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On the invariance groups of relativistic
equations for the spinning particles
interacting with external fields

W.I. FUSHCHYCH, A.G. NIKITIN

All relativistic free-particle motion equations, including the Dirac and Kemmer–
Duffin–Petiau (KDP) ones, are invariant under the Poincaré group P1,3. But such
a group does not exhaust symmetry of the relativistic equations. It has been shown
in [1] with help of non-Lie method, that any Poincaré-invariant equation for a free
particle with spin s ≥ 1

2 has additional invariance under SU2 ⊗ SU2 group. The same
invariance group is possessed by Maxwell equations [2].

It has been shown in [3, 4], that the free equations of KDP (for s = 1) and of
Rarita–Schwinger (for s = 3

2 ) have more extensive symmetry group than the group
SU2 ⊗ SU2. It follows from the results of these papers, that any relativistic equation
for a free particle of spin s ≥ 1 possesses SU3 symmetry.

In this note, which is an extention of the paper [4], the invariance groups of the
Dirac and KDP equations for the particles, interacting with an external field have
been established.

Theorem 1. The Dirac equation with the Pauli-type interaction

LΨ = 0, L = γµπµ +
i

4m
(1 + iγ4)γµγνFµν + m, (1)

where

πµ = pµ − eAµ, pµ = igµν
∂

∂xν
,

Aµ is the vector potential of electromagnetic field, Fµν = −i[πµ, πν ]−, is invariant
under the Lie algebra of the SU2⊗SU2 group. This algebra basis elements Qµν have
the form

Qµν = iγµγν +
i

m
(1 + iγ4)(γµπν − γνπµ). (2)

Proof may be carried out in a way, which has been described in [4]. The theorem
validity, i.e. that the operators Qµν satisfy the invariance condition of eq.(1) [4]

[Qµν , L]− = ΓµνL, Γµν =
i

m
(γµπν − γνπµ)

and the commutation relations

[Qµν , Qλσ]− = 2i(gµλQνσ + gνσQµλ − gµσQνλ − gνλQµσ)
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may be established by the direct verification. Putting in (1), (2) Aµ = 0, one comes
to the invariance algebra of the free Dirac equation, which has been obtained in [4].

Theorem 2. The Dirac equation for a particle in a constant inhomogeneous magnetic
field

π0ϕ = Hϕ, H = γ0γaπa + γ0m, (3)

where

π0 = p0, π3 = p3, π1 = p1 − eA1(x1, x2), π2 = p2 − eA2(x1, x2)

is invariant under the Lie algebra of SU2 ⊗ SU2 group. The basis elements Σkl of
this algebra have the form

Σ12 =
iγ3γ0γαπα

|γ0γαπα| , Σ31 =
iγ4(γ3m + p3)

(p2
3 + m2)1/2

,

Σ23 = iΣ12Σ31, Σ4a =
H

|H|Σbc, α = 1, 2, (a, b, c) is cykl (1, 2, 3).

(4)

Proof. Let us use the canonical transformation method. Passing to the new wave
function Ψ′:

Ψ → Ψ′ = WΨ, H → H ′ = WHW−1, (5)

where

W = V1V2V3, V1 =
E + q3 + iγ1γ2γ0γαπα√

2E(E + q3)
, E =

(
m2 + π2 − iγ1γ2H

)1/2
,

π2 = π2
1 + π2

2 + π2
3 , q3 =

(
m2 + p2

3

)1/2
, H = −i[π1, π2]−,

V2 = V −1
2 =

1
2

[
1 + iγ3γ4 + (1 − iγ3γ4)

γ0γαπα

|γ0γαπα|
]

,

V3 =
(
V −1

3

)†
= (m + q3 + γ3p3)[2q3(q3 + m)]−1/2

one obtains the equation

i
∂

∂t
Ψ′ = iγ1γ2

(
m2 + π2 − iγ1γ2H

)1/2
Ψ′. (6)

Equation (6) is obviously invariant under the transformations Ψ′ → Σ′
klΨ

′, where

Σ′
12 =

i

2
γ3, Σ′

31 =
i

2
γ4, Σ′

23 =
i

2
γ4γ3, Σ′

4a =
i

2
γ1γ2Σbc. (7)

Operators (7) satisfy commutation relations of the Lie algebra of the O4 ∼ SU2 ⊗
SU2 group. The exact form (4) of these operators in the initial Ψ-representation one
obtains by the inverse transformation, Σkl = W−1Σ′

klW . The theorem is proved.

