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On representations of the inhomogeneous
de Sitter group and on equations
of the Schrödinger–Foldy type

W.I. FUSHCHYCH, I.Yu. KRIVSKY

This paper is a continuation and elaboration of our works [1] where some approach to
the variable-mass problem were proposed. Here we have found a concret realization
of irreducible representations of the inhomogeneous group P (1, n) — the group of
translations and rotations in (1+n)-dimensional Minkowski space in two classes (when
P 2

0 −P 2
k > 0 and P 2

0 −P 2
k < 0). All the P (1, n)-invariant equations of the Schrödinger–

Foldy type are written down. Some questions of a physical interpretation of the quantum,
mechanical scheme based on the inhomogeneous de Sitter group P (1, n) are discussed.
Report presented at the Conference on Composite Models of Elementary Particles

(Institute for Theoretical Physics, Kiev, Ukrainian SSR, June 1968).

Данная работа является продолжением и развитием работ [1], где был предложен
определенный подход к проблеме переменной массы. Здесь построена конкретная
реализация неприводимых представлений неоднородной группы P (1, n) вращении
и трансляций в (1 + n)-мерном пространстве Минковского в двух классах (когда
P 2

0 − P 2
k > 0 и P 2

0 − P 2
k < 0). Выписаны P (1, n)-инвариантные уравнения ти-

па Шредингера–Фолди. Рассмотрены некоторые вопросы физической интерпрета-
ции квантовомеханической схемы, основанной на неоднородной группе де Ситтера
P (1, 4).
Работа была доложена на Рабочем совещании по составным моделям элементар-

ных частиц, состоявшемся в ИТФ АН УССР в июне 1968 г.

1. Introduction
Recall here the initial points of our approach to the variable mass problem proposed

in ref. [1]:
A. The square of variable mass operator is defined as an independent dynamical

variables

M2 ≡ κ
2 + P 2

4 , (1)

where κ is a fixed parameter and P4 is an operator lice the components of three-
momentum �P , which commutes with all the generators of the algebra P (1, 3) of the
Poincaré group.
B. The relation between the energy P0, three-momentum �P and variable-mass M

of a physical system is remained to be conventional (here everywhere � = c = 1):

P 2
0 = �P 2 + M2 ≡ P 2

k + κ
2, k = 1, 2, 3, 4. (2)

C. The spaced p ≡ (p0, p1, . . . , p4) and x ≡ (x0, x1, . . . , x4) are assumed to be plane
and reciprocally conjugated. It follows then from А, В and С that the generalized
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relativistic group symmetry is the inhomogeneous de Sitter group1 P (1, 4) — the
group of translations and rotations in five-dimensional Minkowski space. This group
is a minimal extention of the conventional group of relativistic symmetry — the
Poincaré group P (1, 3).
In this paper we shall present a further studying of the approach proposed in

ref. [1]. In particular, the main assertions which were briefly formulated in ref. [1], are
generalized here and their detail proofs are given. In Section 2 a concrete realization
of irreducible representations for the generators Pµ, Jµν of the algebra P (1, n) with
arbitrary n carried out, which made it possible to give a proof of the P (1, n)-invariance
of the Schrödinger–Foldy type equations written flown in ref. [1] for n = 4. Some
questions of a physical interpretation of quantum mechanical scheme based on the
group P (1, 4) are considered in Section 3.

2. Realizations of the algebra representations
For the sake of generality all the considerations are made here not for the de Sitter

group P (1, 4) but for the group P (1, n) of translations and rotations in dimensional
Minkowski space, which leaves unchanged, the form

x2 ≡ x2
0 − x2

1 − · · · − x2
n ≡ x2

0 − x2
k ≡ x2

µ,

µ = 0, 1, 2, . . . , n; k = 1, 2, . . . , n,
(3)

where xµ are differences of point coordinates of this space.
Commutation relations for the generators Pµ, Jµν of the algebra P (1, n) are

choosen in the form

[Pµ, Pν ] = 0, −i [Pµ, Jνσ] = gµνPσ − gµσPν , (4a)

−i [Jµν , Jρσ] = gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ, (4b)

where g00 = 1, −gkl = δkl, Pµ is Kroneker symbol, Pµ are operators of infinitesimal
displacements and Jµν are operators infinitesimal rotations in planes (µν).
Authors of refs. [2–5] have studed all the irreducible representations of the Poi-

ncaré group P (1, 3) and have found the concrete realization for the generators of its
algebra. Their methods we generalize here for the case of group P (1, n). But all the
treatments are carried out in more general and compact form then it was done even
for the case of P (1, 3).
For representations of the class I (P 2 ≡ P 2

