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Reduction of the representations
of the generalised Poincaré algebra
by the Galilei algebra

W.I. FUSHCHYCH, A.G. NIKITIN

The realisations of all classes of unitary irreducible representations of the generalised
Poincaré group P(1,4) have been found in a basis in which the Casimir operators of its
important subgroup, i.e. the Galilei group, are of diagonal form. The exact form of the
unitary operator which connects the canonical basis of the P(1,4) group and the Galilei
basis has been established.

1. Introduction

Some years ago it was proposed to use the generalised Poincaré group P(1,4)
the group of displacements and rotations in five-dimensional Minkovsky space, for
the description of particles with variable masses and spins (Fushchych and Krivsky
[9, 10], Fushchych [8]). This and other generalised groups P(1,n), P(2,3) etc were
considered and used successively by Castell [4], Aghassi et al [1], Barrabes and
Henry [3], Elizalde and Gomish [5] and many others.

The main property of the P(1,4) group is that it contains the Poincaré group
P(1,3) as well as the Galilei group G(3) as its subgroups'. So the P(1,4) group
unified the groups of motion of relativistic and non-relativistic quantum mechanics.

For the elucidation of the physical grounds of the generalised quantum mechanics
based on the P(1,4) group (Fushchych and Krivsky [9, 10, 11] the important problem
is the reduction of the irreducible representations IR of the P(1,4) group, or the Lie
algebra of the P(1,4) group, by the IR of its subgroups, or its subalgebras®. The
problem of the reduction of IR of the P(1,4) algebra corresponding to the time-like
five-momenta by its subalgebra P(1,3) has been solved (Fushchich et al [12], Nikitin
et al [15]), i.e. the type of representations of the P(1,3) algebra contained in the IR
of the P(1,4) algebra has been investigated and the unitary operator was found which
connects the canonical basis of the P(1,4) group representation with the P(1,3)
basis, in which the Casimir operators of the Poincaré group have the diagonal form
(the spectrum of these operators is nondegenerate).

In this paper we find the realisation of the IR of the P(1,4) algebra in the “Galilei
basis” namely, in the basis in which the invariant operators of the Galilei subalgebra
are diagonal ones. We also obtain the explicit form of the unitary operator, which
carries out the reduction P(1,3) — G(2) which plays an important role in the null-
plane approach (see e.g. Leutwyler and Stern [13]).

J. Phys. A: Math. Gen., 1980, 13, P. 2319-2330.

IThe paper of Fedorchuck [6] is devoted to the classification and the description of all subgroups of the
P(1,4) group.

2We will indicate the groups and the corresponding Lie algebras by the same indices.
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2. Statement of the problem
The Lie algebra of the P(1,4) group is specified by the fifteen generators P,, J,.
(u,v =0,1,2,3,4) which satisfy the commutation relations

[P/JJPV] :Oa [P,uat]l/a] :i(guupa _g,u,aPV)7

o (2.1)
[J;un Jpo’] - Z(guaJup + gyp']uo - gupJVU - guo“]up)~

The algebra (2.1) has three main invariant (Casimir) operators (Fushchych and Krivs-
ky [9, 10])

1 1
P?=Pp,Pt=P?-P?-P} V= Wy Vo= =2, (2.2)

where

1
A
Wy = §€#Vpa)\JpUP .

As in the case of the Poincaré group, one can specify four different classes of the
representations of the algebra (2.1), corresponding to P2 > 0, P2 = 0, P2 < 0 and
P, =0 (in the last case one arrives at the representations of the homogeneous group
SO(1,4), which are not considered here).

Algebra (2.1) contains the Lie algebras of the Poincaré and of the Galilei groups
as subalgebras. In order to select the subalgebra P(1,3) it is enough to consider the
relations (2.1) for p,v # 4. The subalgebra G(3) may be obtained by the transition to
the new basis

. 1 .
P0:§(PO_P4)7 M =Py + Py, a = Pa, K = Joa,
1 1 (2.3)
Ja = igabcjbm Gi = JOa + J4a7 G; = 5(‘]0(1 - J4a)'
The operators (2.3) satisfy the commutation relations
Py, Po] = [Po, M] = [Py, M] = [Py, B3] = 0,
(2.4)

] = Z.Eabcfjca [GaJr; Pb} = i(sabMa
| = icape e, [Py, G| = iP,

[P07G(:}:[G(:3Gb_]:07 [G;,M]:fipaa [G;an]:iSach;,
[G;;pb} - *i(;abp()a [GaJraGb_] :i(gabcjc+5abK)v [POaK] = 7ip07 (25)
[P, K] =[Jo, K] =0, [M,K]=iM, [Gf K]=+GE.

