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Reduction of the representations
of the generalised Poincaré algebra
by the Galilei algebra

W.I. FUSHCHYCH, A.G. NIKITIN

The realisations of all classes of unitary irreducible representations of the generalised
Poincaré group P (1, 4) have been found in a basis in which the Casimir operators of its
important subgroup, i.e. the Galilei group, are of diagonal form. The exact form of the
unitary operator which connects the canonical basis of the P (1, 4) group and the Galilei
basis has been established.

1. Introduction
Some years ago it was proposed to use the generalised Poincaré group P (1, 4)

the group of displacements and rotations in five-dimensional Minkovsky space, for
the description of particles with variable masses and spins (Fushchych and Krivsky
[9, 10], Fushchych [8]). This and other generalised groups P (1, n), P (2, 3) etc were
considered and used successively by Castell [4], Aghassi et al [1], Barrabes and
Henry [3], Elizalde and Gomish [5] and many others.

The main property of the P (1, 4) group is that it contains the Poincaré group
P (1, 3) as well as the Galilei group G(3) as its subgroups1. So the P (1, 4) group
unified the groups of motion of relativistic and non-relativistic quantum mechanics.

For the elucidation of the physical grounds of the generalised quantum mechanics
based on the P (1, 4) group (Fushchych and Krivsky [9, 10, 11] the important problem
is the reduction of the irreducible representations IR of the P (1, 4) group, or the Lie
algebra of the P (1, 4) group, by the IR of its subgroups, or its subalgebras2. The
problem of the reduction of IR of the P (1, 4) algebra corresponding to the time-like
five-momenta by its subalgebra P (1, 3) has been solved (Fushchich et al [12], Nikitin
et al [15]), i.e. the type of representations of the P (1, 3) algebra contained in the IR
of the P (1, 4) algebra has been investigated and the unitary operator was found which
connects the canonical basis of the P (1, 4) group representation with the P (1, 3)
basis, in which the Casimir operators of the Poincaré group have the diagonal form
(the spectrum of these operators is nondegenerate).

In this paper we find the realisation of the IR of the P (1, 4) algebra in the “Galilei
basis” namely, in the basis in which the invariant operators of the Galilei subalgebra
are diagonal ones. We also obtain the explicit form of the unitary operator, which
carries out the reduction P (1, 3) → G(2) which plays an important role in the null-
plane approach (see e.g. Leutwyler and Stern [13]).

J. Phys. A: Math. Gen., 1980, 13, P. 2319–2330.
1The paper of Fedorchuck [6] is devoted to the classification and the description of all subgroups of the

P (1, 4) group.
2We will indicate the groups and the corresponding Lie algebras by the same indices.
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2. Statement of the problem
The Lie algebra of the P (1, 4) group is specified by the fifteen generators Pµ, Jµν

(µ, ν = 0, 1, 2, 3, 4) which satisfy the commutation relations

[Pµ, Pν ] = 0, [Pµ, Jνσ] = i(gµνPσ − gµσPν),
[Jµν , Jρσ] = i(gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ).

(2.1)

The algebra (2.1) has three main invariant (Casimir) operators (Fushchych and Krivs-
ky [9, 10])

P 2 = PµPµ = P 2
0 − P 2 − P 2

4 , V1 =
1
2
ωµνωµν , V2 = −1

4
Jµνωµν , (2.2)

where

ωµν =
1
2
εµνρσλJρσPλ.

As in the case of the Poincaré group, one can specify four different classes of the
representations of the algebra (2.1), corresponding to P 2 > 0, P 2 = 0, P 2 < 0 and
Pµ ≡ 0 (in the last case one arrives at the representations of the homogeneous group
SO(1, 4), which are not considered here).

Algebra (2.1) contains the Lie algebras of the Poincaré and of the Galilei groups
as subalgebras. In order to select the subalgebra P (1, 3) it is enough to consider the
relations (2.1) for µ, ν �= 4. The subalgebra G(3) may be obtained by the transition to
the new basis

P̂0 =
1
2
(P0 − P4), M = P0 + P4, P̂a = Pa, K = J04,

Ja =
1
2
εabcJbc, G+

a = J0a + J4a, G−
a =

1
2
(J0a − J4a).

