)2 − (ω3)2

]−3/4
exp

[
iBω2

]
,

where

B =
2
√
bc+ q2√
rlrl

ρ, ρ =
M

4
√
cb+ q2

[2(viβi) + b(αiαi) − c(βiβi)].

For the invariants (4) and the nonlinearity F = λϕ|ϕ|m the functions f and ϕ take
the form (c = 0, q �= 0)

f = (2qx0 + b)−1/m+iρ exp
{
iM(αizi) +

iM

2
(αiαi)x0

}
,

ϕ =
[

1
2λM

(
4
m2

−B2

)]1/m [
(ω1)2 − (ω3)2

]−1/m
exp

[
iBω2

]
,
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where

B =
2q√
rlrl

ρ, ρ =
M

4q
[2(viβi) + b(αiαi)].

For the invariants (12) and the nonlinearity F = λϕ|ϕ|m the functions f and ϕ
take the form u1 = fϕ1, u2 = fϕ2:

f = exp[ic1], ϕ1 =

[
c2

2λM

(
2
m

)2
]1/m [

xixi − (rixi)2

rlrl

]−1/m

,

ϕ2 = c3x
−1
0 exp

[
i
λcm3
m− 1

x−m+1
0 + i

m

2x0

[
xixi − (rixi)2

rlrl

]]
,

where c1 = const, c2 = const, c3 = const.

Remark. We have considered only a part of the exact solutions obtained by the same
method for the invariants (4)–(12) and the nonlinearities (2) and (3). Three-spatial-
dimension exact solutions of Liouville, eikonal, Hamilton–Jacobi and Navier–Stokes
equations are obtained by this method too [4, 5].

1. Ames W.F., Nonlinear Partial Differential Equations in Engineering, Vol. I and II, New York, N. Y.,
1965, 1972.

2. Niederer V., Helv. Phys. Acta, 1972, 45, 802.

3. Ovsjannikov L.V., The Group Analysis of Differential Equations, Moscow, 1978 (in Russian).

4. Fushchych W.I., Serov N.I., Ukr. Math. J., 1981, 33, № 6, 780–784 (in Russian).

5. Fushchych W.I. (Editor), Algebraic-Theoretical Investigations in Mathematical Physics, Kiev, 1981
(in Russian).