The commutation relations (2.4) specify the Lie algebra of the extended Galilei
group (Bargman [2]). The invariant operators of this algebra are given by the formulae

C, =2MP, — P2, Cy=(MJ - P xG")?, Cs =M. (2.6)

Our aim is to find the realisations of the generators (2.3) for any class of IR of the
P(1,4) algebra, in a basis where the Casimir operators (2.6) have a diagonal form.
This enables us to answer the question what IR of the G(3) algebra are contained
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in the given representation of the P(1,4) algebra and to establish the connection
between the vectors in the Poincaré and in the Galilei bases.

The realisations of all IR of the P(1,4) algebra have already been found (Fushchych
and Krivsky [9, 10, 11], Fushchych [8]). So the problem of the description of the IR of
the P(1,4) algebra in the Galilei basis reduces to transforming the known realisation
to a form in which the operators (2.6) are diagonal.

3. The representations with P% > 0
Let us consider the IR of the P(1,4) algebra, which corresponds to the positive
values of the invariant operator P? = »? > 0. The generators P,, J,, in the canonical
basis |pk, j3, T3; €, j, T, >¢) have the form (Fushchych and Krivsky [9, 10])

PO:EEEE(p2+pi+%2)1/2, Py, = pg,
) 0 0
Jkl:Z(pl@_pka_pl> +Sk17 k,1=1,2,3,4, (31)
.0 Skipi
Ok 3 (9pk €E+%’ € )

where Sg; (k,1 =1,2,3,4) are the generators of the IR D(j,7) of the SO(4) group.
The basis of the realisation (3.1) is formed by the vectors |px, j3, T3; €, 7, ), which
are the eigenfunctions of the complete set of the commuting operators

1 1 N
T = Py, J3:§(W12+w43)7 T3:§(W12*W43)a &€= P/|Pol,
1

P = 5al
with the eigenvalues py, j3, 73, €, j(j +1), 7(7 + 1) and »? correspondingly, where j
and 7 are the integers or half-integers labelling the IR of the SO(4) group,

J? (V1 + 2e3V5), T2 Vi — 2e5V3), P?,

Jjs=—4,—73+1,...,5, m=—T1,—T7+1,....7, e==£1, —00<pr <.
The basis vectors may be normalised according to
<pk7j377-3;€7j77—7 4 | p;cajéaTé;eajv T, %> = 2E5(pk 7p;g)613j:'55‘r37'é7

and the generators (3.1) are Hermitian with respect to the scalar product

(01, W) — / (d*p/E) ! (pis s, 73) Wa(pre i, 7). (3.2)

The basis of the IR of the P(1,4) algebra, in which the invariant operators (2.6) of
the G(3) algebra and the operators P, (a = 1,2,3) and S3 = J3—(1/m)(P.G{ —P,GY)
have the diagonal form, will be called “Galilei basis” (or “G(3) basis”) and denoted by
|pa7 m, s, 83;¢, j7 T, %>

We will normalise the basis vectors as

<pa7 m,s,s3; €7ja T, % | p:p ml7 5/7 ng E?.ja T, %> = 2m6(m - m/)é(pa - pg)685’653s’3 .

This will lead us to the scalar product

OOdm

(¢17¢2) = Z /F/dgp ¢I(5,53,m,p)¢2(5,53,m,p)~ (33)

li—7|<s<j+T 3,
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Our task is to establish the explicit form of the generators of the P(1,4) group
in the Galilei basis and to find the transition operator, which connects the canonical
and Galilei bases. First we substitute (3.1) into (2.3) and (2.6) and obtain the Galilei
generators Pw Ja, G the invariant operators C, and the remaining generators G,
K in the canonical basis in a form

A 1
Py = 5(5E — Pa), M =eFE + py, Jo = —i(p x (0/0p))a + Sa,
3.4
Gt = _ Mz _5Sabpb—54a(E+%+6p4) (3.4)
a — T4Pa a E i ,
= %2 C3
{ M(E +2) ‘519] [P’N? = (p- N)*] (3.5)
x(E + »x+¢epy)® + (p- S)? [ZSM(E‘F%)—pQ]}(E—i-%)*Q,
G, = 1 {—Mpa 9Py, — eSappy — Saa(E + 3¢ — €p4)] ’
2 E+ »
S (3.6)
K = —P0,1‘4 — E—E4apzt7
where
1
So=5eabcShes  No=Sua, @k =i(0/Opr). (3.7)

