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On the new invariance algebras of relativistic
equations for massless particles

W.I. FUSHCHYCH, A.G. NIKITIN

We show that the massless Dirac equation and Maxwell equations are invariant under
a 23-dimensional Lie algebra, which is isomorphic to the Lie algebra of the group
C4 ⊗ U(2) ⊗ U(2). It is also demonstrated that any Poincaré-invariant equation for
a particle of zero mass and of discrete spin provide a unitary representation of the
conformal group and that the conformal group generators may be expressed via the
generators of the Poincaré group.

1. Introduction
Bateman [1] and Cunningham [3] discovered that Maxwell’s equations for a free

electromagnetic field were invariant under conformal transformations. Nearly fifty
years ago the conformal invariance of an arbitrary relativistic equation, for a massless
particle with discrete spin was established by Dirac [4] for a spin- 12 particle and by
McLennan [20] for a particle of any spin.

Until now the question of whether the conformal group is the maximally extensive
symmetry group for the equations of motion for massless particles remained unsettled.
A positive answer to this question has been obtained only in the frame of the classical
Sofus Lie approach (Ovsjannicov [24]), but as has been found recently, Lie methods
do not permit the possibility to obtain all possible symmetry groups of differential
equations.

The restriction of the Lie method is that it applies only to those symmetry groups
whose generators belong to the class of differential operators of first order. Using the
non-Lie approach, in which the group generators may be differential operators of any
order and even integro-differential operators, the new invariance groups of relativistic
wave equations have been found (Fushchych [6–9]). It was demonstrated that any
Poincaré-invariant equation for a free particle of spin s ≥ 12 possessed additional
invariance under the group SU(2) ⊗ SU(2) (Fushchych [6, 7]); that the Kemmer–
Duffin–Petiau equation was invariant under the group SU(3) ⊗ SU(3), and that the
Rarita–Schwinger equation was invariant under the group O(6) ⊗ O(6) was demi-
nstrated by Nikitin et al [23] and by Fushchych and Nikitin [10]. The non-Lie approach
was also used successfully to obtain the symmetry groups of the Dirac and Kemmer–
Duffin–Petiau equations describing the particles in an external electromagnetic field
(Fushchych and Nikitin [12]). Other examples of symmetries which cannot be obtai-
ned in the classical Lie approach are the symmetry groups of the non-relativistic
oscillator (Levi–Leblond [16]) and of the hydrogen atom (Fock [5]).

In the present paper, we have found the new symmetry groups of the massless
Dirac equation and of Maxwell’s equations using a non-Lie approach. These groups
are generated not by the transformations of coordinates, but by the transformations
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of the Dirac wave function Ψ and the vectors of the electric field E and the magnetic
field H of the type

Ψ → Ψ′ = f

(
Ψ,

∂Ψ
∂xa

,
∂2Ψ

∂xa∂xb
, . . .

)
, (1.1)

E → E′ = g

(
E,H,

∂E

∂xa
,
∂H

∂xa
,

∂2E

∂xa∂xb
,

∂2H

∂xa∂xb
, . . .

)
,

H → H ′ = h

(
E,H ,

∂E

∂xa
,
∂H

∂xa
,

∂2E

∂xa∂xb
,

∂2H

∂xa∂xb
, . . .

)
,

(1.2)

where the functions f and g, h may depend on any order derivatives of Ψ and E, H
respectively.

It is demonstrated that Maxwell’s equations are invariant under the group U(2) ⊗
U(2); the explicit forms of the functions g and h in (1.2), which generate the transfor-
mations of such a group, are found. It is also shown that the Dirac equation (with
m = 0) and Maxwell’s equations are invariant under a 23-parametrical Lie group,
which is isomorphic to the group C4 ⊗ U(2) ⊗ U(2). The results obtained admit
immediate generalisation to the relativistic wave equations for massless particles of
any spin. The conformal group generators which leave the Weyl equation and the
massless Dirac equation invariant are expressed in a form which is transparently
Hermitian. It is demonstrated that any (generally speaking, reducible) representation
of a Poincaré group, which corresponds to zero mass and discrete spin, may be
extended to the conformal group representation. The explicit expression for the ge-
nerators of the conformal group C4 via the generators of the Poincaré group P (1, 3)
has been found. We therefore give a constructive proof of the statement that any
relativistic equation for a discrete spin and zero-mass particle provides the unitary
representation of the conformal group (for Maxwell and Bargman–Wigner equations
this has been demonstrated by Gross [13]).