(2.3)

The operators (2.3) satisfy the commutation relations

[P̂0, P̂a] = [P̂0,M ] = [P̂a,M ] = [P̂a, P̂b] = 0,

[P̂0, Ja] = [M,Ja] = [G+
a , G+

b ] = [M,G+
a ] = 0,

[P̂a, Jb] = iεabcP̂c, [G+
a , P̂b] = iδabM,

[Ja, Jb] = iεabcJc, [P̂0, G
+
b ] = iP̂b,

(2.4)

[P̂0, G
−
a ] = [G−

a , G−
b ] = 0, [G−

a ,M ] = −iP̂a, [G−
a , Jb] = iεabcG

−
c ,

[G−
a , P̂b] = −iδabP̂0, [G+

a , G−
b ] = i(εabcJc + δabK), [P̂0,K] = −iP̂0,

[P̂a,K] = [Ja,K] = 0, [M,K] = iM, [G±
a ,K] = ±G±

a .

(2.5)

The commutation relations (2.4) specify the Lie algebra of the extended Galilei
group (Bargman [2]). The invariant operators of this algebra are given by the formulae

C1 = 2MP̂0 − P 2, C2 = (MJ − P̂ × G+)2, C3 = M. (2.6)

Our aim is to find the realisations of the generators (2.3) for any class of IR of the
P (1, 4) algebra, in a basis where the Casimir operators (2.6) have a diagonal form.
This enables us to answer the question what IR of the G(3) algebra are contained
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in the given representation of the P (1, 4) algebra and to establish the connection
between the vectors in the Poincaré and in the Galilei bases.

The realisations of all IR of the P (1, 4) algebra have already been found (Fushchych
and Krivsky [9, 10, 11], Fushchych [8]). So the problem of the description of the IR of
the P (1, 4) algebra in the Galilei basis reduces to transforming the known realisation
to a form in which the operators (2.6) are diagonal.

3. The representations with P 2 ≥ 0
Let us consider the IR of the P (1, 4) algebra, which corresponds to the positive

values of the invariant operator P 2 = κ
2 > 0. The generators Pµ, Jµν in the canonical

basis |pk, j3, τ3; ε, j, τ, κ〉 have the form (Fushchych and Krivsky [9, 10])

P0 = εE ≡ ε
(
p2 + p2

4 + κ
2
)1/2

, Pk = pk,

Jkl = i

(
pl

∂

∂pk
− pk

∂

∂pl

)
+ Skl, k, l = 1, 2, 3, 4,

J0k = −iεE
∂

∂pk
− ε

Sklpl

E + κ

, ε = ±1,

(3.1)

where Skl (k, l = 1, 2, 3, 4) are the generators of the IR D(j, τ) of the SO(4) group.
The basis of the realisation (3.1) is formed by the vectors |pk, j3, τ3; ε, τ, κ〉, which

are the eigenfunctions of the complete set of the commuting operators

T = Pk, J3 =
1
2
(ω12 + ω43), T3 =

1
2
(ω12 − ω43), ε̂ = P0/|P0|,

J2 =
1

4κ
2
(V1 + 2εκV2), T 2 =

1
4κ

2
(V1 − 2εκV2), P 2,

with the eigenvalues pk, j3, τ3, ε, j(j + 1), τ(τ + 1) and κ
2 correspondingly, where j

and τ are the integers or half-integers labelling the IR of the SO(4) group,

j3 = −j,−j + 1, . . . , j, τ3 = −τ,−τ + 1, . . . , τ, ε = ±1, −∞ < pk < ∞.