The Casimir operator Cs (3.5) is in general the matrix which has elements depen-
ding on pg. Our second step is to diagonalise this matrix with the help of some
unitary transformation. We will look for the diagonalising operator in a form

Uy = exp(iSsapab/p), (3.8)

where p = (p? + p3 +p§)1/2 and 6 is an unknown function of p, pa.
With the help of the operator (3.8) one may derive from (3.4) and (3.6) a new
realisation:

:UlpoUI:po, PL/L:UlanI:Paa

/ T t (39)
J.=UJ, U =J,, M =UMU] =M,

eSuypy — S (B + 2+ 5174)

(GI) = NWGU] = 2pa — 2, M — e

(3.10)

1 N
(Gr) =G Ul =2 <:cgpa B! —

eSepPb — S, (B + 3¢ — €p4))
2 (3.11)

FE 4+
= U kU = —Poa!y — eS,pa/ (E + ),

where

z), = Uy U, Sp, = Uy SU;.
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Using the Hausdorf-Campbell formula

oo

exp(A)Bexp(—A) = ) %{A,B}”,
n=0 "
{A, B} =[A,{A, BY" 1], {A,B\’ =B

it is not difficult to calculate
7o = Ta + (PaSape/p?) [00/0p — (sin ) /pl+
+ (Savps/p?) (1 — cos8) + (1/p)Ssq sin b,
Sha = Saqcosl + (paS4bpb/p2) (1 —cosf) + Sappp(sinb)/p, (3.12)
SepPb = Sappy €08 0 + [(paSapps/p) — pSaal sin b,
ry = x4 + (Swps/p)(00/0ps).
Substituting (3.12) into (3.10), one obtains
paSwpy | 00 M (00 1 .
ey (G i)

E+ s +epy SabPo M 5 M
+ E+p (1 COSQ):|+ ) [(p E—i—%) + (3.13)

E M E
+wsm9] + S4a [( L —> sin§ + MCOSQ] :

(GI)/ = 24Py — Mzq + sin 6+

x

The expression (3.13) for GF is much simplified, if one puts
0 =2tan"'[p/(E + eps + )] (3.14)
For such a value of the parameter 6, we have:

p(E + s+ epy)

sinf = (E10(E+eps)’ 1—cosf = [pZ/(E+p)(E+6p4)] ,
Eﬁ — E+Ep4% = —sin9E+€p4
Opa p Op p?
and
(GF) = x4pa — M, (3.15)
Substituting (3.9) and (3.15) into (2.6), we have
Ch = M?*8?, (3.16)

where the matrix S* = S? + S7 + S always may be chosen in the diagonal form,
S2¢, = 5(s + 1) s, lj—7|<s<j+rT

The operators (3.9)-(3.11) are defined in a Hilbert space of square integrable
functions ¢(p1,p2,p3,pa). In order to diagonalise the operator M and (3.5) we intro-
duce in place of {p1,p2,p3,p4} the new variables {p1, p2,ps,m}, where m = E + epy.
Then

d pa\ O 0 0  pa 0
_><E+ )8—m’ 8pa_>8pa+E8m

Ops E



40 W.I. Fushchych, A.G. Nikitin

and the operators (3.9)—(3.11) and (3.15) take the form

2

Bomorel. Elop. M-om
Ji=—=i(p x (0/0p))a+ Sa,  (GF) = —iem(8/0pa), (3.17a)
Ch = 2, Ch =m?8?, CY = em, (3.17b)
K' = —im(0/0m),

N\ o (3.17¢)

(GZ) = ilepa(0/0m) — P5(9/0pa)] — €(Sappp + Saas)/m,

where
< m < o0, moza(%2/2m).

The generators (3.17) are Hermitian with respect to the scalar product (3.3).
So we reach the following result:

Theorem. The Hilbert space of the IR D*(x,j,T) of the P(1,4) algebra, correspondi-
ng to P? = 3% > 0, is expanded into the direct integral of the subspaces, which
correspond to the IR of the G(3) algebra with the following values of the invariant
operators: Cy = 32, Co = m?s(s+1), C3 =cm, || <m < oo, [ —7|<s<j+T.
The explicit form of the P(1,4) group generators in the Galilei basis and that of the
transition operator, which connects the canonical and the G(3) bases, are given by
the formulae (3.8), (3.14) and (3.17).

