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On the non-relativistic motion equations
in the Hamiltonian form

W.I. FUSHCHYCH, A.G. NIKITIN, V.A. SALOGUB

The Galilean-invariant equations for particles with arbitrary spins have been obtained,
which describe properly the spin-orbit and the Darwin interactions of a particle with an
external field. The Hagen–Hurley non-relativistic equations have been reduced to the
Hamiltonian form.

1. Introduction
It has been noted in many books and papers (see e.g. [2, 8, 10, 12, 13, 16])

that the Galilean invariant non-relativistic equations for particles with spins do not
give the complete description of the particle movement in external electromagnetic
fields, because such equations (of Pauli, or Levi–Leblond [16], of Hagen–Hurley [10,
12, 13]) do not take into account the spin-orbit and the Darwin interactions. It is
generally accepted to think [16] that such interactions are truly relativistic effects,
and, for instance, if the particle spin s = 1/2, only the Dirac relativistic equation
describes them naturally. In our just published paper [7] this widespread opinion has
been refuted, i.e. the Galilean invariant equations for the particles with the lowest
spins s = 1/2, 1, 3/2 had been derived, which lead to the spin-orbit and to the Darwin
interactions by the standard substitution pµ → πµ = pµ − eAµ. In [6] the analogous
equations have been obtained for a non-relativistic particle with any spin.

Peculiarity of such equations is that they have not redundant (unphysical) com-
ponents unlike other known non-relativistic equations for arbitrary spin particles [10,
12, 13]. The wave function in the equations [7] has only 2(2s + 1) components, and
the energy operator has both positive and negative eigenvalues.

The present work has the two principal aims: first, to obtain the Galilean invariant
equations for the particles with any spin in the Hamiltonian form without negative
energy eigenvalues, which naturally describes not only the dipole, but also the spin-
orbit and the Darwin interactions; and secondly, to establish the Hamiltonian form of
the non-relativistic Levi–Leblond–Hagen–Hurley (LHH) equations.

2. The Hamiltonian form of the equations with redundant components
Galilean-invariant first-order wave equation for the particle with spin s = 1

2 had
been obtained by Levi–Leblond [16]. Then Hagen and Hurley [10, 12, 13] have obtai-
ned such equations for arbitrary spin particles.

It is convenient for our purposes to write the LHH equations [10, 12, 13] in the
form

[βµpµ + (1 − β0)2m] Ψ(t, �x) = 0,

µ = 0, 1, 2, 3, pa = i
∂

∂xa
, p0 = i

∂

∂t
,

(2.1)
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where Ψ(t, �x) is the (6s+1) component wave function, and βµ are the matrices having
the following structure:

β0 =


 I 0 0

0 0 0
0 0 0


 , βa =

1
s


 0 Sa K†

a

Sa 0 0
K − a 0 0


 , (2.2)

and I is the (2s+1)-dimensional unit matrix, Sa are the (2s+1)-dimensional matrices,
which realize the irreducible representation of the algebra O(3), Ka are the matrices
with (2s − 1) rows and (2s + 1) columns, satisfying the condition

SaSb + K†
aKb = isεabcSc + s2δab. (2.3)

The peculiarity of equations (2.1) in comparison with the Dirac relativistic equation
is that even for s = 1/2 the matrix β0 is singular. Therefore some difficulties arise in
reducing the LHH equations to the Hamiltonian form. The analogous problems take
place also in the relativistic Proca, Kemmer–Duffin, and Bhabha equations [1, 11, 15,
18, 19].

In works [1, 11, 15, 18], the Kemmer–Duffin equation(
β̃µpµ + m

)
Ψ = 0, (2.4)

where β̃µ are (10 × 10)-Kemmer–Duffin matrices, has been reduced to the form

i
∂

∂t
Ψ = HΨ, H =

(
β̃0β̃a − β̃aβ̃0

)
pa + β̃0m, (2.5)

[(
1 − β̃2

0

)
m + β̃apaβ̃2

0

]
Ψ = 0, a = 1, 2, 3, (2.6)

where H is the Kemmer–Duffin particle Hamiltonian, and (2.6) is the subsidiary
condition, which removes the redundant components of the wave function Ψ.