The basis vectors may be normalised according to

〈pk, j3, τ3; ε, j, τ, κ | p′k, j′3, τ
′
3; ε, j, τ, κ〉 = 2Eδ(pk − p′k)δj3j′

3
δτ3τ ′

3
,

and the generators (3.1) are Hermitian with respect to the scalar product

(Ψ1,Ψ2) =
∫ (

d4p/E
)
Ψ†

1(pk, j3, τ3)Ψ2(pk, j3, τ3). (3.2)

The basis of the IR of the P (1, 4) algebra, in which the invariant operators (2.6) of
the G(3) algebra and the operators Pa (a = 1, 2, 3) and S3 = J3−(1/m)(P2G

+
1 −P1G

+
2 )

have the diagonal form, will be called “Galilei basis” (or “G(3) basis”) and denoted by
|pa,m, s, s3; ε, j, τ, κ〉.

We will normalise the basis vectors as

〈pa,m, s, s3; ε, j, τ, κ | p′a,m′, s′, s′3; ε, j, τ, κ〉 = 2mδ(m − m′)δ(pa − p′a)δss′δs3s′
3
.

This will lead us to the scalar product

(φ1, φ2) =
∑

|j−τ |≤s≤j+τ

∞∫
κ

dm

m

∫
d3p φ†

1(s, s3,m,p)φ2(s, s3,m,p). (3.3)
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Our task is to establish the explicit form of the generators of the P (1, 4) group
in the Galilei basis and to find the transition operator, which connects the canonical
and Galilei bases. First we substitute (3.1) into (2.3) and (2.6) and obtain the Galilei
generators P̂µ, Ja, G+

a the invariant operators Ca and the remaining generators G−
a ,

K in the canonical basis in a form

P̂0 =
1
2
(εE − p4), M = εE + p4, Ja = −i(p × (∂/∂p))a + Sa,

G+
a = x4pa − Mxa − εSabpb − S4a(E + κ + εp4)

E + κ

,

(3.4)

C1 = κ
2, C3 = M,

C2 =
{

S2
[
M(E + κ) − εp2

]2
+

[
p2N2 − (p · N)2

]×
×(E + κ + εp4)2 + (p · S)2

[
2εM(E + κ) − p2

]}
(E + κ)−2,

(3.5)

G−
a =

1
2

[
−x4pa − 2P̂0xa − εSabpb − S4a(E + κ − εp4)

E + κ

]
,

K = −P̂0x4 − ε
S4apa

E + κ

,

(3.6)

where

Sa =
1
2
εabcSbc, Na = S4a, xk = i(∂/∂pk). (3.7)

The Casimir operator C2 (3.5) is in general the matrix which has elements depen-
ding on pk. Our second step is to diagonalise this matrix with the help of some
unitary transformation. We will look for the diagonalising operator in a form

U1 = exp(iS4apaθ/p), (3.8)

where p =
(
p2
1 + p2

2 + p2
3

)1/2
and θ is an unknown function of p, p4.

With the help of the operator (3.8) one may derive from (3.4) and (3.6) a new
realisation:

P̂ ′
0 = U1P̂0U

†
1 = P̂0, P̂ ′

a = U1P̂aU†
1 = P̂a,

J ′
a = U1JaU†

1 = Ja, M ′ = U1MU†
1 = M,

(3.9)

(G+
a )′ = U1G

+
a U†

1 = x′
4pa − x′

aM − εS′
abpb − S′

4a(E + κ + εp4)
E + κ

, (3.10)

(G−
a )′ = U1G

−
a U†

1 =
1
2

(
−x′

4pa − 2P̂0x
′
a − εS′

abpb − S′
4a(E + κ − εp4)
E + κ

)
,

K ′ = U1kU†
1 = −P̂0x

′
4 − εS′

4apa/(E + κ),

(3.11)

where

x′
k = U1xkU†

1 , S′
kl = U1SklU

†
1 .
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Using the Hausdorf–Campbell formula

exp(A)B exp(−A) =
∞∑

n=0

1
n!
{A,B}n,

{A,B}n = [A, {A,B}n−1], {A,B}0 = B

it is not difficult to calculate

x′
a = xa +

(
paS4bpb/p2

)
[∂θ/∂p − (sin θ)/p]+

+
(
Sabpb/p2

)
(1 − cos θ) + (1/p)S4a sin θ,

S′
4a = S4a cos θ +

(
paS4bpb/p2

)
(1 − cos θ) + Sabpb(sin θ)/p,

S′
abpb = Sabpb cos θ + [(paS4bpb/p) − pS4a] sin θ,

x′
4 = x4 + (S4bpb/p)(∂θ/∂p4).