To conclude this section we consider the IR of the P(1,4) algebra, corresponding

to P2 = 0. The realisations of such an IR have been obtained in the form (Fushchych
and Krivsky [9, 10]):

1/2
POZEEOEE(p2+pZ)/ ) P, = pa, Py = pa,
) 0 SabPb ) 0
Joa = —icE - 5 Joa = —ieEy a.
0 w *Opa “Fo + P4 o ze *aps

i O Sumh
4a aap4 4apa E0+p4,

where S, are the generators of the IR D(s) of the SO(3) group. Substituting (3.18)
into (2.3), one obtains

1 . 0
P0=§(€Eo—p4)7 M = eEqy + pa4, Jy=—1 (p>< —> + Sa,

op
0 0 0 0
ar = z( . —) ticEy-2, K = —ieEy-2, 3.18
p ) P4 Opa 0 £ 0 e ( )
_ 1 .0 A 0 SabPs
= (—ipa L iy _ e Dabb
Ca 2 ( R Opy ! Oapa> 5E0+€p4

It is not difficult to see that replacement of the variables {p,ps} — {p,m}, where
m = Eg + epy, reduces the generators (3.18) to the form (3.17), where, however,
% =0,0<m < oo and s has the fixed value, which characterises the IR of the SO(3)



Reduction of the representations of the generalised Poincaré algebra 41

group. So we have established the explicit form of the generators of the P(1,4) group,
corresponding to P? = 0, in the Galilei basis.

4. The representations with P2 < 0
We now use the IR of the P(1,4) group, which corresponds to P2 = —n? < 0.
The generators of such representations have been obtained in the form (Fushchych
and Krivsky [9, 10, 11])

1/2
Po=po, Pa=pa Pi=c(i+n?-p2)"%
1o} 0
Jao i<ppa)+5a, € =41,
p ﬂ@pa Ops o (4.1)
0 Sosp”
Jpo = —iPy—2— — g 208 a,f=0,1,2,3,

Opa |P4|JF777

where S, 3 are the matrices which realise IR of the Lie algebra of the SO(1,4) group.
Reducing the representation (4.1) by the representations of the Lie algebra of the
Galilei group, the mass operator M = Py+ P, may take the zero value. Let us impose
the G(3)-invariant condition of turning into zero in the hyperspace, corresponding to
zero eigenvalues of the operator M, on the functions from the space of the IR (4.1)
(this hyperspace is the five-dimensional hali-cylinder p? = n?, epy < 0).
Using the transformation operator on the generators (4.1)

Uy = exp(iSoapad/p), 0 = 2tanh™[p/(n + |Py| + €po)] (4.2)
and using the relations
100 0

-1 _ Lo _. Y

U21'0U2 =z + SOapap apo’ am Z(r“)p,f
1 1
ngaUgl =T, + Pa Sovpe (@ — Zginh 9) + = Spq sinh 0 + Sabzpb (1 — cosh6),
p \dp p p p

UsS0aUs t = Soq cosh @ — (1/p)Sapps sinh @ + (pa/p) (Sosps/p)(1 — cosh ),
UzSabpsUs ' = Sabpy cosh 8 + [(paSovps/p) — pSoa) sinh 6,

sinh 6 — p(epo + |Pa| + 1) 99 _ p
(epo + |Pa)(|Pal +1)"  9po  |Pal(|Pal +n)
1 — coshd — —p* 99 _ |Pul(epo +n) + 5 + 17
(|Ps| +n)(epo + | Pa])’ Op | Pal(|Pa] +n)(|Ps| +epo)’
one comes to the realisation
Pél = po, P(;/ = Do, Pzil —c (pg + ,r]2 _p2)1/2’
0 0
=1 —Pa7— Sa s
ab Z(Pbapa D 8pz;>+ b
g — 00\ Sappy + Saon (4.3)
Oa — pa apo pO apa |P£i/| + Ep() 9
/Y 9 +M7 " iy 9

pa | |PY| +epo apo’
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Substituting (4.3) into (2.3) and going from {p,,po} to the new variables {p,, m},

where m = po+(p(2) +n? - p3)1/2, one obtains the Galilei group generators in the form
(3.17a), and the remaining generators G, K in the form (3.17c), where, however,
mo = —n?/2m, —n?> <m <0, 0 < m < oo, and Sy, are the generators of the group
SO(3) € SO(1,3).