The form (2.1) of the non-relativistic equations [10, 12, 13] shows that the methods
of works [1, 11] may be used to reduce the LHH equations to the Schrödinger form

i
∂

∂t
Ψ = HΨ. (2.7)

Our task is to find the exact form of the Hamiltonian H.
The matrices β0 and (1 − β0) are the projectors on the subspaces of upper and

lower components of the wave function Ψ. They satisfy the conditions

β2
0 = β0, (1 − β0)βa = βaβ0. (2.8)

In order to reduce equation (2.1) to the form (2.7) we first multiply (2.1) by (1− β0).
Using (2.8), one obtains

(1 − β0)Ψ = −βapa

m
β0Ψ, (2.9)

or after the multiplication by p0,

(1 − β0)p0Ψ = −βapa

2m
β0p0Ψ. (2.10)
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On the other hand, multiplying (2.1) by β0, one obtains

β0p0Ψ = −β0βapaΨ. (2.11)

Substituting (2.11) into (2.10) and adding the result to (2.11), we come to the equation

i
∂

∂t
Ψ =

[
(1 − β0)

(βapa)2

2m
− βapa − (1 − β0)2m

]
Ψ. (2.12)

Equation (2.12) with the additional condition (2.10) is completely equivalent to (2.1).
Thus we have reduced the LHH equations to the Hamiltonian form.

3. Transition to the diagonal representation
Equations (2.12), (2.10) as well as equation (2.1) are invariant with respect to

the Galilei group G. Indeed, on the set {Ψ} of the solutions of these equations the
following representation of the algebra G is realized:

P0 = p0 = i
∂

∂t
, Pa = pa = −i

∂

∂xa
, Jab = xapb − xbpa + Sab,

Ga = tpa − mxa + λa, λa = − i

2
βaβ0,

(3.1)

where the matrices Sab realize the direct sum D(s) ⊕ D(s) ⊕ D(s − 1) of the algebra
O(3) representations. One can readily see that the generators (3.1) are non-Hermitian
with respect to the usual scalar product

(Ψ1,Ψ2) =
∫

d3xΨ†
1Ψ2. (3.2)

The aim of this section is to transform equations (2.12), (2.10) and the operators
(3.1) to such a form that the wave function Ψ(t, �x) has only 2s+1 non-zero components
and the generators of the Galilei group representation are Hermitian with respect to
(3.2). It is achieved by the transformation to the new wave function

Ψ → Ψ′ = V Ψ, V = exp

(
−i

�λ�p

m

)
. (3.3)

The transformed generators (3.1) take the form

P ′
a = V PaV −1, J ′

ab = V JabV
−1 = Jab,

P ′
0 = V P0V

−1 = p0, G′
a = V GaV −1 = tpa − mxa.

(3.4)

These operators are apparently Hermitian in the scalar product (3.2). Equations (2.12),
(2.10) after the transformation (3.4) have been reduced to the diagonal form

p2
a

2m
Ψ′ = i

∂

∂t
Ψ′, (3.5)

(1 − β0)Ψ′ = 0. (3.6)

It follows from (3.6), (2.2) that the wave function Ψ′ has only 2s + 1 non-zero
components. Thus condition (2.10) (which is equivalent to (3.6) serves to remove 4s
redundant components from the (6s + 1) component wave function Ψ(t, �x).
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One can use the operator (3.3) to construct the positive definite scalar product on
the set of the solutions of equations (2.12), (2.10). Indeed, it follows from the hermitici
of the operators (3.4) with respect to (3.2) that the generators (3.4) are Hermitian
with respect to

(Ψ1,Ψ2) =
∫

d3x Ψ†
1MΨ2, (3.7)

where

M = V †V = 1 − i

m
(�λ�p − �λ†�p ) +

(�λ†�p ) · (�λ�p )
m2

. (3.8)