(3.12)

Substituting (3.12) into (3.10), one obtains

(G+
a )′ = x4pa − Mxa +

paS4bpb

p

[
∂θ

∂p4
− M

p

(
∂θ

∂p
− 1

p
sin θ

)
− ε

E + κ

sin θ+

+
E + κ + εp4

(E + κ)p
(1 − cos θ)

]
+

Sabpb

p

[(
M

p
− εp

E + κ

)
− M

p
+

+
E + κ + εp4

E + κ

sin θ

]
+ S4a

[(
εp

E + κ

− M

p

)
sin θ +

E + κ + εp4

E + κ

cos θ

]
.

(3.13)

The expression (3.13) for G+
a is much simplified, if one puts

θ = 2 tan−1[p/(E + εp4 + κ)]. (3.14)

For such a value of the parameter θ, we have:

sin θ =
p(E + κ + εp4)

(E + κ)(E + εp4)
, 1 − cos θ =

[
p2/(E + p)(E + εp4)

]
,

ε
∂θ

∂p4
− E + εp4

p

∂θ

∂p
= − sin θ

E + εp4

p2

and

(G+
a )′ = x4pa − Mxa. (3.15)

Substituting (3.9) and (3.15) into (2.6), we have

C ′
2 = M2S2, (3.16)

where the matrix S2 = S2
1 + S2

2 + S2
3 always may be chosen in the diagonal form,

S2φs = s(s + 1)φs, |j − τ | ≤ s ≤ j + τ.

The operators (3.9)–(3.11) are defined in a Hilbert space of square integrable
functions φ(p1, p2, p3, p4). In order to diagonalise the operator M and (3.5) we intro-
duce in place of {p1, p2, p3, p4} the new variables {p1, p2, p3,m}, where m = E + εp4.
Then

∂

∂p4
→

(
ε +

p4

E

) ∂

∂m
,

∂

∂pa
→ ∂

∂pa
+

pa

E

∂

∂m
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and the operators (3.9)–(3.11) and (3.15) take the form

P̂ ′
0 = m0 + ε

p2

2m
, P̂ ′

a = pa, M ′ = εm,

J ′
a = −i(p × (∂/∂p))a + Sa, (G+

a )′ = −iεm(∂/∂pa), (3.17a)

C ′
1 = κ

2, C ′
2 = m2S2, C ′

3 = εm, (3.17b)

K ′ = −im(∂/∂m),

(G−
a )′ = i[εpa(∂/∂m) − P̂ ′

0(∂/∂pa)] − ε(Sabpb + S4aκ)/m,
(3.17c)

where

κ ≤ m < ∞, m0 = ε
(
κ

2/2m
)
.

The generators (3.17) are Hermitian with respect to the scalar product (3.3).
So we reach the following result:

Theorem. The Hilbert space of the IR Dε(κ, j, τ) of the P (1, 4) algebra, correspondi-
ng to P 2 = κ

2 > 0, is expanded into the direct integral of the subspaces, which
correspond to the IR of the G(3) algebra with the following values of the invariant
operators: C1 = κ

2, C2 = m2s(s + 1), C3 = εm, |κ| ≤ m < ∞, |j − τ | ≤ s ≤ j + τ .
The explicit form of the P (1, 4) group generators in the Galilei basis and that of the
transition operator, which connects the canonical and the G(3) bases, are given by
the formulae (3.8), (3.14) and (3.17).