0 − P 2
k > 0) when the group O(n) of

rotations in a n-dimensional Euclidean space is the little group of the group P (1, n),
the generators Pµ, Jµν are of the form

P = p ≡ (p0, p1, . . . , pn) ≡ (p0, pk),

Jkl = x[kpl] + Skl, J0k = x[0pk] − Sklpl√
p2 + p2

k +
√

p2
,

(5)

where

P 2 ≡ p2 ≡ p2
0 − p2

k > 0, x[µpν] ≡ xµpν − xνpµ,

1The algebras and groups connected with them are designated here with the same symbols.
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operators xµ, pµ are defined by relations

[xµ, pµ] = −igµν , [xµ, xν ] = [pµ, pν ] = 0, (6)

and Skl are matrices realizing irreducible representations D(s, t, . . .) of the algebra
O(n) which have been completely studied in ref. [6] (here the numbers s, t, . . . are
numbers which identify a correspondence irroducible representations of the algebra
O(n)). Using (6) and relations for the generators Skl (which are not written down
here), one can immediately verify that (5) actually satisfy the relations (4). Since
in this class the little group of the group P (1, n) coincides with the compact group
O(n), all the irreducible representations of the group P (1, n) are here unitary and
finite-dimensional (concerning a set of “spin” indexes s3, t3, . . .).
A concrete form of the operators Pµ, Jµν which are defined by Eqs. (5), depends

on a choice of concrete form of matrices Skl and operators xµ, pµ which are defined
by relations (6). The concrete form of the operators xµ, pµ and Skl depends on what of
operators, constituting a complete set of commuting dynamical variables are operators
of multiplicationd (“diagonal operators”). The sets (P0, P1, . . . , Pn, S3, T3, . . .) or
(x0, x1, . . . , xn, S3, T3, . . .) are examples of such a complete sets where S3, T3, . . . are
all the independent commuting generators of the algebra O(n). In the general case
a complete set of dynamical variables is constructed from the corresponding number
of commuting combinations of operators xµ, pµ and Skl. Different concrete forms of
operators Pµ, Jµν which are defined by the choice of other complete set as diagonal,
are connected by unitary transformations. The form (5) for the generators is the most
general in the sense that it is not bound to the choice of concrete complete set as
diagonal.
A few words about a apace of vectors Ψ, in which the operators (5) are defined. It

is an Hilbert space of vector-functions depending on the eigenvalues of operators of
a diagonal complete sel. For instance, in the x-representation where the operators xµ

are diagonal (i.e., are operators of multiplication) and, as it follows from relations (6),
pµ = igµν∂ν , ∂ν ≡ ∂/∂xν the operators (5) are defined in the Hilbert apace of
the vector-function Ψ = Ψ(x) = Ψ(x0, x1, . . . , xn) of (1 + n) independent variables
xµ. The components of a vector Ψ are functions not only of x0, x1, . . . , xn but also
of auxiliary variables s3, t3, . . ., i.e., are functions Ψ(x0, x1, . . . , xn, s3, t3, . . .), where
s3, t3, . . . are eigenvalues of “spin” operators S3, T3, . . . and, as it is known, take
discrete values. In p-representation where pµ are operators of multiplication and,
according to (6), xµ = igµν∂/∂pν vector-functions are Ψ = Ψ̃(p) ≡ Ψ̃(p0, p1, . . . , pn)
and their components are Ψ̃(p0, p1, . . . , pn, s3, t3, . . .). The scalar product of vectors Ψ
is defined as

(Ψ,Ψ′) ≡
∫

d1+nx Ψ+(x)Ψ′(x) =

=
∫

d1+nx
∑

s3,t3,...

Ψ∗(x, s3, t3, . . .)Ψ′(x, s3, t3, . . .) =

=
∫

d1+np Ψ̃+(p)Ψ̃′(p) =
∫

d1+np
∑

s3,t3,...