2. The Hermitian representation
of the conformal group generators for any spin

The conformal invariance properties of any relativistic equation of motion for
a particle of zero mass and of discrete spin may be formulated by the following
statement.

Theorem 1. Any Poincaré-invariant equation for a zero-mass and discrete spin
particle is invariant under the conformal algebra C4

∗, basis elements of which are
given by the operators Pµ, Jµν and

D = −1
2
[P0Pa/P 2, J0a]+,

Kµ =
1
2
(
[P0/P 2, [J0b, Jµb]+]+ − [Pµ/P 2, J0bJ0b]+

)
+ gµν

(
Pν/P 2

)(
Λ2 − 1

2

)
,

(2.1)

where Pµ and Jµν are the basis elements of algebra P (1, 3),

[A,B]+ = AB + BA, P 2 = P 2
1 + P 2

2 + P 2
3 , Λ =

1
2
εabcJabPcP

−1
0

∗We use the same notation for the groups and for the corresponding Lie algebras.
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and D, Kµ are the operators which extend the algebra P (1, 3) to the algebra C4.

Proof. Inasmuch as the operators Pµ and Jµν by definition satisfy the algebra

[Pµ, Pν ]− = 0, [Jµν , Pλ]− = i(gνλPµ − gµλPν),
[Jµν , Jλσ]− = i(gνλJµσ + gµσJνλ − gµλJνσ − gνσJµλ),

(2.2)

the theorem proof is reduced to the verification of the correctness of the following
commutation relations:

[Jµν ,Kλ]− = i(gνλKµ − gµλKν),

[Kµ, Pν ]− = 2i(gµνD − Jµν),

[D,Pµ]− = iPµ, [D,Kµ]− = −iKµ,

[Kµ,Kν ]− = 0, [Jµν ,D]− = 0,

(2.3)

which determine together with (2.2) the algebra C4 (see, e.g., Mack and Salam [19]).
It is not difficult to carry out such a verification, bearing in mind that for the set of
solutions of any relativistic equation for a particle of zero mass and of discrete spin
the following relations are satisfied:

PµPµ = 0, WµWµ = 0, Wµ = ΛPµ, (2.4)

where Wµ is the Lubansky–Pauli vector

Wµ =
1
2
εµνρσJνρPσ.

So the formulae (2.1) have determined the explicit form of the conformal group
generators via the given generators Pµ, Jµν of the group P (1, 3). The theorem is
proved.

We note that the generators Kµ and D are written in a transparently Hermitian
form, and hence they generate the unitary representation of the conformal group. The
constructive character of theorem 1 will be demonstrated in the next section.

3. Manifestly Hermitian representation of the conformal group
generators for Dirac and Weyl equations

The results given above may be used to find the explicit form of the generators of
the conformal group representation, which is realised on the set of solutions of any
relativistic equation for a massless particle. In this section we shall demonstrate it by
the examples of the massless Dirac equation and of the Weyl equation.

The Dirac equation for a massless particle of spin 1
2 may be written in the form

LΨ = 0, L = i
∂

∂t
− γ0γapa, pa = −i

∂

∂xa
, (3.1)

where γµ are the four-row Dirac matrices.
{QA} denotes the set of the generators of some Lie group G. Equation (3.1) is by

definition invariant under G if the operators QA satisfy the relations

[L,QA]− = FAL, (3.2)
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where FA are some operators which are defined on the set of the solutions of equa-
tion (3.1).

A well known example of such operators is the set of Poincaré group generators

P0 = H = γ0γapa, Pa = pa,

Jab = xapb − xbpa + Sab, J0a = x0pa − 1
2
[xa,H]+,

(3.3)

where

x0 = t, Sab =
1
4
i(γaγb − γbγa).

