
W.I. Fushchych, Scientific Works 2000, Vol. 1, 310–314.

On the Galilean-invariant equations
for particles with arbitrary spin
W.I. FUSHCHYCH, A.G. NIKITIN

In our preceding paper [1] the equations of motion which are invariant under the
Galilei group G have been obtained starting from the assumption that the Hamiltonian
of a nonrelativistic particle has positive eigenvalues and negative ones. These nonre-
lativistic equations as well as the relativistic Dirac equation lead to the spin-orbit
and to the Darwin interactions by the standard replacement pµ → πµ = pµ − eAµ.
Previously it was generally accepted the hypothesis that the spin-orbit and the Darwin
interactions are truly relativistic effects [2].

In [1] only the equations for the particles with the lowest spins s = 1
2 , 1, 3

2 have
been obtained. What puts the equations [1] in a class by themselves is that the
transformation properties of a wave function are rather complicated (nonlocal) and
it is difficult to establish their invariance under the Galilei transformations after the
replacement pµ → πµ.

In the present note equations for arbitrary-spin particles are obtained which pos-
sess as good physical properties as the equations [1].

Moreover the wave function has simple transformation properties in the case of
the equation describing the interaction with an external field as well as in the case of
the absence of interaction.

We shall start from the assumption that under the Galilei transformation

x → x′ = Rx + V t + a,

t → t′ = t + b,
(1)

the 2(2s + 1)-component wave function Ψ(t,x) transforms as

Ψ(t,x) → Ψ′(t′,x′) = exp[if(t,x)]Ds(R,V )Ψ(t,x), (2)

where Ds(R,V ) is some numerical matrix, depending on the parameters of the trans-
formation (1), exp[if(t,x)] is the phase factor [3]

f(t,x) = mV · Rx +
1
2
mv2t. (3)

The generators of the group G, which corresponds to the transformation (2), have the
form

P0 = i
∂

∂t
, Pa = pa = −i

∂

∂xa
, Jab = xapb − xbpa + Sab,

Ga = tpa − mxa + λa, Sab =
(

sab 0
0 sab

)
,

(4)

where sab are the generators of the irreducible representation D(s) of the group O3,
λa are some numerical matrices, which have to be such that the operators (4) satisfy
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the commutation relations of the algebra G. It can be shown that the most general
(up to equivalence) form of the matrices λa satisfying this requirement is

λa = k(σ3 + iσ2)Sa, Sa =
1
2
εabcSbc, (5)

where σ2, σ3 are the 2(2s + 1)-dimensional Pauli matrices which commute with Sab,
k is an arbitrary constant.

To find the motion equations for arbitrary-spin particles

i
∂

∂t
Ψ(t,x) = Hs(p, s)Ψ(t,x) (6)

it is sufficient to construct such an operator (Hamiltonian) Hs(p, s) that eq. (6) be
invariant under the Galilei group G. Equation (6) will be invariant relative to G, if
the following conditions are satisfied:

[Hs(p, s), Pa]− = 0, [Hs(p, s), Jab]− = 0, [Hs(p, s), Ga]− = −iPa. (7)

Thus our problem has been reduced to the solution of the commutation relations (7)1.
In order to solve relation (7) we expand Hs in a complete system of the orthopro-

jectors and Pauli matrices

Hs(p, s) =
∑
µ,r

σµaµ
r Λr, µ = 0, 1, 2, 3, (8)

where

Λr =
∏
r �=r′

s · p/p − r′

r − r′
, r, r′ = −s,−s + 1, . . . , s,

and σ0 is the 2(2s + 1)-dimensional unit matrix, aµ
r (p) are unknown coefficient func-

tions. Substituting (8) into (7), using the relations [4]

[Λr, xa] =
Sabpb

2p2
(2Λr − Λr+1 − Λr−1) +

i

2p

(
Sa − pa

p

S · p
p

)
(Λr+1 − Λr−1),

[Λr, Sab] = pa[Λr, xb] − pb[Λr, xa],
(9)

and taking into account the completeness and the orthogonality of the orthoprojeotors,
we have found that, up to equivalence, the general form of the Hamiltonian Hs(p, s),
satisfying (7), is given by the formula

Hs = m0 + σ3ηm +
p2

2m
− σ12iηhS · p − (σ3 + iσ2)ηk2 (S · p)2

m
, (10)

where η is an arbitrary constant.
Formula (10) gives the free nonrelativistic Hamiltonian for a particle with an

arbitrary spin. Equation (6) with the Hamiltonian (10) is invariant under the group G.
For the spin 1

2 particle (when s = 1
2 , k = −i, η = 1) equation (6) may be written in

the compact form

(γµpµ + m)Ψ = (1 + γ4 − γ0)
p2

2m
Ψ, (11)

where γµ are the Dirac matrices.

1The analogous problem has been eolved in the relativistic case in [4]. Lately the method of the work
[4] has been further developed in works of R.F. Guertin [5].



312 W.I. Fushchych, A.G. Nikitin

The Hamiltonian (10) and the generators (4) are non-Hermitian under the usual
scalar product. They are, however, Herinitian under

(Ψ1,Ψ2) =
∫

d3x Ψ†
1MΨ2, (12)

where M is the positive-definite metric operator

M = 1 + [i(k − k∗)σ3 − (k + k∗)σ2]
S · p
m

+ 2|k|2(1 + σ1)
(

S · p
m

)2

. (13)

Besides, if η, k satisfy the condition ηk = (ηk)∗, the Hamiltonians are Hermitian also
in the indefinite metric

(Ψ1,Ψ2) =
∫

d3x Ψ†
1ξΨ2, (14)

where

ξ =

{
σ3, if η∗ = η, k∗ = k,

σ2, if η∗ = −η, k∗ = −k.