Ψ̃∗(p, s3, t3, . . .)Ψ̃′(p, s3, t3, . . .),

(7)

where d1+nx = dx0dx1 . . . dxn, Ψ and Ψ̃ being connected by Fourier-transformations.
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For representations of the class III (P 2 = P 2
0 − P 2

k < 0) when the little group of
the group P (1, n) is already uncompact group O(1, n − 1) of rotations in 1 + (n − 1)-
dimensional pseudo-Euklidean space, the generators Pµ, Jµν are of the form

P = p ≡ (p0, pk) = (p0, pa, pn),

Jab = x[apb] + Sab, Jan = x[apn] − Sabpb − Sa0p0√
−p2 − p2

a + p2
0 +

√
−p2

,

J0a = x[0pa] + S0a, J0n = x[0pn] − S0apa√
−p2 − p2

a + p2
0 +

√
−p2

,

(8)

where a, b = 1, 2, . . . , n− 1 the operators xµ, pµ are defined by relations (6) as before
and the operators (S0a, Sab) are generators of the algebra O(1, n−1) in corresponding
irreducible representations which have been well studied by Gelfand and Grayev [7].
Components of vector-functions, in the space of which the operators (8) are defi-

ned, are the functions of variables s3, t3, . . . (besides of variables xµ or pµ, of course)
which are the eigenvalues of the corresponding independent commute generators of the
algebra O(1, n− 1). In contrast to the case I, in this case the variables s3, t3, . . . may
take both discrete and continual valuea. Remind (see ref. [7]) that the group O(1, n−1)
has both unitary and nonunitary representations, all the unitary representations bei-
ng infinite-dimensional (in the last case the “spin” variables s3, t3, . . . take continual
values). In accordance with this, among the representations of the group P (1, n) in
the class III there will be both unitary (only infinite-dimensional) and nonunitary
(finite- and infinite-dimensional) irreducible representations.
Now we shall give here a recipe of constructing the representations of the class III

from those of the class I.
Note first that if operators P , J realize representation of the algebra P (1, n), then

operators P̃ , J̃ being defined by means of

(P0, Pa, Pn) = (−iP̃n, P̃a, iP̃0), (9a) J0a J0n

Jab Jan

 =

 −iJ̃na J̃n0

J̃ab iJ̃a0

 , (9b)

realize a representation of the algebra P (1, n) too. To proof this assertion, it is enough
to verify that from the commutation relations (4) for P , J and from definitions (9), it
follows that the operators P̃ , J̃satisfy the commutation relations (4) too.
Define, further, the operators x̃, p̃ and s̃ by means of the following relations

(x0, xa, xn) = (−ix̃n, x̃a, ix̃0), (10a)

from

(p0, pa, pn) = (−ip̃n, p̃a, ip̃0), (10b)

(Sab, San) = (S̃ab, iS̃a0). (10c)

From (6) and (10a), (10b) it follows that operators x̃, p̃ satisfy the relations (6)
too, whereas the operators (S̃0a, S̃ab) defined by Eqs. (10c) satisfy the commutation
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relations for the generators of the algebra O(1, n − 1), as soon as the Skl satisfy the
commutation relations for the generators of the algebra O(n).
Rewrite now the operators (3) in the form

P = (p0, pa, pn), Jab = x[apb] + Sab, J0n = x[apn] + San,

J0a = x[0pa] − Sabpb + Sanpn

p0 +
√

p2
0 − p2

a − p2
n

, J0n = x[0pn] − Snapa√
p2
0 − p2

a − p2
n

.
(5′)

Using the definitions (9) and (10) corresponding to the schematic substitution “i0 ⇔
n” when the operators with the symbol 2 “∼” are getting from the operators without
the symbol “∼”, we obtain from (5):

P ≡ (p̃0, p̃a, p̃n) = (−ipn, pa, ip0),

J̃ab = x̃[ap̃b] + S̃ab, iJ̃a0 = x̃[ap̃0] + iS̃a0,

−iJ̃na = −ix̃[np̃a] − S̃abp̃b − S̃a0p̃0

−ip̃n +
√

−p̃2
n − p̃2

a + p̃2
0

,

J̃n0 = x̃[np̃0] − iS̃0ap̃a

−ip̃n +
√

−p̃2
n − p̃2

a + p̃2
0

.

(8′)

By virtue of Eqs. (10a), we have P̃ 2 = −P 2 < 0, so that (8′) realizes a representations
of the class III as soon as (5) realizes a representation of the class I. Omitting in (8′)
the symbol “∼”, we obtain (8).
Since all the representations of the class I are finite-dimensional, such a recipe

allows to obtain only finite-dimensional representations of the class III (i.e., not all
the representations of this class). If, however, getting (8) from (8′), the operators
(S̃0a, S̃ab) will be substituted by operators (S0a, Sab) realizing an infinite-dimensional
representation of the algebra O(1, n − 1), we obtain the corresponding infinite-di-
mensional representation of the algebra P (1, n). Thus it is shown that the formula (8)
defines all the representations of the class III of the algebra P (1, n).
The representations of the class II (P 2 = 0, P �= 0) requires a special treatment.