According to theorem 1, the representation (3.3) may be extended to the represen-
tation of Lie algebra of the conformal group. Substituting (3.3) into (2.4), one obtains
the operators

D =
1
2
[xµ, Pµ],

Kµ = [Jµν , xν ]+ +
1
2
[Pµ, xνxν ]+

(3.4)

which satisfy the invariance condition (3.2) (where FA ≡ 0) and the commutation
relations (2.5). The operators (3.3) and (3.4) are transparently Hermitian under the
usual scalar product

(Ψ1,Ψ2) =
∫

d3x Ψ†
1Ψ2 (3.5)

and therefore generate the unitary representation of the conformal group.
Let us note that on the set of solutions of equation (3.1) the generators (3.3) and

(3.4) may also be written in the usual form (see e.g. Mack and Salam [19])

Pµ = pµ = igµν
∂

∂xν
, D = xµpµ +

3
2
i,

Jµν = xµpν − xνpµ +
1
4
i[γµ, γν ]−,

Kν = 2xνD − xµxµpν − 1
2
xµ[γν , γµ]−,

(3.6)

which is not, however, manifestly Hermitian.
The Weyl equation for the neutrino,

i
∂φ

∂t
= σapaφ, (3.7)

where σa are Pauli matrices, is equivalent to the equation (3.1) with the Poincaré-
invariant subsidiary condition

(1 + iγ4)Ψ = 0, γ4 = γ0γ1γ2γ3. (3.8)

The exact form of the Hermitian generators of the conformal group which are provided
by equation (3.7) may be obtained from (3.3) and (3.4) by the substitution

p0 → σapa, Sab → 1
4
i(σaσb − σbσa). (3.9)
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Finally, if Pµ and Jµν are the generators of the irreducible representation of
the Poincaré group in Lomont–Moses [18] form, then the formulae (2.1) give the
conformal group generators in the form of Bose and Parker [2].

4. The additional symmetry of the Dirac equation with mass m = 0
Some years ago the new invariance algebra of equation (3.1) was found (Fushchych

[6, 7]); this is different from the algebra of the conformal group generators. The basis
elements of this algebra have the form

Σab = Sab − 1
2

(γap̂b − γbp̂a) (1 + γap̂a) ,

Σ4a =
1
2
γ4γa +

1
2
γ4p̂a (1 + γbp̂b) ,

(4.1)

where

p̂a = pap−1, p =
(
p2
1 + p2

2 + p2
3

)1/2
, a, b = 1, 2, 3.

The operators (4.1) realise the representation D
(

1
2 , 0
)⊗D

(
0, 1

2

)
of the Lie algebra

of the group O(4) ∼ SU(2)⊗SU(2), but do not form the closed algebra together with
(3.3), (3.4) or (3.8). Below we will obtain the 23-dimensional invariance algebra of
equation (3.1), which includes the Lie algebras of the groups C4 and U(2) ⊗ U(2).

Theorem 2. The Dirac equation (3.1) is invariant under the 23-dimensional Lie al-
gebra, which is isomorphic to the algebra of generators of the group C4⊗U(2)⊗U(2).
The basis elements of this algebra have the form

P0 = p0 = i
∂

∂t
, Pa = pa = −i

∂

∂xa
, Jab = xapb − xbpa + Sab,

J0a = x0pa − xap0 − iH

2p
(1 − iγ4)γaγbp̂b + Σ̂0a, D = xµpµ + i,

Kµ =
(−xνxν + JabSabp

−2 + p−2
)
pµ + 2 [xµ + (1 − δµ0)(1 − γ0)Sµbp̂b] D,

Σ̂0c =
1
2
γ4 (p̂a + γ0Sabp̂b) , Σ̂5 =

H

p
,

Σ̂ab =
1
2
εabc

H

p
Σ̂0c, Σ̂6 = 1, a, b, c = 1, 2, 3,

(4.2)

Proof. Let us transform equation (3.1) and the generators (4.2) to a representation
in which the theorem statements may easily be verified immediately. Using for this
purpose the operator

