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Poincaré-invariant equations
with a rising mass spectrum
W.I FUSHCHYCH

In recent years many papers have been devoted to the construction of infinite-compo-
nent wave equations to describe properly the spectrum of strongly interacting particles
[1, 2]. As a rule, the derived equations have a number of pathological properties:
the unrealistic mass spectra, the appearence of spacelike solutions (pi < 0), the
breakdown of causality etc. [2].

In this note we shall construct, in the framework of relativistic quantum mechanics,
the Poincare-invariant motion equations with realistic mass spectra. These equations
describe a system with mass spectra of the form m? = a? + b?s(s + 1), where a and
b are arbitrary parameters. Such equations are obtained by a reduction of the motion
equation for two particles to a one-particle equation which describes the particle in
various mass and spin states. It we impose a certain condition on the wave function
of the derived equation, such an equation describes the free motion of a fixed-mass
particle with arbitrary (but fixed) spin s.

Let us consider the motion equation for two free particles with masses m; = my =
m and spins s; and sy in the Thomas—Bakamjian-Foldy form [3]

PO _ (2 aa ), (1
where
Po=p +p, M =20m®+ k)2,
pgl), pff) are components of the momenta of the two particle, k the relative momen-
tum, « the co-ordinate of the centre of mass, £ is the relative co-ordinate.

On the manifold of solutions {®} of eq. (1) the generators of the Poincaré group

Py 3 have the form
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where 551? and sﬁ) are the spin matrices satisfying the Lie algebra of the rotation

group Os.
Equations (1) is invariant with respect to algebra (2) since the condition

’L% _(P§+M2)1/27JHV CD:O, /1,:0,]_,2,3, (3)
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is satisfied. In spherical co-ordinates the operator k? is
10 0 1
2= 9 (29 L2
e () tEmin €

where mg,, is the square of the angular momentum with respect to the centre of mass.
Let us impose on the function ®(¢,x,§,0, ) the condition

E=+&+6, (4)

o0(t,x,0,p)

0¢ = 0. 5)

This condition means that the wave function ® constant on the sphere of radius
ro = £ = /&2 with respect to internal variables &3, &, &3. If we take into account the
condition (5), eq. (1) now becomes

ia(b(t7x707 (p) <

4 1/2
T p2+4m2+r—2m2b> (t, 2,0, ). (6)

0

Equation (6) may yield the mass spectrum only for the bosons so that mg; should
be replaced by L,,. Having done this, we obtain the equation

Za(b(t7 T, 07 gO)

4 1/2
= <p2 + 4m2 + _2L2b> (b(t7 x, 67 50) (7)
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Equation (7) shows that the mass operator M? = P2 — P2 has on the set {®(t,z,0,¢)}
the discrete mass spectrum of the form

4 4
M?® = <4m2 + 2L§b> P = {4m2 + —s(s+ 1)} P, (8)
7o 7o
where
s=0,1,2,... if Loy = map :gakb _gbkav (9)
135 .
s = §7§7§a--~ if Lab_gakb_fbka'i_saba (10)

Sap = 0¢/2, 0. are the 2 x 2 Pauli matrices.

In the case (9) the operator M? has a simple spectrum. In the case (10) the
spectrum of M? is twofold degenerated. In the general case the measure of the
degeneracy depends on the dimension of the matrices S, realizing representations of
the group Os.

[f we suppose that the energy operator Py can have both the positive and negative
spectrum, then for fermions (the spectum (10)) we find the equation

4 1/2
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0

(11)
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where @ is the four-component wave function. The integro-differential equation (11)
may be written in the symmetrical form with respect to the operators pg, p, if the
transformation [4] is carried out on it

1 YoH _ 2 272 \1/2 _
u—ﬁ(uﬁ), H = vorepe 0 (0> + PL2) Y2 ed=1,2,3,12)

where 70, Ve, 74 are the 4 x 4 Dirac matrices, a®> = 4m?, b?> = 4/r2. After the
transformation (12), eq. (11) takes the form

po¥(t,z,0,p) = {70%2% + 074 (® + b2L3d)1/2} (t, z,0, ),
U =Ud.