However, in the case when one of invariants of the algebra P (1, n), namely, the
invariant

W ≡ 1
2
PµJ2

να − PµPνJµσJνσ,

vanishes, the representations of the class II are particular cases of representations
of the class I, and formulaes for the generators Pµ, Jµν are obtained from (5) by
the limit procedure p2 → 0. The detailed discussion of all the representations of the
class II is not given here. As to the class IV (P = 0), in this case the group P (1, n)
reduces to the group O(1, n), therefore the problem of classification and realization
of representations of the algebra P (1, n) reduces to the problem of classification and
realization of representations of the algebra O(1, n) already studied in ref. [7].
Let us discuss now a role of the variable x0. If we mean possibility to Interpret

vectors Ψ constituting the representation space for the group P (1, n), as state vectors
of the physical system (see below Section 3), we must interpret x0 as the time, i.e.,
as a parameter which is not an operator and which therefore is not to be included in a
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complete set dynamical variables. It means that, for instance, in the x-representation
a vector-function Ψ is a function of only n dynamical variables: Ψ = Ψ(x1, . . . , xn).
If the condition C of the Section 1 is not to be violated, the number of independent
dynamical variables in p-representation coincides with those in x-representation, i.e.,
not all the dynamical variables p0, p1, . . . , pn are independent. For the representations
in which the invariant P 2 is a fixed constant, the latter are connected by the relation

p2 ≡ p2
0 − p2

k = κ
2 > 0, p2

0 − p2
k = −η2 < 0 (11)

for the class I and III respectively. One can, for example, chose

p0 = ε
√

p2
k + κ2 and p0 = ε

√
p2

k − η2, ε =
p0

|p0| (12)

for I and III. Then in p-representation Ψ = Ψ̃(p1, . . . , pn). Of course, one can accept
that Ψ = ϕ(p0, p1, . . . , pn), but under the condition (11), so that

Ψ = ϕ(p0, p1, . . . , pn) =
√

2p0Ψ̃(p1, . . . , pn)δ(p2 − a2), a = κ
2,−η2. (13)

In the space of vector-functions Ψ discussed the scalar product can be defined by
P (1, n)-invariant way:

(Ψ, Ψ̃) =
∫

d1+np ϕ+(p0, p1, . . . , pn)ϕ′(p0, p1, . . . , pn) =

=
∫

dnp Ψ̃+(p1, . . . , pn)Ψ̃′(p1, . . . , pn).
(14)

The operators Pµ, Jµν defined in this space of vector-functions Ψ, have the form (5)
and (8) where the sudstitution

x[0pk] → −1
2
(xkp0 + p0xk), (15)

is made, p0 is defined by (12), xk and pk are defined by relations

[xk, pl] = iδkl, [xk, xl] = [pk, pl] = 0, (6′)

while Skl and (S0a, Sab) are the same as in the formulae (5) and (8).
Thus, the “quantum mechanical” representation (of the Foldy–Shirokov [3, 5] type)

of the generators Pµ, Jµν of the algebra P (1, n) is of the form:
For the class I

P = (p0, pk), p0 ≡ ε
√

p2
k + κ2,

Jkl = x[kpl] + Skl, J0k = −1
2
(xkp0 + p0xk) − Sklpl

p0 + κ
;

(16)

For the class III

P = (p0, pk), p0 ≡ ε
√

p2
k − η2,

Jab = x[apb] + Sab, Jan = x[apn] − Sabpb − Sa0p0

pn + η
,

J0n = −1
2
(xnp0 + p0xn) − S0apa

pn + η
, J0a = −1

2
(xap0 + p0xa) + S0a.