To conclude this section we consider the IR of the P (1, 4) algebra, corresponding
to P 2 = 0. The realisations of such an IR have been obtained in the form (Fushchych
and Krivsky [9, 10]):

P0 = εE0 ≡ ε
(
p2 + p2

4

)1/2
, Pa = pa, P4 = p4,

J0a = −iεE0
∂

∂pa
− ε

Sabpb

E0 + p4
, J04 = −iεE0

∂

∂p4
,

J4a = i

(
pa

∂

∂p4
− p4

∂

∂pa

)
+ ε

Sabpb

E0 + p4
,

where Sab are the generators of the IR D(s) of the SO(3) group. Substituting (3.18)
into (2.3), one obtains

P̂0 =
1
2
(εE0 − p4), M = εE0 + p4, J1 = −i

(
p × ∂

∂p

)
a

+ Sa,

G+
a = i

(
pa

∂

∂p4
− p4

∂

∂pa

)
+ iεE0

∂

∂pa
, K = −iεE0

∂

∂p4
,

G−
a =

1
2

(
−ipa

∂

∂p4
− iP̂0

∂

∂pa

)
− ε

Sabpb

E0 + εp4
.

(3.18)

It is not difficult to see that replacement of the variables {p, p4} → {p,m}, where
m = E0 + εp4, reduces the generators (3.18) to the form (3.17), where, however,
κ = 0, 0 ≤ m < ∞ and s has the fixed value, which characterises the IR of the SO(3)
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group. So we have established the explicit form of the generators of the P (1, 4) group,
corresponding to P 2 = 0, in the Galilei basis.

4. The representations with P 2 < 0
We now use the IR of the P (1, 4) group, which corresponds to P 2 = −η2 < 0.

The generators of such representations have been obtained in the form (Fushchych
and Krivsky [9, 10, 11])

P0 = p0, Pa = pa, P4 = ε
(
p2
0 + η2 − p2

a

)1/2
,

Jαβ = i

(
pβ

∂

∂pα
− pα

∂

∂pβ

)
+ Sαβ , ε = ±1,

J4α = −iP4
∂

∂pα
− ε

Sαβpβ

|P4| + η
, α, β = 0, 1, 2, 3,

(4.1)

where Sαβ are the matrices which realise IR of the Lie algebra of the SO(1, 4) group.
Reducing the representation (4.1) by the representations of the Lie algebra of the

Galilei group, the mass operator M = P0 +P4 may take the zero value. Let us impose
the G(3)-invariant condition of turning into zero in the hyperspace, corresponding to
zero eigenvalues of the operator M , on the functions from the space of the IR (4.1)
(this hyperspace is the five-dimensional half-cylinder p2 = η2, εp0 < 0).

Using the transformation operator on the generators (4.1)

U2 = exp(iS0apaθ/p), θ = 2 tanh−1[p/(η + |P4| + εp0)] (4.2)

and using the relations

U2x0U
−1
2 = x0 + S0apa

1
p

∂θ

∂p0
, xµ = i

∂

∂pµ
,

U2xaU−1
2 = xa +

pa

p

S0bpb

p

(
∂θ

∂p
− 1

p
sinh θ

)
+

1
p
S0a sinh θ +

Sabpb

p2
(1 − cosh θ),

U2S0aU−1
2 = S0a cosh θ − (1/p)Sabpb sinh θ + (pa/p)(S0bpb/p)(1 − cosh θ),

U2SabpbU
−1
2 = Sabpb cosh θ + [(paS0bpb/p) − pS0a] sinh θ,

sinh θ =
p(εp0 + |P4| + η)

(εp0 + |P4|)(|P4| + η)
,

∂θ

∂p0
=

p

|P4|(|P4| + η)
,

1 − cosh θ =
−p2

(|P4| + η)(εp0 + |P4|) ,
∂θ

∂p
=

|P4|(εp0 + η) + p2
0 + η2

|P4|(|P4| + η)(|P4| + εp0)
,

one comes to the realisation

P ′′
0 = p0, P ′′

a = pa, P ′′
4 = ε

(
p2
0 + η2 − p2

)1/2
,

J ′′
ab = i

(
pb

∂

∂pa
− pa

∂

∂pb

)
+ Sab,

J ′′
0a = i

(
pa

∂

∂p0
− p0

∂

∂pa

)
− Sabpb + Sa0η

|P ′′
4 | + εp0

,

J ′′
4a = −iP ′′

4

∂

∂pa
+

Sabpb + S0aη

|P ′′
4 | + εp0

, J ′′
04 = iP ′′

4

∂

∂p0
.