V = V −1 =
1
2

[1 + γ0 + (1 − γ0)εabcSabp̂c] (4.3)

one obtains

L′Ψ′ = 0, Ψ′ = V Ψ, L′ = V LV −1 = i
∂

∂t
− iγ4p, (4.4)
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P ′
µ = V PµV −1 = Pµ, J ′

ab = V JabV
−1 = Jab,

J ′
0a = V J0aV −1 = x0pa − xap0 +

1
2
iγ0γa,

D′ = V DV −1 = D = xµpµ + i,

K ′
µ = V KµV −1 = −xνxνpµ + 2xµD′,

Σ̂′
ab = V Σ̂abV

−1 = Sab, Σ̂′
0a = V Σ̂abV

−1 =
1
2
iγ0γa,

Σ̂′
5 = V Σ̂5V

−1 = iγ4, Σ̂′
6 = V Σ̂6V

−1 = Σ̂6,

(4.5)

It is not difficult to be convinced that the operators (4.4) and (4.5) satisfy the invari-
ance condition (3.2):

[L′, P ′
µ]− = [L′, J ′

ab]− = [L′, Σ̂µν ]− = [L′, Σ̂′
α]− = 0,

[L′,K ′
0]− = 2i

[
x0 + (xapa − i)iγ4p

−1
]
L′, [L′,K ′

a]− = 2i(xa + ip̂ax0γ4)L′,

[L′,D]− = iL′, [L′, J ′
0a]− = γ4p̂aL′

and the commutation relations for Q′
A ⊂

{
P ′

µ, J ′
µν ,K ′

µ,D′, Σ̂′
µν ,Σ′

α

}
[P ′

µ, P ′
ν ]− = 0, [P ′

µ, J ′
νλ]− = i(gµλP ′

ν − gνλP ′
µ),

[J ′
µν , J ′

λσ]− = i(gµσJ ′
νλ + gνλJ ′

µσ − gµλJ ′
νσ − gνσJ ′

µλ),

[P ′
µ,D′]− = −iP ′

µ, [K ′
µ,D′]− = iK ′

µ, [J ′
µν ,D′]− = 0,

[P ′
µ,K ′

ν ]− = 2i(J ′
µν − Σ̂′

µν − gµνD′),

[J ′
µν , Σ̂′

λσ]− = [Σ̂′
µν , Σ̂′

λσ]− = i(gµσΣ̂′
νλ + gνλΣ̂′

µσ − gµλΣ̂′
νσ − gνσΣ̂′

µλ),

[Σ̂′
µν , P ′

λ]− = [Σ̂′
µν ,D′]− = [Σ̂′

µν ,K ′
λ]− = [Σ̂′

α, Q′
A]− = 0.

The algebra (4.6) is isomorphic to the algebra of generators of the group C4 ⊗
U(2) ⊗ U(2). The theorem is therefore proved.

We note that the subsidiary condition (3.8) is not invariant under the transforma-
tions which are generated by the operators Σ̂µν . Therefore the Weyl equation (3.7) is
not invariant relative to the whole algebra (4.2), but is invariant with respect to its
subalgebra C4.

It should be emphasised that the generators (4.2) belong to the class of nonlocal
integro-differential operators, and therefore one cannot obtain them in the classical
Lie approach.

5. The symmetry of Maxwell’s equations
The Maxwell equations for a free electromagnetic field have the form

p × E = i
∂H

∂t
, p × H = −i

∂E

∂t
,

p · E = 0, p · H = 0,

(5.1)

where E and H are the vectors of the electric and magnetic field strengths.
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Equations (5.1) are invariant under the conformal group. It is well known that
these equations are also invariant under the transformations (Heaviside [14], Lar-
mor [15])

Ea → Ha, Ha → −Ea (5.2)

and under the more general ones (Rainich [25])

Ea → Ea cos θ + Ha sin θ,

Ha → Ha cos θ − Ea sin θ,
(5.3)

We now demonstrate that the summetry of the Maxwell equations is more exten-
sive, namely that the equations (5.1) are invariant under the set of transformations
which realise the representation of the group U(2)⊗U(2) and include (5.3) as a one-
parameter subgroup. The theorem about such an invariance of the Maxwell equations
in the class of transformations of kind (1.1) and (1.2) had been formulated by one of
us (Fushchych [9]) without showing the exact form of the functions g and h. Below
we give the explicit transformation laws for Ea and Ha.