(13)

We now summarize that eq. (7) describes a boson system with increasiftg mass
spectrum if the operator L, has the form (9). Equation (13) (or eq. (7)) describes a
fermion system with increasing mass spectrum if the operator L, has the form (10).

The four-component eq. (13) (or (7)) may be used for describing the free motion
of a particle of nonzero mass with arbitrary hali-integer spin s. Indeed, to do this it is
sufficient to impose the Poincaré-invariant condition on the wave function ¥, picking
up a fixed spin from the whole discrete spectrum (10).

This condition has the form

1
WW#WH\II(L"B797 50) = Lib\Ij(tv z,0, 90) = 3(5 + 1)\117 (14)
where
1 v 7o
W, = 56#1,&513 JP, (15)

s is an arbitrary but fixed number from the set (10).
Equations (7), (13) may be obtained in another way. Let us consider the equation

/2

O0P(t,x1,29,...,26 1
22 o R I

q)(t7.'171,$2,...7$6), (16)
where pr, = —i(0/0xk), k = 1,2,...,6, > is a constant. The equation is invariant
under the generalized Poincaré group P [5].

Py ¢ is the group of rotations and translations in (1 + 6)-dimensional Minkowski
space. Equation (16) is invariant with respect to the algebra [5]

0 0
Py=py=1— Po=pr=—i—, k=1,2,...,6
0 Po Zata k Dk Zafﬂk7 s 4y s Yy (17)

Juv = TpPy — TuPp + Spvs w,v=0,1,2,..., 6.

Equation (16), together with the supplementary condition of the type (5), is equi-
valent to eq. (7). This may be shown by passing from the variables x4, x5, x¢ to
the new variables &, 6, . It is to be emphasized, however, that the supplementary
condition of the type (5) breaks down the invariance with respect to the whole group
Py ¢ but conserves the invariance relative to its subgroup P 3 C P .
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Note 1. On the set {®} besides the representations of the Poincaré algebra P; 5 (the
external algebra), we may construct one more algebra of Poincaré K, 3 (the internal
algebra). The representation of the algebra K 3 has the following form:

1
KO - 7M7 Ka = ka = 72&7 Lab = Mgy + S(Lb7
2 0
1 5 (18)
Mab = €akb - fbka’ Log = _g(gaKO + Kofa) - I(()a—:_l;n.

This algebra describes an intrinsic relative motion of the two-particle system with
respect to the centre of mass. The algebra P; 3 describes a motion of the centre of
mass. Equations (7), (13) are not invariant in respect to the whole algebra K 3.

Note 2. We note that the results obtained do not contradict the O’Raifeartaigh’s
theorem [6] since the operators (2) of the algebra P; 3 together with the operators

(18) of the algebra K 3 form the infinite-dimensional Lie algebra.
Note 3. Equation (13) jointly with tin condition (14) for the case s = § is equivalent
to the ordinary four-component Dirac equation for the particle with the spin s = 3.

1. Majorana E., Nuovo Cimento, 1932, 9, 355;
Nambu Y., Prog. Theor. Phys. Suppl., 1966, 37-38, 368;
Fronsdal C., Phys. Rev., 1967, 156, 1665;
Barut A.O., Corrigan D., Kleinert H., Phys. Rev., 1968, 167, 1527.

2. Chodos A., Phys. Rev. D., 1970, 1, 2973 (The reader will find an extensive list of further references
in it).

3. Bakamjian B., Thomas L.H., Phys. Rev., 1953, 92, 1300;
Foldy L.L., Phys. Rev., 1961, 122, 289.

4. Fushchych W.I., Lett. Nuovo Cimento, 1974, 11, 508.

5. Fushchych W.I., Krivsky 1.Yu., Nucl. Phys. B, 1968, 7, 79; 1969, 14, 573;
Fushchych W.1., Theor. Math. Phys., 1970, 4, 360 (in Russian).

6. O’Raifeartaion L., Phys. Rev., 1965, 14, 575.