(4.3)
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Substituting (4.3) into (2.3) and going from {pa, p0} to the new variables {pa,m},
where m = p0+

(
p2
0 + η2 − p2

a

)1/2
, one obtains the Galilei group generators in the form

(3.17a), and the remaining generators G−
a , K in the form (3.17c), where, however,

m0 = −η2/2m, −η2 < m < 0, 0 < m < ∞, and Sab are the generators of the group
SO(3) ⊂ SO(1, 3).

5. Covariant representation of the P (1, 4) group
Consider an arbitrary covariant representation of the Lie algebra of the P (1, 4)

group. Such a representation is realised by the operators

Pµ = pµ, Jµν = i

(
pν

∂

∂pµ
− pµ

∂

∂pν

)
+ Sµν , (5.1)

where Sµν are the generators of a representation of the SO(1, 4) group. Let us confine
ourselves to the case where PµPµΨ > 0.

Substituting (5.1) into (2.3), we obtain

P̂0 =
1
2
(p0 − p4), P̂a = pa, Ja = −i

(
p × ∂

∂p

)
a

+ Sa,

M = p0 + p4, G+
a = x̃0pa − xaM + λ+

a ,

G−
a = x̃4pa − xaP̂0 +

1
2
λ−

a , K = x̃4M − x̃0P̂0 + S04,

(5.2)

where

λ± = S0a ± S4a, x̃0 = 2i

(
∂

∂p0
− ∂

∂p4

)
, x̃4 = i

(
∂

∂p0
+

∂

∂p4

)
.

For the transition of the realisation (5.2) into the Galilei basis we use the operator

U3 = exp[iλ+p/M ]. (5.3)

With the help of the transformation

P̂µ → P̂ ′′′
µ = U3P̂µU−1

3 , Ja → J ′′′
a = U3JaU−1

3 ,

G±
a → (G±

a )′′′ = U3G
±
a U−1

3 , K → K ′′′ = U3KU−1
3 ,

one comes to the realisation in which the invariant operators (2.6) of the G(3) subal-
gebra are of diagonal form:

P̂ ′′′
0 =

1
2
(p0 − p4), P̂ ′′′

a = pa, M ′′′ = M = p0 + p4,

J ′′′
a = −i(p × ∂/∂p)a + Sa, G+

a = x̃0pa − xaM,

G−
a = x̃4pa − xaP̂ ′′′

0 − Sabpb + S40pa

M
+

1
2
λ−

a − λ+ pµpµ

M2
,

K ′′′ = x̃4M − x̃0P̂
′′′
0 + S04,

where Sa = 1
2εabcSbc. The operators Ca (2.6) take the form

C ′′′
1 = pµpµ, C ′′′

2 = M2S2, C ′′′
3 = M
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i.e. the eigenvalues of the operator C1 coincide with the values of P 2, the eigenvalues
of the operator C2 are characterised by the spectrum of the Casimir operator of the
group SO(3) ⊂ SO(1, 4), and the eigenvalues of the operator C3 lie in the interval
(C ′′′

1 )1/2 ≤ C ′′′
3 < ∞.

The results of this section may be used for the diagonalisation of the wave equa-
tions, which are invariant under the P (1, 4) group. As an example we will consider
the five-dimensional generalisation of the Dirac equation

(γµpµ + κ)Ψ = 0, µ = 0, 1, 2, 3, 4. (5.4)

On the set of the solutions of the equation (5.4) the generators of the P (1, 4) group
have the form (5.1) where Sµν = 1

4 i[γµ, γν ]. Using the operator (5.3) on equation
(5.4), one obtains an equation, which is equivalent to (5.4) but is manifestly invariant
under the Galilei group

P̂ ′′′
0 Φ+ =

(
κ/2m + p2/2m

)
Φ+, Φ− = 0, (5.5)

where

Φ± =
1
2
(1 ± γ0γ4)Φ, Φ = U3Ψ, κ ≤ m < ∞.

