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On the new invariance groups of the Dirac
and Kemmer–Duffin–Petiau equations

W.I. FUSHCHYCH, A.G. NIKITIN

In works [1–6] the canonical-transformation method has been proposed for the investi-
gations of the group properties of the differential equations of the quantum mechanics.
This method essence in that the system of differential equation is first transformed
to the diagonal or Jordan form and then the invariance algebra of the transformed
equation is established. The explicit form of this algebra basis elements for the starting
equations is found by the inverse transformation.

The main distinguishing feature of this method from the intensively developed duri-
ng last years classical Lie method [7, 8] is that the basis elements of the invariance
algebra of the corresponding equations do not belong to the class of the differential
operators, but are as a rule integrodifferential operators. The new invariance algebras
of the Dirac [1, 2]1, Maxwell [2], Klein–Gordon [3], Kemmer–Duffin–Petiau (KDP)
and Rarita–Schwinger [4] equations have been found just in the class of integrodi-
fferential operators.

The aim of this note is to establish the Dirac and the KDP equation invariance
algebras in the class of differential operators. The theorems given below (which es-
tablish new group properties of the Dirac and of the KDP equations) are proved with
the help of the canonical-transformation method.

To establish an invariance of the equation

L(p0, p1, p2, p3)Ψ(x0,x) ≡ LΨ = 0, pµ = i
∂

∂xµ
(1)

under the set of transformations Ψ → Ψ′
A = QAΨ is to found a set of operators

Q ≡ {QA} such that

[L,QA]−Ψ = 0, ∀ QA ∈ Q, (2)

where Ψ is a function which satisfies eq. (1). Condition (2) may be written in the
operator form

[L,QA]− = F · L, (3)

where F is some set of operators, which are defined in the space of equation (1)
solutions.

Theorem 1. The Dirac equation

L 1
2
Ψ ≡ (γµpµ + m)Ψ = 0 (4)

Lettere al Nuovo Cimento, 1977, 19, № 9, P. 347–352.
1The results of the work [2] have been generalized by Jayaraman (J. Phys. A, 1976, 9, 1181) to the case

of the equation without redundant components for any spin. See also [1].
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is invariant under the 16-dimensional Lie algebra A16, whose basis elements are the
differential operators

Pµ = pµ = i
p

∂xµ
, Jµν = xµpν − xνpµ +

i

2
γµγν , (5)

Qµν = iγµγν +
i

m
(1 + iγ4)(γµpν − γνpµ), γ4 = γ0γ1γ2γ3. (6)

Proof. If one does not ask himself about the way to found the operators (6) (the
operators (5), whith form the P1,3 algebra, are well-known), the theorem validity may
be established by direct verification. Indeed, one obtains by direct calculation that
Qµν satisfies the invariance condition (3)

[Qµν , L 1
2
]− = F

1
2

µνL 1
2
, F

1
2

µν =
i

m
(γµpν − γνpµ) (7)

and form together with Pµ, Jµν the Lie algebra

[Pµ, Pν ]− = 0, [Pλ, Jµν ]− = i(gλµPν − gλνPµ), [Pλ, Qµν ]− = 0,

[Jµν , Jλσ]− = i(gµλJνσ + gνσJµλ − gµσJνλ − gνλJµσ),

[Qµν , Jλσ]− =
1
2
[Qµν , Qλσ]− = i(gµλQνσ + gνσQµλ − gµσQνλ − gνλQµσ).

(8)

But such calculations are very cumbersome. A more elegant and constructive way,
which shown the method to obtain the operators (6) is to transform eq. (4) to the
diagonal form. After such a transformation the theorem statements become obvious
ones.

Such a transformation may be carried out in two steps. First eq. (4) is multiplied
by the inversible differential operator

W = 1 − 1
m

γµpµ − 1
2m2

(1 + iγ4)pµpµ,

W = 1 +
1
m

γµpµ − 1
2m2

(1 − iγ4)pµpµ.