Theorem 3. The Maxwell equations (5.1) are invariant under the transformations

Ha → H ′
a = Ha cos θ + [iDabEbθ1 − εabcp̂b(Hcθ3 + iDcdEdθ2)]

sin θ

θ
,

Ea → E′
a = Ea cos θ + [iDabHbθ1 − εabcp̂b(Ecθ3 + iDcdHdθ2)]

sin θ

θ
;

(5.4a)

Ha → H ′′
a = Ha cos λ − [iεabcp̂bDcdHdλ1 + DadHdλ2 − Eaλ3]

sin λ

λ
,

Ea → E′′
a = Ea cos λ + [iεabcp̂bDcdEdλ1 + DadEdλ2 − Haλ3]

sin λ

λ
;

(5.4b)

Ha → H ′′′
a = Ha cos η − εabcp̂bEc sin η,

Ea → E′′′
a = Ea cos η + εabcp̂bHc sin η;

(5.4c)

Ha → H ′′′′
a = exp(iφ)Ha,

Ea → E′′′′
a = exp(iφ)Ea,

(5.4d)

where

Dad =
[(

p2
ap2

c + p2
ap2

b − p2
bp

2
c

)
δad + p1p2p3 (pbδcd + pcδbd − pap̂d)

]
L−1,

L =
1
2

√
2
[(

p2
1 − p2

2

)
p4
3 +

(
p2
1 − p2

3

)
p4
2 +

(
p2
2 − p2

3

)
p4
1

]1/2
,

and where (a, b, c) is a cyclic permutation of (1, 2, 3);

λ =
(
λ2

1 + λ2
2 + λ2

3

)1/2
, θ =

(
θ2
1 + θ2

2 + θ2
3

)1/2
.

θa, λa, η and φ are real parameters. The transformations (5.4) realise the representa-
tion of the group U(2) ⊗ U(2).
Proof. One can be convinced by the direct verification that E′

a, H ′
a, E′′

a , H ′′
a , E′′′

a ,
H ′′′

a , E′′′′
a , H ′′′′

a satisfy equation (5.1) as well as the non-transformed vectors E and
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H but a more elegant and constructive way, which shows the method of obtaining the
group (5.4) is to transform the equations to a form for which the theorem statements
become obvious.

Let us write equations (5.1) in the matrix form (Fushchych and Nikitin [10, 11],
Nikitin and Fushchych [22])

i
∂

∂t
Ψ = αapaΨ, σ3S4apaΨ = 0, (5.5)

where Ψ is an eight-component wavefunction

Ψ = column(H1,H2,H3, φ1, E1, E2, E3, φ2) (5.6)

and αa, S4a are matrices of the form

αa = 2σ2τa,

σ2 = i

(
0̂ −Î

Î 0̂

)
, σ3 =

(
Î 0̂
0̂ −Î

)
, τa =

(
τ̂a 0
0 τ̂a

)
,

(5.7)

τ̂1 =
1
2




0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0


 , τ̂2 =

1
2




0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0


 ,

τ̂3 =
1
2




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


 , S4a =

(
Ŝ4a 0̂
0̂ −Ŝ4a

)
,

Ŝ41 =




0 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 0


 , Ŝ42 =




0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


 ,

Ŝ43 =




0 0 0 0
0 0 0 0
0 0 0 i
0 0 −i 0


 .

0̂ and Î are four-row square zero and unit matrices. The matrices Ŝ4a and

Ŝab =
1
2

(
Ŝ4c + 2τ̂c

)
εabc

realize the representation D
(

1
2 , 1

2

)
of the algebra O(4). Writing equations (5.5) by

components, one obtains the usual form for the Maxwell equation (5.1) and the
conditions for φ1 and φ2:

φ1 = C1, φ2 = C2,
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where C1 and C2 are constants which may be equated to zero without loss of genera-
lity∗.