If one imposes the Galilean-invariant subsidiary condition (p0 + p4)Ψ = m0Ψ and
puts κ = 0, then equation (5.4) is reduced to the Levi-Leblond equation for the non-
relativistic particle of spin s = 1

2 (Levi-Leblond [14]). In this case (5.3) coincides with
the operator which diagonalises the Levi-Leblond equation (Nikitin and Salogub [16]).

6. IR of the Poincaré group in the G(2) basis
The transition of the IR of the P (1, 3) group to the basis of a two-dimensional Gali-

lei group G(2) may be made by complete analogy with the reduction P (1, 4) → G(3).
Here we consider only the representations of the P (1, 3) group, which correspond to
time-like four-momenta. The generators of such a representation in a Shirokov–Foldy
realisation (Shirokov [17, 18], Foldy [7]) have the form (3.1) where µ, ν = 0, 1, 2, 3;
k, l = 1, 2, 3. With the help of the transformation

Pµ → P̃µ = UPµU−1, Jµν → J̃µν = UJµνU−1,

where

U = exp
{
(iS3αpα/|p|) tan−1[|p|/(|P0| + εp3 + κ)]

}
,

|p| =
(
p2
1 + p2

2

)1/2
, α = 1, 2,

and the following replacement of the variables {p1, p2, p3} → {p1, p2,m}, where m =
εp3 +

(
p2
1 + p2

2 + κ
2
)1/2

, one obtains the generators of the Poincaré group in the G(2)
basis:

P̂0 =
1
2
(P̃0 + P̃3) = κ

2/2m + |p|2/2m, P̂α = pα,

J3 = i[p2(∂/∂p1) − p1(∂/∂p2)] + S12, M = εm,

(6.1)
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G+
α = J̃0α + J̃3α = −iεm

∂

∂pα
, |κ| ≤ m < ∞,

G−
α =

1
2
(J̃0α − J̃3α) = i[pα(∂/∂m) − P̂0(∂/∂pα)] − ε(Sαβpβ + S3ακ)/m,

K = J̃03 = −im(∂/∂m).

(6.2)

The operators (6.1) coincide with the “kinematical group generators”, which are
used in the null-plane formalism (see e.g. Leutwyler and Stern [13]).

Using the results of §§ 3–5, it is not difficult to make the transition into the G(2)
basis of the representations of the P (1, 3) algebra which corresponds to light-like and
space-like four-momenta.

7. Connection between the Galilei and the Poincaré bases
We now consider the connection between the realisations of the generators of

the P (1, 4) group (corresponding to time-like five-momenta) in both the Galilei and
Poincaré bases.

The generators of the P (1, 4) group in the Poincaré basis (i.e. in the basis where
the Casimir operators of the P (1, 3) group are of diagonal type) have the form
(Fushchych et al [12], Nikitin et al [15])

P0 = E =
(
p2 + m̄2

)1/2
, Pa = pa, P4 = ε4

(
m̄2 + κ

2
)1/2

,

Jab = i[pb(∂/∂pa) − pa(∂/∂pb)], ε4 = ±1,

J0a = −ip0(∂/∂pa) − Sabpb/(E + m̄), a, b = 1, 2, 3,

J04 = −iE
{

ε4

(
1 − κ

2/m̄2
)1/2

, ∂/∂m̄
}
− (κ/m̄)(S4apa/m̄),

J4a = ipa

{
ε4

(
1 − κ

2/m̄2
)1/2

, ∂/∂m̄
}
− iεm̄

(
1 − κ

2/m̄2
)1/2

∂/∂pa+

+
κpaS4bpb

m2(E + m)
+ ε4

(
1 − κ

2/m̄2
)1/2

[Sabpb/(E + m̄)] +
κS4a

m̄
,

(7.1)

where

{A,B} = AB + BA, |κ| ≤ m̄ < ∞.