For the case s = 1/2 the transformation operator (3.3) and the metric operators
(3.8) have the form

V =


 I 0

−�σ · �p
m

I


 , M =




I

(
1 +

p2
a

m2

)
−�σ · �p

m

−�σ · �p
m

I


 , (3.9)

where σa are the usual Pauli matrices.
It follows from the above that the transformation (3.3) may be considered as the

non-relativistic analog of the Foldy–Wouthuysen transformation [3].
Equation (2.10) is not the only Gallilean invariant condition which can be added

to (2.12) in order to remove the redundant components of the wave function Ψ. For
instance, one can use for this purpose the subsidiary condition of the form

1 − 1
2



(

H − (�β�p )2

4m
+ m

)
,


(H − (�β�p )2

4m
+ m

)2


−1/2




+


Ψ = 0. (3.10)

Equations (2.12), (3.10), as (2.12), (2.6), are Galilean invariant and can be reduced to
the diagonal form (3.5), (3.6) by the unitary transformation

Ψ → UΨ, U =
2m + (1 − 2β0)βapa√

4m2 + (βapa)2
. (3.11)

On the set of the solutions of equations (2.12), (3.10) the Galilei group generators
have the form

P0 = i
∂

∂t
, Pa = pa = −i

∂

∂xa
, Jab = xapb − xbpa + Sab,

Ga = tpa − mXa, Xa = xa + [U†, xa]−U.

(3.12)

The generators (3.12) are Hermitian with respect to the usual scalar product (3.2)
but, in contrast to (3.1), are non-local (integral) operators.

4. The Hamiltonian equations without redundant components
In this section we obtain new (different from (2.1)) equations for arbitrary spin

particles, which are invariant under the Galilei group G. The main property of these
equations is that the wave function of a particle with spin s has 2(2s+1) components.
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It allows to establish the direct connection between our equations and the relativistic
equations without redundant components.

We shall start from the following representation for the generators of the Galilei
group

P0 = i
∂

∂t
, Pa = pa = −i

∂

∂xa
, Jab = xapb − xbpa + Ŝab,

Ga = tpa − mxa + λ̃a, Ŝab =
(

Ŝc 0
0 Ŝc

)
, (a, b, c) = (1, 2, 3),

(4.1)

where the matrices Ŝc realize the irreducible representation D(s) of the group O(3),
and λ̃a are arbitrary numerical matrices which have to be such that the generators
(4.1) satisfy the algebra G. It can be shown that the most general (up to equivalence)
form of the matrices λ̃a, satisfying such a requirement, is

λ̃a = k(σ1 + iσ2)Sa, Sa =
1
2
εabcŜbc, (4.2)

where σ1, σ2 are the 2(2s + 1)-dimensional Pauli matrices which commute with Ŝab,
k is an arbitrary constant.

To obtain the Galilean invariant equations in the form

LsΦ(t, �x) = 0 (4.3)

we must find the operators Ls satisfying the conditions

[Pµ, Ls]− = [Jab, Ls]− = [Ga, Ls]− = 0. (4.4)

Thus our problem has been reduced to the solution of the commutation relations (4.4).
In order to solve relations (4.4) we reduce the generators (4.4) to the diagonal

representation

P ′
0 = V P0V

−1 = i
∂

∂t
, Pa = V paV −1 = pa,

J ′
ab = V JabV

−1 = xapb − xbpa + Ŝab, G′
a = V GaV −1 = tpa − mxa.