Using the unitary operator

U = exp
(
−i

Sap̃a

p̃
tan−1 p̃

p1 + p2 + p3

)
, (5.8)

where

p̃a = pb − pc, p̃ =
(
p̃2
1 + p̃2

2 + p̃2
3

)1/2
, Sa =

(
Ŝbc 0̂
0̂ Ŝbc

)
,

one reduces the equations (5.5) to the symmetrical form

L′
1Φ = 0, L′

1 = UL1U
† = i

∂

∂t
− 1√

3
(α1 + α2 + α3)p;

L′
2Φ = 0, L′

2 = UL2U
† =

1√
3
(S41 + S42 + S43), Φ = UΨ.

(5.9)

The operator (5.8) also transforms the helicity operator Sp = Sapap−1 to the sym-
metrical matrix form:

USpU
† = (S1 + S2 + S3)/

√
3.

The invariance condition (3.2) for the equations (5.9) takes the form

[L′
1, Q

′
A]− = f1

AL′
1 + f2

AL′
2, [L′

2, Q
′
A]− = f̃1

AL′
1 + f̃2

AL′
2. (5.10)

The conditions (5.10) are obviously satisfied by any operator which commutes with
the matrices

A = (α1 + α2 + α3)/
√

3 and B = (S41 + S42 + S43)/
√

3. (5.11)

We choose the complete set of such operators in the form

Q′
12 = (S1 + S2 + S3)/

√
3, Q′

23 = iQ′
12Q

′
31,

Q′
31 =

∑
a

(Sb − Sc)p2
a

(
p2

b − p2
c

)
L−1/

√
3,

Q′
4a = AQ′

bc, Q′
5 = A, Q′

6 = σ0 =
(

Î 0̂
0̂ Î

)
.

(5.12)

Of course this is not the only possible basis set of the operators commuting with
(5.11). However, we prefer the operators (5.12) because they are invariant under the
permutation

Sa → Sb, pa → pb, a, b = 1, 2, 3.

∗The analogous “Dirac-like” formulation of the Maxwell equations (but using a four-component wave
function and subsidiary condition different from (5.5b) has been proposed previously by Lomont [17] and
Moses [21].
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The operators (5.12) satisfy the invariance condition (5.10) (with f1
A = f2

A = f̃1
A =

f̃2
A = 0) and the commutation relations

[Q′
kl, Q

′
mn]− = 2i(δkmQ′

ln + δlnQ′
km − δknQ′

lm − δlmQ′
kn),

[Q′
5, Q

′
kl]− = [Q′

6, Q
′
kl]− = [Q′

5, Q
′
6]− = 0.

(5.13)

These operators also satisfy the conditions

(Q′
kl)

2Φ = (Q′
5)

2Φ = (Q′
6)

2Φ = Φ,

i.e. they realise the representation of the Lie algebra of the group U(2) ⊗ U(2) and
Q′

kl form the representation D
(
0, 1

2

)⊗ D
(

1
2 , 0
)
of the group SU(2) ⊗ SU(2).

It follows from the above that equations (5.9) are invariant under the arbitrary
transformation from the group U(2) ⊗ U(2):

Φ → Φ′ = exp
(

1
2
iεabcQ

′
abθc

)
Φ =

(
cos θ +

1
2
iθ−1εabcQ

′
abθc

)
Φ,

Φ → Φ′′ = exp(iQ′
4aλa)Φ =

(
cos λ + iS4aλa

sin λ

λ

)
Φ,

Φ → Φ′′′ = exp(iQ′
5φ)Φ = (cos φ + iQ′

5 sinφ)Φ,

Φ → Φ′′′′ = exp(iQ′
6η)Φ = exp(iη)Φ.

(5.14)

Returning with the help of the operator (5.8) to the starting Ψ function one obtains
from (5.14) the following transformation laws:

Ψ → Ψ′ =
(

cos θ +
1
2θ

εabcQab sin θ

)
Ψ,

Ψ → Ψ′′ =
(

cos λ +
i

λ
Q4aλa sin λ

)
Ψ,

Ψ → Ψ′′′ = (cos φ + iQ5 sin φ)Ψ,

Ψ → Ψ′′′′ = exp(iη)Ψ.