5. Covariant representation of the P(1,4) group
Consider an arbitrary covariant representation of the Lie algebra of the P(1,4)
group. Such a representation is realised by the operators

. 0 0
P,u = Pu> Juu:Z (pu%_pua—py> ""S;wa (51)
where S, are the generators of a representation of the SO(1,4) group. Let us confine
ourselves to the case where P,P*W¥ > 0.
Substituting (5.1) into (2.3), we obtain

~ 1 . )
Py= 3 - P, = s Jo=—1 - Sa,
0 2(po P4), p Z<pxap)a+
M = po + pa, Gt = Zopa — oM + N7, (5.2)
N 1 N
G; = 5~E4pa 7xaPO + 5/\;, K= i’4M7:Z'OPO +SO47
where
0 0 0 0

M =5, +8 Fo=2i [ — — — ia—i [ — 4+ 2 ).

0a da; Lo Z(@po (’9p4)’ Ty Z<8p0+8p4>

For the transition of the realisation (5.2) into the Galilei basis we use the operator
Uz = expliATp/M]. (5.3)
With the help of the transformation

B, — B =UsP,U;",  Jo— J) =UsJUs ",
GE — (GH)" =UsGEUy ', K — K" =UsKU; ',

one comes to the realisation in which the invariant operators (2.6) of the G(3) subal-
gebra are of diagonal form:

~ 1 ~
Py = =(po — pa), P! = pq, M" = M = py + pa,

2
lez// = —Z'(p X 8/ap)a + Sa, G;_ = Topa — TaM,
_ - Savpy + Sa0p 1. pupt
= a — Ya e _)\ — )\+ H
G, = T4p o Py i + 5% ek

K" = #4.M — 2o P’ + Soa,
where S, = %eachbc. The operators C, (2.6) take the form

C{” _ pﬂp#’ Cé// — M252, C;/;H - M
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i.e. the eigenvalues of the operator C coincide with the values of P2, the eigenvalues
of the operator (5 are characterised by the spectrum of the Casimir operator of the
group SO(3) C SO(1,4), and the eigenvalues of the operator C5 lie in the interval
(0111)1/2 < Cé” < o0,

The results of this section may be used for the diagonalisation of the wave equa-
tions, which are invariant under the P(1,4) group. As an example we will consider
the five-dimensional generalisation of the Dirac equation

(VP! + )0 =0,  p=0,1,2,3,4. (5.4)

On the set of the solutions of the equation (5.4) the generators of the P(1,4) group
have the form (5.1) where S, = %i[y,,7,]. Using the operator (5.3) on equation
(5.4), one obtains an equation, which is equivalent to (5.4) but is manifestly invariant
under the Galilei group

Py = (3/2m + p?/2m) @, d_ =0, (5.5)

where
1
(I)i = 5(1i’}/0’74)(b, q):Ug\I/, < m < oo.

I one imposes the Galilean-invariant subsidiary condition (pg + ps)¥ = m¥ and
puts > = 0, then equation (5.4) is reduced to the Levi-Leblond equation for the non-
relativistic particle of spin s = % (Levi-Leblond [14]). In this case (5.3) coincides with
the operator which diagonalises the Levi-Leblond equation (Nikitin and Salogub [16]).

6. IR of the Poincaré group in the G(2) basis
The transition of the IR of the P(1,3) group to the basis of a two-dimensional Gali-
lei group G(2) may be made by complete analogy with the reduction P(1,4) — G(3).
Here we consider only the representations of the P(1,3) group, which correspond to
time-like four-momenta. The generators of such a representation in a Shirokov-Foldy
realisation (Shirokov [17, 18], Foldy [7]) have the form (3.1) where u,v = 0,1,2,3;
k,l =1,2,3. With the help of the transformation

PMHPM:UPHU_H JNVHJ#V:UJHVU_%
where

U = exp {(iS3apa/Ip|) tan={|p| /(| Po| + eps + )]},
1/2
=02+, a=12

and the following replacement of the variables {p1,p2,p3} — {p1,p2,m}, where m =

1/2
eps + (p + p3 + »2) /
basis:

, one obtains the generators of the Poincaré group in the G(2)

~ 1 - ~ ~
Py = §(P0 + P;) = %2/2m+ \p|2/2m, P, = pa,

J3 = i[p2(0/0p1) — p1(9/0p2)] + Si2, M =em,

(6.1)
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~ ~ 0
Gt = Joa + J3q = —iem——r, [ <m < oo,
Opa

G = 2 Cow = Jaa) = ilpa(D/0m) — Py(2/0pe) — =(Sasps + Ssar)fm, &P

The operators (6.1) coincide with the “kinematical group generators”, which are
used in the null-plane formalism (see e.g. Leutwyler and Stern [13]).