Remark 1. An analogous theorem takes place also for the Dirac equation, which
describes the particle in alternating the electric field with the fixed direction (say, in
a field, which is directed along the third co-ordinate axis). Such an equation may be
written in the form (3), where

π0 = p0 − eA0(t, x3), π1 = p1, π2 = p2, π3 = p3 − eA3(t, x3). (8)
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The exact form of the SU2×SU2-group generators is given by the following formulae:

Σ̃12 =
iγ2γ1γλπλ

|γ1γλπλ| , Σ̃31 =
iγ4(γ2m + p2)

(p2
2 + m2)1/2

, λ = 0, 3,

Σ̃32 = iΣ̃12Σ̃31, Σ̃4a =
iγ1(γλπλ − γ2π2 − m)
|iγ1(γλπλ − γ2π2 − m)| Σ̃bc.

These operators as like as (4) ones, are integrodifferential operators, in contrast
with (2), where Qµν are differential ones.

Let us consider the KDP equation for a particle of spin s = 1 charge e and
the anomalous magnetic moment k, which interacts with the constant homogeneous
magnetic field H(

βµπµ + m +
ek

4m
SµνFµν

)
Ψ = 0, (9)

where

π0 = p0, π1 = p1 − eHx2, π2 = p2, π3 = p3,

Sµν = i(βµβν − βνβµ), SµνFµν = 2S12H.
(10)

Theorem 3. Equation (9) and (10) have six independent constants of motion QA

which form the Klein group. If k = 1, eqs.(9) and (10) are invariant under ten-
dimensional Lie algebra A10, which contains subalgebra O4.
Proof. Let us reduce eqs.(9) and (10) to the canonical diagonal form, for which the
theorem statements become obvious. Multiplying (9) from the left by

Ṽ1 = exp
[
i
S5λpλ

p5

π

2

]
, λ = 0, 3, p5 =

(
p2
0 − p2

3

)1/2
, (11)

gives the equation

(iβ5p5 − βαπα + kωS12 + m)Ψ′ = 0, Ψ′ = Ṽ1Ψ, ω =
eH
2m

. (12)

This equation may be written in the equivalent form

p5Ψ′ =
[
S5απα + iβ5M̂ − M̂−1βαπαβ5

(
βαπα − M̂

)]
Ψ′,(

1 + β2
5

) (
βαπα + M̂

)
Ψ′ = 0, M̂ = m + kωS12, |kω| �= m.

(13)

With the help of the transformation Ψ′ → Φ = Ṽ2Ṽ3Ψ′, where

Ṽ2 = exp
[
−M̂−1βαπαβ2

5

]
= 1 − M̂−1βαπαβ2

5 ,

Ṽ3 = 1 + β2
5


1 +

E + Ĥκ√
E

(
2E + [Ĥ, κ]+

)

 ,

Ṽ −1
3 = 1 + β2

5


1 +

E + κĤ√
E

(
2E + [Ĥ, κ]+

)

 ,

(14)
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Ĥ = iβ5

(
βαπαM−1βαπα − M

)
, M = m + ωS12,

E = |Ĥ| =
√

Ĥ2, κ = S12 + iβ5

(
1 − S2

12

)
, |ω| �= m,

one reduces eq.(13) to the diagonal form

p5Φ = HcΦ, Hc = S12

(
m2 + π2

α − 2ωS12 + ω2
)1/2

+

+iβ5S12(k − 1)ω + iβ5

(
1 − S2

12

) (
m2 +

m2π2
α + 2k2ω2

m2 − k2ω2

)1/2

,

(1 + β2
5)Φ = 0, π2

α = π2
1 + π2

2 .

(15)

Equations (15) are obviously invariant with respect to transformations Φ → QAΦ,
where QA are arbitrary matrices, which commute with β5 and S12. The complete set
of such matrices may be chosen in the form

Q′
1 = iβ5

(
1 + S12 + S2

12

)
, Q′

2 = iβ5

(
1 − S12 − S2

12

)
,

Q′
3 = iβ5

(
1 − 2S2

12

)
, Q′

3+a = iβ5Q
′
a, a = 1, 2, 3.

(16)

The operators (16) obey the relations

[Q′
A, Q′

B ]− = 0, (Q′
A)2Φ = Φ, Q′

aQ′
b = Q′

c,

Q′
3+aQ′

3+b = Q′
c, Q′

3+aQ′
b = Q′

3+c, a �= b �= c �= a,

i.e. form the six-dimensional Klein group.
If k = 1, there exist ten linearly independent matrices, which commute with Hc

and β5. These matrices may be chosen in the form

N ′
12 = (1 − 2β2

5)S2
12β

2
5 , N ′

31 = iβ5S
′2
12, N ′

32 = iN ′
31N

′
12,

N ′
4a = iβ5S12N

′
bc, B′

1 = iβ5

(
1 − S2

12

)
, B′

1+a = Q′
3+a.