(4.5)

The transition operator V has the form

V = exp

(
i
�λ�p

m

)
. (4.6)

We require that the wave function of the spin-s particle has, in the diagonal
representation (4.5), 2s + 1 non-zero components. This requirement may be written
in the form of the Galilean invariant condition

(1 + σ3)Φ′ = 0. (4.7)

Another natural assumption is that each component of Φ′ satisfies the non-relativistic
Schrödinger equation

i
∂

∂t
Φ′ =

p2
a

2m
Φ′. (4.8)
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One can write (4.7) and (4.8) in the form of the single equation

L′
sΦ

′ =
[
1
2
(σ1 + iσ2)

(
i
∂

∂t
− p2

a

2m

)
+

1
2
(σ1 − iσ2)2m

]
Φ′ = 0. (4.9)

Equation (4.9) is Galilean invariant inasmuch as the following relations are satisfied

[L′
s, P

′
µ]− = [L′

s, Jab]− = [L′
s, G

′
a]− = 0. (4.10)

To obtain equation (4.9) in the representation (4.1) it is sufficient to use the transition
operator (4.6). Making the transformation

Φ′ → Φ = V −1Φ′, L′
s → Ls = V −1L′

sV, (4.11)

one obtains equation (4.3), where

Ls =
1
2
(σ1 + iσ2)

(
i
∂

∂t
− p2

a

2m
+ k2 (�S�p )2

2m

)
+ (σ1 − iσ2)m + σ3k(�S�p ). (4.12)

Thus we have found the Galilean invariant equation (4.3), (4.12) for the 2(2s + 1)-
component wave function. For s = 1/2, k = 1/s ((4.3), (4.12)) coincide with the
Levi–Leblond equation [16].

Equations (4.3), (4.12), as well as equation (2.1), may be reduced to the Hamil-
tonian form. Indeed, multiplying (4.12) by iσ2, one obtains from (4.3), (4.12) the
following expression:[

β̃0B − β̃ap̃a + (1 − β̃0)2m
]
Φ = 0, (4.13)

where

B = i
∂

∂t
− p2

a

2m
+

k2(�S�p )2

2m
, β̃0 =

1
2
(1 + σ3), β̃0 = −kσ1Sa. (4.14)

The matrices β̃0, β̃a satisfy thereby relations (2.8) as the β0, βa. Repeating the
computations (2.9)–(2.12) one easily obtains from (4.13) the equations

i
∂

∂t
Φ = HΦ, H =

p2
a

2m
− β̃0β̃aβ̃b

(papb + pbpa)
4m

+ β̃apa − (1 − β̃0)2m, (4.15)

(1 − β̃0)Φ = − β̃apa

2m
β̃0Φ. (4.16)

The system of equations (4.15), (4.16) is completely equivalent to (4.3), (4.12).
Thus we have obtained Galilean invariant equations (4.15), (4.16) for a particle

with arbitrary spin s, moreover, the wave function has 2(2s + 1) components. As in
Section 2, the subsidiary condition (4.16) is not the only one which can be added
to (4.15) in order to remove the redundant components of the wave function Φ. For
instance, it is possible to postulate that the wave function Φ satisfy instead of (4.16)
the following equation

ε̂Φ = Φ, ε̂ =
1
2



{

H − p2
a

2m
+

(k�S�p )2

4m

}
,



[
H − p2

a

2m
+

(k�S�p )2

4m

]2



− 1
2



+

. (4.17)
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Equations (4.15), (4.17) are Galilean invariant. On the set of the solutions of these
equations the following representation of the algebra G is realized

P0 = p0 = i
∂

∂t
, Pa = pa = −i

∂

∂xa
, Jab = xapb − xbpa + Ŝab,

Ga = tpa − mXa, Xa = xa + [U†, xa]U,

U =
(
1 + β̃4ε̂

)(
2 + β̃4ε̂ + ε̂β̃4

)−1/2

, β̃4 = 2β̃0 − 1.

(4.18)

The generators (4.18), as (3.12), are Hermitian with respect to the usual scalar
product (3.2).

5. The non-relativistic particles in an external electromagnetic field
It is known from the relativistic equation theory that the equation of motions

which are mathematically equivalent in the case of a free particle, leads to different
physical consequences after the introduction of an interaction. It means that various
mathematically equivalent representations for the equations are physically non-equi-
valent. The classical example of such a situation is the equation for an electron in
the Dirac and in the Foldy–Wouthuysen (FW) [3] representations. If one introduces
the minimal interaction into the free equation in the Dirac representation, the result
is obtained which is in a good accordance with experimental data. If, however, one
introduces the interaction into the free equation in the FW representation, any sensi-
ble result will not be obtained. Another example is the Kemmer–Duffin equation
which does not lead to the spin-orbit and to the Darwin couplings by introducing
the minimal interaction into the original free equation, but describes these couplings
if one introduces the interaction into the mathematically equivalent equation in the
Hamiltonian form [9].