(9)

As a result one obtains the equation

WL 1
2
Ψ = 0, (10)

which is equivalent to the starting eq. (4). Then with the help of the isomeric operator

V = exp
[

1
2m

(1 + iγ4)γµpµ

]
≡ 1 +

1
2m

(1 + iγ4)γµpµ (11)

one reduces eq. (10) to the diagonal form

L′Φ ≡ V (WL 1
2
)V −1Φ =

[
λ+m +

λ−

m
(pµpµ − m2)

]
Φ = 0, (12)

where Φ = V Ψ, λ± = 1
2 (1 ± iγ4).

Equation (12) is equivalent to the starting eq. (4) and contains the only matrix γ4,
which may be taken in the diagonal form without loss of generality. So it is evident
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that the matrices Q′
µν = iγµγν commute with the operator L1

1
2
. These matrices

satisfy the commutation relations of the Lie algebra of the SU2 ⊗ SU2 group and
satisfy the relations (8) together with the generators P ′

µ = V PµV −1 = Pµ and
J ′

µν = V JµνV −1 = Jµν .
To complete the proof it is sufficient to find the explicit form of the matrices

Q′
µν in the starting Ψ-representation. Calculating Qµν = V −1Q′

µνV , one obtains the
operators (6). The theorem is proved.

Corollary 1. If one makes in (4), (9)–(l2) the substitution

γµpµ → γµ = (pµ − eAµ)γµ, pµpµ → πµπµ − ie

2
γµγνFµν ,

where Aµ is the vector potential, and Fµν is the tensor of the electromagnetic field,
the transformations (9)–(12) establish the one-to-one correspondence between the
solutions of the Dirac and of the Zaitsev–Gell–Mann equations [9].

Corollary 2. The above founded operators Qµν may be used to find the constants of
motion for the particle interacting with external field. For instance the operator the
Q = εabcQbc(π)(Ha − iEa) is the constant of motion for a particle moving in the
homogeneous constant magnetic field H and the electric field E(Qbc(π)) is obtained
from (6) by the substitution pµ → πµ.

Corollary 3. In theorem 1 the invariance condition of eq. (4) is formulated by the
language of Lie algebras, i.e. on the infinitesimal level. The natural question arises:
what sort of finite transformations are generated by Qµν? Using the explicit form of
the generators (6), one obtains these transformations in the form

Ψ(x) → Ψ′(x) = exp[iQabθab]Ψ(x) = (cos θab − γaγb sin θab)Ψ(x)+

+
1
m

(1 + iγ4) sin θab

(
γa

∂Ψ(x)
∂xb

− γb
∂Ψ(x)
∂xa

)
,

Ψ(x) → Ψ′(x) = exp[iQ0aθab]Ψ(x) = (cosh θ0a − i sinh θ0aγ0γa)Ψ(x)+

+
i

m
(1 + iγ4) sinh θ0a

(
γ0

∂Ψ(x)
∂xa

− γa
∂Ψ(x)
∂x0

)
,

xµ → x′
µ = exp[iQabθab]xµ exp[−iQabθab] = xµ +

1
m

(1 + iγ4) sin θab×
× (γagµb − γbgµa)(cos θab − γaγb sin θab),

xµ → x′
µ = exp[iQ0aθ0a]xµ exp[−iQ0aθ0a] = xµ +

i

m
(1 + iγ4) sinh θ0a×

× (γ0gµa − γagµ0)(cosh θ0a − iγ0γa sinh θ0a),

(13)

where θµν = −θνµ are the six transformation parameters (there is no sum by a, b).
Transformations (13) together with the Lorentz transformations form the 16-parame-
ter invariance group of the Dirac equation.