Operators B′
k commute with B′

k′ and with N ′
k′l, and the operators N ′

kl form the
representation D

(
1
2 , 0

)⊕D
(
0, 1

2

)⊕6D(0, 0) of the Lie algebra of the group SU2⊗SU2.
The exact form of the operators QA, Nkl, Nk in the original Ψ-representation may be
obtained by the formulae

QA = W̃−1QAW̃ , Nkl = W̃−1N ′
klW̃ , Bk = W̃−1B′

kW̃ , (17)

where W̃ = Ṽ1Ṽ2Ṽ3 and Ṽ1, Ṽ2, Ṽ3 given in (11), (14). The theorem is proved.

Remark 2. The analogous theorem may be proved for the KDP equation, which
describes the motion of a charged particle with anomalous moment in a constant
homogeneous elwctric field E. Such an equation has the form (9), where

π0 = p0 − Ex3, π1 = p1, π2 = p2, π3 = p3, SµνFµν = −2ES03.

Let us consider the equation for a particle with an arbitrary spin [5]

HsΨ(t,x) = i
∂

∂t
Ψ(t,x), (18)
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where Ψ(t,x) is a 2(2s + 1)-component wave function,

Hs = σ1m + σ3p

s∑
ν=−s

(−1)[ν]Λν + (1 + σ1)ϕ(t,x),

Λν =
∏
µ�=ν

(
S · p

p
− ν

)
(µ − ν)−1, p =

(
p2
1 + p2

2 + p2
3

)1/2
,

(19)

Sa are generators of the direct sum D(s)⊕D(s) of the irreducible representation of the
SU2 group, σ1 and σ3 are 2(2s+1)×2(2s+1)-dimensional Pauli matrices, commuting
with Sa, ϕ(t,x) is an arbitrary potential. If ϕ(t,x) = 0 eq.(18) coincides with the one
obtained in [5] and describes a free motion of a relativistic spin-s particle.

Theorem 4. Equation (18) is invariant under SU2 algebra. The basis elements of
this algebra have the form

Σa = Obc = σ1Sa + (1 − σ1)paS · pp−2. (20)

Proof. Using the transformation

Hs → V HsV
−1 = σ1m + σ3p + (1 + σ1)ϕ(t,x),

Σa → V ΣaV −1 = Sa, V = V −1 =
1
2

[
1 + σ1 + (1 − σ1)

s∑
ν=−s

(−1)[ν]Λν

]
,

one reduces the Hamiltonian (19) and the operators (20) to such a form, that the
theorem statements become obvious.

For s = 1
2 eq.(18) coinsides with the Dirac equation with a semirelativistic potential

(1+σ1)ϕ ≡ (1+γ0)ϕ. The SU2-invariance of such equation has been established in [6].

Theorem 5. The Tamm–Sakata–Taketani equation with a semirelativistic potential

i
∂

∂t
Ψ =

[
σ1

(
m +

p2

2m

)
+ iσ3

(
p2

2m
− (S · p)2

m

)
+ (1 + σ1)ϕ(t,x)

]
Ψ, (21)

is invariant under the Lie algebra of the SU2 group. The basis elements λA of this
algebra have the form

λa = [Oab, Oac]+, λ3+a = Obc, λ7 = i(O23O31O12 − O12O23O31),

λ8 = − i√
3
(O12O23O31 + O23O31O12 − 2O31O12O23),

where Oab are given in (20).
We do not give the proof here. The analogous theorem may be formulated for the

KDP equation with the potential β0(1 + β0)ϕ(t,x).
In conclusion we note that the obtained invariance algebrae may be used for

deriving of new solutions of the equations considered above, if certain partial solution
of these equations is known.



On the invariance groups of relativistic equations for the spinning particles 493

1. Fushchych W.I., Teor. Mat Fiz., 1971, 7, 3 (in Russian); Theor. Math. Phys., 1971, 7, 323 (in
English); Preprint of Institute of Theoretical Physics ITP-70-32, Kiev, 1970.

2. Fushchych W.I., Lett. Nuovo Cimento, 1973, 6, 133; 1974, 11, 508.

3. Nikitin A.G., Segeda Yu.N., Fushchych W.I., Teor. Mat Fiz., 1976, 29, 82 (in Russian); Theor.
Math. Phys., 1976, 29, 943 (in English).

4. Fushchych W.I., Nikitin A.G., Lett. Nuovo Cimento, 1977, 19, 347.

5. Fushchych W.I., Grishchenko A.L., Nikitin AG., Teor. Mat Fiz., 1971, 8, 192 (in Russian); Theor.
Math. Phys., 1971, 8, 766 (in English); Preprint ITP-70-89E, Kiev, 1970 (in English);
Guertin R.F., Ann. Phys., 1974, 88, 504.

6. Smith G.B., Tassie L.I., Ann. Phys., 1971, 65, 352;
Bell I.S., Ruegg H., Nucl. Phys. B, 1975, 98, 151;
Melnikoff M., Zimmerman A.H., Lett. Nuovo Cimento, 1977, 19, 174.