The generators (7.1) are Hermitian with respect to the scalar product

(χ1, χ2) =
j+τ∑

s=|j−τ |

∞∫
κ

dm̄

∫
d3p

2E
χ†

1(p, m̄, s, s3)χ2(p, m̄, s, s3).

As soon as the operators (7.1) and (3.17) realise the same IR D+(κ, j, τ) of the
P (1, 4) group, the equivalence transformation, which connects these two realisations,
exists. In order to come from (7.1) to (3.17), we make the isometric transformation

Pµ → WPµW−1, Jµν → WJµνW−1 (7.2)

and the following replacement of variables

pa → pa, m̄ → m̄(m,p), (7.3)
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where

W =
(
1 − κ/m̄2

)1/4
exp[i(S4apa/p)(θ1 − θ2)],

θ1 = 2 tan−1
{

p/
[
E + ε4

(
m̄2 − κ

2
)1/2 + κ

]}
,

θ2 = 2 tan−1
[
ε4p

(
m̄2 − κ

2
)1/2

/(E + m)(m + κ)
]
,

m̄ = (1/2m)
[(

m2 − κ
2 − p2

)2 + 4m2
κ

2
]1/2

.

(7.4)

One can ensure by direct verification that the transformations (7.2)–(7.4) reduce
the generators (7.1) into the Galilei basis (i.e. that the transformed generators coincide
with (3.17) after substitution into (2.3)). We do not give the detailed calculations here
because the transformations (7.2)–(7.4) may be represented as two consequent ones:
namely, the transition from the Poincaré to the canonical basis (Nikitin et al [15])

Pµ → V PµV −1, Jµν → V JµνV −1,

m̄ → m̄(p4) = ε4

(
p2
4 + κ

2
)1/2

,

V =
(
1 − κ

2/m̄2
)1/4 exp(iS0apaθ2/p)

(7.5)

and then the transition from the canonical basis to the Galilei one (see § 3). So

W = U1V,

where V and U1 are given by equations (7.5), (3.8), (3.14).
The transformation (7.2)–(7.4) may be used to establish the connection between

the vectors in the Galilei and in the Poincaré bases. This connection is given by the
equations:

φ(p,m, s, s3) = WP̂sP̂s3Ps′Ps′
3
χ(p,m(m̄,p), s, s3),

χ(p,m, s, s3) = W−1P̃sP̃s3Ps′Ps′
3
φ(p,m(m̄,p), s, s3),

m(m̄,p) = ε4

(
m̄2 − κ

2
)1/2 +

(
p2 + m̄2

)1/2
,

|j − τ | ≤ s, s′ ≤ j + τ, −s ≤ s3 ≤ s, −s′ ≤ s′3 ≤ s′,

where Ps, Ps3 , P̂s, P̂s3 , P̃s, P̃s3 are the projectors into the subspace with the corres-
ponding fixed value of s and s3.

Ps =
∏
s̃ �=s

S2 − s̃(s̃ + 1)
s(s + 1) − s̃(s̃ + 1)

, Ps3 =
∏

s̃3 �=s3

S3 − s̃3

s3 − s̃3
, (7.6)

P̂s = W−1PsW, P̂s3 = W−1Ps3W, P̃s3 = WPs3W
−1, P̃s = WPsW

−1.

P̂s, P̂s3 , P̃s, P̃s3 may be obtained from (7.6) by the substitution

Sa → Ŝa = W−1SaW = Sa cos θ̃ +
paSbpb

p2
(1 − cos θ̃) +

1
p
εabcpbS4c sin θ̃,

Sa → S̃a = WSaW−1 = Sa cos θ̃ +
paSbpb

p2
(1 − cos θ̃) − 1

p
εabcpbS4c sin θ̃,

θ̃ = θ1 − θ2.
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