(5.15)

where

Qkl = W−1QklW, Qλ = W−1QλW, λ = 5, 6,

Q12 = Sap̂a, Q23 = σ1F, Q31 = iσ1Sap̂aF,

Q4a =
1
2
σ2Sbp̂bεabcQbc, Q5 = σ2Sbp̂b, Q6 = 1,

F = L−1

( ∑
a�=b�=c

[(
p2

ap2
c + p2

ap2
b − p2

bp
2
c

) (
1 − S2

a

)
+ p1p2p3paSbSc

]−
−pp1p2p3

[
1 − (Sap̂a)2

])
.

(5.16)

Substituting (5.6) and (5.16) into (5.15), we obtain the formulae (5.4). The theorem
is proved.
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So we have found a new eight-parameter symmetry group of the Maxwell equati-
ons which is given by the transformations (5.4). The main property of such transfor-
mations is that they are carried out by the nonlocal (integro-differential) operators.

It is necessary to emphasise that the transformations (5.4) have nothing to do with
the Lorentz ones, inasmuch as they realise the unitary finite-dimensional representa-
tion of the compact group U(2) ⊗ U(2). If λ1 = λ2 = 0, the formulae (5.4b) give the
Heaviside–Larmor–Rainich transformation (5.3).

The transformations (5.4) are unitary under the usual scalar product (3.5). Sub-
stituing (5.6) into (3.5), we discover that the transformations (5.4) do not change the
quantity

E =
∫

d3x
(
E2 + H2

)
,

which is associated with the full energy of an electromagnetic field.
If the parameters θa, λa, η and φ in (5.4) are the complex ones, the transformations

(5.4) realise the representation of the group GL(2)⊗GL(2). Such transformations also
leave the equations (5.1) invariant, but are, of course non-unitary.

Using theorem 1, we can show that equations (5.5) provide the Hermitian repre-
sentation of the Lie algebra of the conformal group. The basis elements of this algebra
have the form

P0 = α · p, Pa = pa,

Jab = xapb − xbpa + Sab = Xapb − Xbpa + p̂cΛ,

J0a = tpa − 1
2
[Xa, P0]+, D =

1
2
[xa, pa]+ − tP0 ≡ −1

2
[Xµ, Pµ]+,

Kµ = −[Jµν ,Xν ]+ +
1
2
[Pµ,XνXν ]+ − Pµ

(
Λ2 +

1
4

)
/p2,

(5.17)

where

X0 = x0 = t, Λ =
1
2
εabcSabp̂cp

−1, Xa = xa + Sabpbp
−2.

But the generators (5.17) together with (5.16) do not form the closed algebra. The
symmetry of equations (5.5) under the 23-dimensional Lie algebra, which includes the
subalgebras C4 and U(2) ⊗ U(2), is established in the following theorem.

Theorem 4. Equations (5.5) are invariant under the 23-dimensional Lie algebra,
basis elements of which are the operators (5.16) and the generators

p̂µ = pµ, Ĵµν = x′
µpν − x′

νpµ,

D̂ = x′
µpµ + i, K̂ ′

µ = −x′
νx′µpµ + 2x′

µD̂,
(5.18)

where

x′
0 = x0,

x′
a = xa + (Sb − Sc)(

√
3p − p1 − p2 − p3) + Sdp̃d(

√
3p̂a + 1)+

+(pb − pc)(S1 + S2 + S3){p[3p +
√

3(p1 + p2 + p3)]}−1.
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The proof may be carried out in full analogy with the proof of theorem 2 (but
using the operator (5.8) instead of (3.3)). The operators (5.18) satisfy the algebra
(2.2) and (2.3) and commute with (5.16).

It is not difficult to generalise the statements of theorem 4 to the case of “Dirac-
like” equations for massless particles of any spin (Fushchych and Nikitin [11], Nikitin
and Fushchych [22]).

We note that the generators (5.16) and (5.17) are nonlocal (integro-differential)
ones. This means that the invariance algebra of the Maxwell equations which we
have obtained in principle cannot be obtained in the classical Lie approach, where,
as is well known, the group generators always belong to the class of differential
first-order operators.
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