It turns out that the analogous situations takes place also for the non-relativistic
equations. We shall see, that equations (2.12), (4.15) in contrast to (2.1) and (4.3),
(4.13), lead to the spin-orbit and to the Darwin couplings.

First we consider equation (2.12). After the replacement pµ → πµ = pµ − eAµ one
obtains

i
∂

∂t
Ψ = H(�π)Ψ =

{
(1 − β0)

(βaπa)2

2m
− βaπa − (1 − β0)2m + eA0

}
Ψ. (5.1)

In order to obtain from (5.1) the equation for the 2(2s + 1) component wave
function it is necessary to remove the “odd” terms βaπa in (5.1), i.e. to diagonalize
the operator H(�π). In the presence of the interaction such a problem may be solved
only approximately as in the relativistic case [3]. We shall solve this problem up to
terms of order 1/m2 with the help of a set of successive unitary transformations.
After the first transformation

U1 = exp
(
−β4

βaπa

2m

)
, β4 = 2β0 − 1 (5.2)

one obtains

H(�π) → H(1)(�π) = U1H(�π)U†
1 = (1 + β4)

(βaπa)2

4m
− m(1 − β4) + eA0−

− ie

2m
β4(βaEa) − ie

8m2
[βaπa, βbEb]− +

1
12m2

(βaπa)3 + O

(
1

m3

)
,

(5.3)
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Ea = −∂A0

∂xa
− ∂Aa

∂t
,

where O(1/m3) possesses the terms of a power 1/m3.
After the second transformation

U2 = exp
(
− ie

4m2
(βaEa)

]
(5.4)

the operator H(2)(�π) becomes

H(2)(�π) = U2H
(1)(�π)U†

2 − (1 + β4)
(βaπa)2

4m
− m(1 − β4) + eA0+

+
1

12m2
(βaEa)3 − ie

8m2
[βaπa, βbEb]− + O

(
1

m3

)
.

(5.5)

At least, with the help of the operator

U3 = exp
[

1
24m3

β4(βaπa)3
]

, (5.6)

one obtains the final form of H(3)(�π):

H(3)(�π) = U3H
(2)(�π)U†

3 = (1 + β4)
(βaπa)2

4m
−

−(1 − β4)m + eA0 − ie

8m2
[βaπa, βbEb]− + O

(
1

m3

)
.

(5.7)

It follows from (2.2) that the Hamiltonian H(3)(�π) is a completely even (commuti-
ng with β4) operator. On the set of Ψ+, satisfying the condition

1
2
(1 + β)Ψ+ = Ψ+, (5.8)

the Hamiltonian H(2)(�π) has the form

H(3)(�π)Ψ+ =

{
π2

a

2m
− e

�S �H

2ms
+ eA0−

− ie

8m2s
�S · ( �E × �π − �π × �E) − e

8m2
div �E

}
Ψ+,

Ha = − i

2
εabc[πb, πc]−.

(5.9)

Thus, starting from the non-relativistic equation (5.1), we have obtained the

approximate Hamiltonian (5.9) which describes not only the dipole

(
−e

�S �H

2ms

)
, but

also the spin-orbit
(
− ie

8m2s
�S(�π × �E − �E × �π)

)
and the Darwin

(
− e

8m2
div �E

)
inte-

raction of a charged particle with an external electromagnetic field. For the spin
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s = 1/2 particle the Hamiltonian (5.9) coincides with the one, obtained by Foldy and
Wouthuysen [3] from the relativistic Dirac equation.