With the help of the transformation

Hs → H ′
s = V HsV

−1, V = exp
[
i
λ · p
m

]
, (15)

the Hamiltonian (10) may be reduced to the diagonal form

H ′
s = m0 + σ3ηm +

p2

2m
. (16)

It is interesting to note that the condition of Galilei invariance admits the pos-
sibility to introduce two masses: the rest mass, or the rest energy (ε1 = m0 + ηm,
ε2 = m0 − ηm) and the kinetic mass (the coefficient of p2). Below we consider the
case when m0 = 0, η = 1, i.e. the rest mass is equal to the kinetic mass.

To describe the motion of the charged particle in external electromagnetic fields
we make in (6) and (10) the replacement pµ → πµ (symmetrizing preliminarily the
Hamiltonian in pa [1]). This leads to the equation

i
∂

∂t
Ψ(t,x) = Hs(π)Ψ(t,x), (17)

Hs(π) = σ3m +
π2

2m
+ σ12ik(S · p) +

2k2

m
(σ3 + iσ2)

[
(S · π)2 +

1
2
(S · M)

]
,(18)

where Ha = iεabc[πb, πc]− are components of the magnitude of the magnetic field.
It is important to note that eq. (17) as before is invariant with respect to the

Galilei transformations (1) and (2), if the vector potential is transformed according
to [2]

A → A′ = RA, A0 → A′
0 = A0 + V RA. (19)
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To prove this statement it is sufficient to use the exact form of the matrix Ds(R,V )
in (2)

Ds(R,V ) = (1 + iλ · V ) ·
(

Ds(R) 0
0 Ds(R)

)
, (20)

where Ds(R) the matrices from the representation D(s) of the group O3.
As in the case of the Dirac equation [6] the Hamiltonian (18) cannot be diagonali-

zed exactly. We shall make the approximate diagonalization of the operator (18) up to
the terms of the power 1/m2 with the help of the operator

V (π) = exp[iBs
3] exp[iBs

2] exp[iBs
1], (21)

where

Bs
1 = iσ2k

S · p
m

, Ea = −∂Aa

∂xa
− ∂Aa

∂t
,

Bs
2 = −σ1k

[S · π,π2]−
4m2

− iσ1k
2 (S · π)2 − 1

2S · H
m2

− iσ1k
S · E
2m2

,

Bs
3 = −2

3
ik3σ2

(
S · π
m

)3

+ ik3 [S · π,S · H]+
m3

σ2 + σ2
k2[(S · π)2, eA0]

m3
.

(22)

After this diagonalization one obtains

V (π)Hs(π)V −1(π) = σ3m +
π2

2m
+ eA0 + k2σ3

S · H
m

−

− k2

4m2
S · (π × E − E × π) +

k2

6m2
s(s + 1) divE +

k2

12m2
Qab

∂Eb

∂xa
+

+
k3

m2
S · (π × H − H × π) − 1

3
k3

m2
Qab

∂Ha

∂xb
+ o

(
1

m3

)
,

(23)

where Qab is the tensor of the quadrupole interaction

Qab = 3[Sa, Sb]+ − 2δabs(s + 1). (24)

It is readily seen from (23) that −k2 can be interpreted as the dipole magnetic
moment of the particle. If s = 1

2 , −k2 = 1 (it corresponds to the “normal” dipole
moment), the first seven constituents of the approximate Hamiltonian coincide on
the set Φ+ = 1

2 (1 + σ3)Φ with the Foldy–Wouthuysen Hamiltonian, which had been
obtained from the relativistic Dirac equation. The last two terms in (23) may be
interpreted as the magnetic spin-orbit and the magnetic quadrupole interactions of
the particle with the field.

In conclusion we note that we have not required the invariance with respect to the
time reflection for eq. (6). This invariance has been ensured if one doubles (brings to
4(2s + 1)) the number of the components of the wave function and assumes that the
particle energy can take both positive and negative values. An analogous situation
takes place in the relativistic theory [7].

As in the relativistic theory, it is possible to construct for the particle with spin s
the nonrelativistic wave equations with another (different from 2(2s+1) or 4(2s+1))
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number of components. For instance, the spin-one and spin-zero particles may bo
described by the Galilean-invariant equations

(βµpµ − m)Ψ =
[
β0

p2

2m
+ β2

0

(β · p)2

m

]
Ψ, (25)

where βµ are the 10×10- or 5×5-dimensional Kemmer–Duffin–Peteu matrices. These
equations will be considered in another work.

Note. The equations obtained in [1] and in the present paper may be considered as
those with the broken Lorentz symmetry. Actually, equations (12) from [1] and (11)
from the present work have the form of the Dirac equation with the additional term
which is noninvariant under the Poincaré group, but is Galilean invariant. The second-
order equations with this broken symmetry have the form

(pµpµ − m2)Ψ = BΨ, (26)

where B = p4/4m2 for the equations of ref. [1] and B = m(1 + 2σ3) + p2σ3 + p4/4m2

for the equations from the present paper (if m0 = m, η = 1).
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