In the quantum field theory not only the Dirac equation (4) but the system of two
four-component equations for the two independent functions Ψ and Ψ̄ is considered
usually. Such a system is equivalent to one eight-component Dirac equation

(Γµpµ + m)Ψ(x0,x) = 0, (14)
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where Γµ are (8 × 8)-dimensional matrices, which satisfy together with Γ4, Γ5, Γ6

the Clifford algebra (one can see details e.g. in [5]).
The system of eq. (14) has the higher symmetry in comparison with the four-

component Dirac equation. It is shown in [5] that the additional invariance algebra of
eq. (4) (apart from P1,3) is the Lie algebra of the O6-group. This result admits the
following strengthening:

Theorem 2. Equation (14) is invariant under the 40-dimensional Lie algebra A40.
The basis elements of this algebra have the form

Pµ = pµ = i
∂

∂xµ
, Jµν = xµpν − xνpµ +

i

2
ΓµΓν ,

Q̃mn = iΓmΓn +
i

m
(1 + iΓ6)(ΓmΓn − ΓnΓm), m, n = 1, 2, . . . 5,

˜̃Qmn =
[
Γ6 +

i

m
(1 + iΓ6)Γµpµ

]
Q̃mn,

(15)

where, by the definition,

pa+3Ψ(x0,x) = −i
∂Ψ(x0,x)

∂xa+3
≡ 0.

Proof may be carried out in full analogy with the proof of theorem 1. We only draw
attention to the fact, that Qmn satisfies the Lie algebra of the group SU4.

Let us now consider the group properties of the KDP equation, which describes
the particles with spin s = 1. This equation has the form

L1Ψ(x0,x) = 0, L1 = βµpµ + m, (16)

where βµ are the ten-row KDP matrices.
It follows from the above that the KDP equation has to possess the more high

symmetry then eq. (4) do. This conclusion is supported by the following

Theorem 3. The KDP equation in invariant under the 26-dimensional Lie algebra
A26, basis elements of which belong to the class of differential operators and have
the form

Pµ = pµ = i
∂

∂xµ
, Jµν = xµpν − xνpµ + i[βµ, βν ]−,

λa = [cab, cac]+, λa+3 = cbc, λ7 = −i[c12c23c31 − c23c31c12],

λ8 = − i√
3
(c12c23c31 + c23c31c12 − 2c31c12c23), λ8+a = cabc0b,

λ11+a = ic0a, λ15 = (c12c23c02 − c23c31c03),

λ16 =
1√
3
(c12c23c02 + c23c31c03 − 2c31c12c01),

(17)

where

cµν = i[βµ, βν ]− +
1
m

(aµpν − aνpµ), (a, b, c) — cycl (1, 2, 3),

aµ = i[β5, βµ]− + iβµ, β5 =
1
4!

εµνρσβµβνβρβσ.

(18)
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Proof. First we shall show, that the operators λf satisfy the invariance condition (3).
By direct verification one obtains

[cµν , L1]− = F 1
µνL − 1, F 1

µν = (L1 − 2m)
i

m2
(βµpν − βνpµ). (19)

It follows from eq. (19) that the operators cµν (and hence all λf ) satisfy eq. (3).
The operators (17b) satisfy the commutation relations of the Lie algebra of the

SU3 ⊗ SU3 group. This fact may be verified immediately, but the more simple way is
to make previously the transformation λ → V λfV −1 = λ′

f , where

V = exp
[

i

m
aµpµ

]
, cµν → c′µν = V cµνV −1 = i[βµ, βν ]−. (20)

By means of eq. (20) it is not difficult to make sure that the operators λ′
f and

p′µ = V pµV −1 = pµ, J ′
µν = V JµνV −1 = Jµν form the Lie algebra. The theorem in

proved.
In conclusion let us note that the main part of the theorems 1, 2, 3 (i.e. the

invariance of eqs. (4), (14), (16) under the corresponding algebras) may be proved
also by the transformation Ls → Ṽ LsṼ

−1, where Ṽ is the integrodifferential operator

Ṽ = exp
[
i
S4apa

p
arctg

p

m

]
exp

[
Sabpc

p
arctgh

p

E

]
. (21)

The preference of this transformation is that it may be easily generalized for the case
of an arbitrary spin, but the basis elements Qµν of the new invariance algebra have
to be integrodifferential operators (as like as (21)). Thus for the Dirac equation one
obtains

Qab = iγaγb +
i

m
(γapb − γbpa)(1 + iγ4ε̂), Q0a = iε̂Qbc,

where ε̂ is the integrodifferential operator of energy sign

ε̂ =
HD

|HD| = (γ0γapa + γ0m)(m2 + p2)−1/2.
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