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Conformal invariance of relativistic equations
for arbitrary spin particles
W.I. FUSHCHYCH, A.G. NIKITIN

We show that any Poincaré-invariant equation for particles of zero mass and of di-
screte spin provide a unitary representation of the conformal group, and find an explicit
expression of the conformal group generators in terms of Poincaré group generators.

It is well-known that the relativistic equations for massless particles are invariant
under the conformal transformations. This was first established for the Maxwell
equations [1] and then for the equations describing the massless particles of spin
1/2 [2] and of any spin [3].

L. Gross [4] has demonstrated that the solutions of the Maxwell and of the Rarita–
Schwinger (with mass m = 0) equations provide a unitary representation of the
conformal group C4. The proof given in [4] is rather tedious and in some sense
non-constructive, since it does not give an algorithm to obtain an explicit form of
Hermitian generators of the group C4 for any conformal invariant equation.

In this note, we shall formulate a theorem, which generalizes the results [1–
4] and give a simple and constructive proof of it. Without restricting ourselves by
any concrete form of equations for massless particles we show that any (generally
speaking, reducible) representation of the Lie algebra of Poincaré group P (1, 3),
which corresponds to zero mass and discrete spin, can be extended to provide a
representation of the conformal group Lie algebra, and find the explicit expression of
the generators of the group C4 through the generators of its subgroup P (1, 3).
Theorem 1. Any Poincaré-invariant equation for particles of zero mass and of
discrete spin is invariant under the conformal algebra C4

1, basis elements of which
are given by the operators Pµ, Jµν and

D =
1
2
[P0Pa/P 2, J0a]+, a, b = 1, 2, 3,

K0 =
1
2
[P0/P 2, J0aJ0a + Λ2 − (1/2)]+,

Ka =
1
2

(
[P0/P 2, [J0b, Jab]+]+ − [Pa/P 2, J0bJ0b + Λ2 − (1/2)]+

)
,

(1)

where Pµ and Jµν are the basis elements of the Poincaré algebra P (1, 3), µ, ν =
0, 1, 2, 3, Λ = 1

2εabcJabPcP
−1
0 ; P 2 = P 2

1 + P 2
2 + P 3

3 ; [A,B]+ = AB + BA and D, Kµ

are the operators, which extend the algebra P (1, 3) to the algebra C4.
Proof. Inasmuch as the operators Pµ and Jµν satisfy, by definition, the algebra

[Pµ, Pν ]− = 0, [Jµν , Pλ]− = i(gνλPµ − gµλPν),

[Jµν , Jλσ]− = i(gνλJµσ + gµσJνλ − gµλJνσ − gνσJµλ)
(2)
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1We use the same notation for the groups and for the corresponding Lie algebras.
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the theorem proof is reduced to the verification of the correctness of the following
commutation relations

[Jµν ,Kλ]− = i(gνλKµ − gµλKν), [Kµ, Pν ]− = 2i(gµνD − Jµν),

[D,Pµ]− = iPµ, [D,Kµ]− = −iKµ, [Kµ,Kν ]− = 0, [Jµν ,D]− = 0,
(3)

which determine together with (2) the algebra C4 (see e.g. [5]). It is not difficult to
realize such a verification, bearing in mind that, on the set of the solutions of any
relativistic equation for a particle of zero mass and of discrete spin, the following
relations are satisfied:

PµPµ = 0, WµWµ = 0, Wµ = ΛPµ,

where Wµ is the Lubanski–Pauli vector

Wµ =
1
2
εµνρσJνρPσ.

So the formulas (1) determine the explicit form of the conformal group generators
by the given generators Pµ, Jµν of the group P (1, 3). Let us note that the generators
Kµ and D are written in a transparently Hermitian form, from which follows that they
generate together with Pµ, Jµν the unitary representation of the conformal group. The
theorem is proved.

Let us demonstrate the constructive character of Theorem 1 by some examples.
First consider the Weyl equation

σµpµϕ(x0, �x) = 0, pµ = igµν
∂

∂xν
. (4)

On the set of solutions of equation (4) the Poincaré group generators have the form

P0 = σapa, Pa = pa = −i
∂

∂xa
,

Jab = xapb − xbpa +
i

4
[σa, σb]−, J0a = x0pa − 1

2
[xa, P0]+,

(5)

where σa are the Pauli matrices. Substituting (5) into (1), one obtains the remaining
generators of the conformal group in the form

D =
1
2
[xµ, Pµ]+, Kµ = −[Jµν , xν ]+ +

1
2
[Pµ, xνxν ]+. (6)

On the set of solutions of Equation (4), the generators (5) and (6) may be written
also in the usual differential form (see e.g. [5])

Pµ = pµ = igµν
∂

∂xν
, D = xµpµ +

3
2
i,

Jµν = xµpν − xνpµ +
i

4
[σµ, σν ]−, Kν = 2xνD − xµxµpν − 1

2
xµ[σµ, σν ]−,

which however is not manifestly Hermitian.
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Taking Pµ, Jµν in the Foldy–Shirokov form [6]

P0 = p =
(
p2
1 + p2

2 + p2
3

)1/2
, Pa = pa,

Jab = xapb − xbpa + Sab, J0a = x0pa − 1
2p

[xa, P0]+ − (Sabpb/p),
(7)

we obtain from (1)

D =
1
2
[xµ, Pµ]+, Kµ = −[Jµν ,Xν ]+ +

1
2

[
Pµ,XνXν +

1
2p

(
Λ2 +

1
4

)]
+

, (8)

where

X0 = x0, Xa = xa + (Sabpb)/p2.

Using (1), it is not difficult to be convinced that (8) is a universal form of the
generators Kµ, D for any representation of the conformal group, in which Pa and Jab

have the structure (7).
Lastly, if Pµ and Jµν are the generators of the irreducible representation of the

Poincaré group in Lomont–Moses form [7], then the formulas (1) give the conformal
group generators in the form of Bose and Parker [8].

In connection with the above results, the following question arises naturally: Do
there exist Poincaré invariant equations, for particles with nonzero mass, which would
be invariant under the conformal group? A positive answer to this question may be
given only for equations describing particles with variable mass. As an example,
one may consider the relativistic equations with proper time, conformal invariance of
which has been established in [9].

It has been proposed in [10] to use the group of rotations and translations in five-
dimensional Minkowski space for the description of physical systems with variable
mass and spin. This group, which will be further denoted by the symbol P (1, 4),
contains as subgroups both the Poincaré group P (1, 3) and the Galilei group G(3).

The main property of P (1, 4)-invariant equations is that they are constant also
under the conformal algebra C4. More precisely, the following statement is valid:

Theorem 2. Any P (1, 4)-invariant equation is invariant under the Lie algebra of
the group SO(1, 5).
Proof. Using the method proposed in [11], we consider the operator

Jµ5 =
1
2
(PµPµ)−1/2(P νJµν + JµνP ν), PµPµ �= 0,

where Pµ and Jµν are the generators of the group P (1, 4), µ, ν = 0, 1, 2, 3, 4. The set
of the operators Jµν and Jµ5 satisfy the commutation relations of the Lie algebra of
the group SO(1, 5) (which is locally isomorphic to the Euclidean conformal group)

[Jµ5, Jν5]− = iJµν , [Jµ5, Jνλ]− = i(gµνJλ5 − gµλJν5),

[Jµν , Jλσ]− = i(gνλJµσ + gµσJνλ − gµλJνσ − gνσJµλ).

In the case in which the Casimir operator PµPµ = 0, the proof is reduced to that of
Theorem 1.
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