Using the results of §§ 3-5, it is not difficult to make the transition into the G(2)
basis of the representations of the P(1, 3) algebra which corresponds to light-like and
space-like four-momenta.

7. Connection between the Galilei and the Poincaré bases
We now consider the connection between the realisations of the generators of
the P(1,4) group (corresponding to time-like five-momenta) in both the Galilei and
Poincaré bases.
The generators of the P(1,4) group in the Poincaré basis (i.e. in the basis where
the Casimir operators of the P(1,3) group are of diagonal type) have the form
(Fushchych et al [12], Nikitin et al [15])

Py=E=(p +m2)1/2’ 2)1/2

Jab = i[py(0/0pa) — pa(0/0ps)], €4 = *1,
JOa = _Zp()(a/apa) - Sabpb/(E + m)> a, b= 17 2737

Py = pa, Py =gy (m?+ 5

i

Jon = —iE {ea (1= /) "* 0 0m ) — (/) (S1apa/ ) (7.)
Jia = ipa {s4 (1- zQ/mQ)l/2 ,6/8m} —iem (1 — %2/7712)1/2 0/Opa+
J{paS4bpb 2722 1/2 _ %54,1
m2(E+m) +€4 (1 x /m ) [Sabpb/(E+m)]+ m )

where
{A,B} = AB + BA, || <M < 0.
The generators (7.1) are Hermitian with respect to the scalar product
J+T

oo
_ [ dPp _ _
(leXQ) = |z: |/dm/ﬁxi(p7m78753)X2(pam75753)'
s=|j—7| 5

As soon as the operators (7.1) and (3.17) realise the same IR D™ (s, 4, 7) of the
P(1,4) group, the equivalence transformation, which connects these two realisations,
exists. In order to come from (7.1) to (3.17), we make the isometric transformation

P, —-WPW™,  J,—WJ,W! (7.2)
and the following replacement of variables

Pa 7 Pa; m — m(m,p), (73)
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where
W = (1~ s2/m?) """ expli(Saapa/p) (61 — 02)],
0, = 2tan~! {p/ [E+54 (m? — %2)1/2 + %} } ,

fy = 2tan! {54;0 (m? — 5?) 12 /(E+m)(m+ %)} ,
]1/2

(7.4)

m=(1/2m) [(m2 — 52— p2)2 + 4m?52

One can ensure by direct verification that the transformations (7.2)-(7.4) reduce
the generators (7.1) into the Galilei basis (i.e. that the transformed generators coincide
with (3.17) after substitution into (2.3)). We do not give the detailed calculations here
because the transformations (7.2)—(7.4) may be represented as two consequent ones:
namely, the transition from the Poincaré to the canonical basis (Nikitin et al [15])

P,— VPV~ J = VI, V1
m — m(ps) = e4 (P + %2)1/2 ; (7.5)
V=(1- %2/fn2)1/4 exp(iSoaPab2/p)
and then the transition from the canonical basis to the Galilei one (see § 3). So
W =UV,

where V' and U; are given by equations (7.5), (3.8), (3.14).

The transformation (7.2)-(7.4) may be used to establish the connection between
the vectors in the Galilei and in the Poincaré bases. This connection is given by the
equations:

¢(p,m, s, 53) = WP, Py, Py Py x(p,m(m,p), 5, 53),

x(p,m, s,s3) = W‘lps]BSSPS/PSéq/)(p,m(m,p), s, 83),

m(m, p) = &4 (M* — %2)1/2 + (»* + m2)1/2 ,

li—7<s,¢<j+m, —s5 < 83 <s, —s' <sh < ¢,
where P, Ps,, 155, }553, }53, }553

ponding fixed value of s and s3.

S? —3(5+1) Ss — 33
PS: ~f ~ ) P53: ~ ) 76
gl;Iss(erl)fs(erl) H S3 — 83 (7.6)

are the projectors into the subspace with the corres-

83783

P,=W~'PW, P, =W 'P,W, P,=WP,W™ P,=WPW

P, ]533, P, 1533 may be obtained from (7.6) by the substitution

DaSuPb

S, — ga =Wls,w=25, cos 0 + pe

-1 -
(1 —cos0) + —€apeppSiscsin b,
p

paprb
p2

. - -1 -
S, — 8, =WS,W™1=8,cos0 + (1 —cosf) — Esabcpb&;c sin 6,

0 =01 — 0.
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