Now we appeal to equation (4.15) and introduce to it the minimal interaction
pµ → πµ. It leads to the Hamiltonian

H̃(�π) =
π2

a

2m
− β̃0

(β̃aπa)2

2m
− β̃0k

2
�S �H

4m
+ β̃aπa + (1 − β̃0)2m + eA0. (5.10)

This Hamiltonian, as well as (5.1), cannot be diagonalized exactly. By the analogy wi-
th (5.2)–(5.7), one can diagonalize (5.10) approximately with the help of the operator

Ũ = exp(iB3) · exp(iB2) · exp(iB1), (5.11)

where

B1 = −β̃4
β̃aπa

2m
, β̃4 = 2β̃0 − 1, (5.12)

B2 = −e
β̃aEa

4m2
, (5.13)

B3 =
1

8m3

{
− i

k
β̃4(β̃aπa)3 − [β̃aπa, π2

a]−−

−ek2

4
[β̃aπa, SbHb]− − ek2

4
[(β̃aπa), β̃4(SbHb)]−

}
.

(5.14)

As a result one obtains

H(3)(�π) =
π2

a

2m
− 1

2
(1 − β̃4)

(k�S�π)2

2m
+

k2

2
(1 + β̃4)

e�S �H

4m
−

−(1 − β̃4)m + eA0 − ie

8m2
k2[�S�π, �S �E]− + O

(
1

m3

)
.

(5.15)

On the set of Φ+ = β̃4Φ+ this Hamiltonian takes the form

H(3)(�π)Φ+ =

{
π2

a

2m
− k2e

�S �H

4m
+ eA0 − i

ek2

8m2
[�S�π, �S �E]−

}
Φ+. (5.16)

Using the identity

[�S�π, �S �E]− ≡ − i

6
(3[Sa, Sb]+ − 2δabs(s + 1))

∂Ea

∂xb
−

− ie

3
s(s + 1) div �E − i

2
�S( �E × �π − �π × �E),

(5.17)

one can rewrite equation (5.16) in the form

H(3)(�π)Φ+ =

{
π2

a

2m
− ek2

�S �H

4m
+ eA0 − k2

24
Qab

∂Ea

∂xb
−

− e

24m2
k2s(s + 1) div �E − ek2

16m2
�S( �E × �π − �π × �E)

}
Φ+,

(5.18)
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where

Qab =
e

2m2
{3[Sa, Sb]+ − 2δabs(s + 1)} (5.19)

is the tensor of the quadrupole interaction.
Thus the non-relativistic equation without redundant components (4.15) allows us

to obtain the description of a motion of the spin s particle in an external electromag-
netic field. Such a description is in a good qualitative accordance with experimental
data. For s = 1/2 (5.18) coincides with the FW Hamiltonian if one puts an arbitrary
constant k = 1/s.

6. Conclusion
So we have demonstrated that the non-relativistic Hamiltonian equations (2.12),

(4.15) give the consistent description of a charged particle of any spin in external
fields. Thus we have shown that the spin-orbit, the Darwin and the electric quadrupole
interactions are not the truly relativistic effects but may be considered within the
framework of the non-relativistic mechanics.

It is interesting to compare the obtained results with the ones predicted by the
relativistic theory. One can make sure that there is not only the qualitative but
also the quantitative accordance between them. We have demonstrated this fact for
the case s = 1/2. If one puts into (5.18) k = ±2, the resulting equation completely
coincides with the one obtained in [5] from the relativistic equations for arbitrary spin
particles without redundant components [4, 17, 20]. In the particular case k = ±2,
s = 1, equation (5.18) possesses all terms, predicted by the Kemmer–Duffin equation
[9], but additionally takes into account the quadrupole electric interaction of a particle
with a field. At least, if one puts into (5.18) k = 1/s, the coefficients in the terms
representing the spin-orbit, the Darwin and the quadrupole interactions are the same
as calculated in [14] starting from the Feynman–Gell–Mann relativistic equations.

Note, that equations (4.15) and equation (2.12) with the redundant components
lead to different physical consequences (see (5.9) and (5.18)). The analogous situation
takes place in the relativistic case [9, 14].
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