(17)
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Since operators Q = xk, pµ, S, Pµ, Jµν of (16) and (17) are defined on the apace
of vectors Ψ not depending on the time x0, the representations (16) and (17) are, in
fact, the representations of the algebra P (1, n) in the Heisenberg picture where for
the operators Q as functions of the time x0, the equation of motion

i∂0Q = [Q,P0] (18)

is postulated.
In the Schrödinger picture vectors Ψ depends explicitly on the time x0 as on a

parameter (but not as on a dynamical variable!) and for this dependence the equation
of the Schrödinger–Foldy type is postulated

i∂0Ψ(x0) = P0Ψ(x0), (19)

where P0 is defined by (12) and in x-representation Ψ(x0) = Ψ(x0, x1, . . . , xn), in
p-representation Ψ(x0) = −ϕ(x0, p0, p1, . . . , pn) under the condition (11) or Ψ(x0) =
Ψ(x0, p1, . . . , pn) etc. These functions are vector-functions, the manifold of which con-
stitutes the representation space for irreducible representations of the group P (1, n)
in the Schrödinger picture. It is clear therefore that their components are functions
not only on x0, x1, . . . , xn (or x0, p1, . . . , pn etc.) but also on “spin” variables s3, t3, . . .
discussed above in connectian with representations of homogeneous group O(n) and
O(1, n − 1). In accordance with the domain of definition of “spin” variables s3, t3, . . .
in different classes, the equation (19) is finite-component or infinite-component. In
the class I, where “spin” variables s3, t3, . . . take only discrete and finite values,
all the equations (19) are finite-component and their solutions Ψ realises the uni-
tary representations (i.e., vectors Ψ are normalizable). In the class III we have both
finite-component and infinite-component equations, but unitary representations can be
realized only on the solutions of the infinite-component equations.
One can suspect that owing to standing out of the time x0 in the equation (19),

the last is not invariant under the group P (1, n) discussed. For the equation (19)
the conventional demand of invariance under the given group is equivalent to the
demand that the manifold of its solutions is invariant under this group (i.e., that
any of its solution under transformations from P (1, n) remains a solution of it but,
generally speaking, another one). The mathematical formulation of this requirement
is to satisfy the condition

[(i∂0 − P0), Q]Ψ = 0, (20)

where Ψ is any of solutions of Eq. (19) and Q is any generator of P (1, n) or any
linear combination of them, i.e., any element of the algebra P (1, n). Therefore the
generators Q = Pµ, Jµν must have such a form that both the relations (4) and the
condition (20) must be satisfied. One can immediately verify that such operators Pµ,
Jµν are given by formulas (5) and (8) where, however, the substitution

x[0pk] → x0pk − 1
2
(xkp0 + p0xk) (15′)

is made and operators xk, pµ are defined by (6′) and (12).
Thus, the “quantum mechanical” representation of the generators Pµ, Jµν of the

algebra P (1, n) in the Schrödinger picture have the form:
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For the class2 I

P = (p0, pk), p0 = ε
√

p2
k + κ2,

Jkl = x[kpl] + Skl, J0k = x0pk − 1
2
(xkp0 + p0xk) − Sklpl

p0 + κ
;

(16′)

For the class III

P = (p0, pk), p0 = ε
√

p2
k − η2,

Jab = x[apb] + Sab, Jan = x[apn] − Sabpb − Sa0p0

pn + η
,

J0a = x0pa − 1
2
(xap0 + p0xa) + S0a,

J0n = x0pn − 1
2
(xnp0 + p0xn) − S0apa

pn + η
.

(17′)

It should be emphasized that in the Schrödinger picture the operators do not
depend on the time x0, except of the operators J0k. These last depend on the time x0

only by due to the presence of the term x0pk; it is just the presence of the term x0pk

to satisfy the invariance condition (20) of the equation (19).
Note in the end of this section that last years the problem of using in physics some

groups like P (m,n), O(m,n) etc. as groups of generasized symmetry, was repeatedly
arised (see, for instance, ref. [8] and refs. in ref. [9]). The consequent physical analysis
of a quantumscheme based on either unificated group, is in fact possible only after
a mathematical analysis of representations of this group and equations connected
with it, like the analysis made here for the group P (1, n). The method used here for
studying the representations of the group P (1, n), is extend on the groups P (m,n)
without special difficulties. Thus the problem of classification of representations and
realization of an inhomogeneous group P (m,n) is in fact reduced to the problem of
classification and realization of homogeneous groups of the type O(m′, n′) already
studied in ref. [7].

3. Physical interpretation
Last years many attempts of using different groups like O(m,n), P (m,n) as

relativizing internal symmetry groups like SU(n), were undertaken. The problem of
a relativistic generalization of an internal symmetry group is in fact connected with
finding a total symmetry group G containing non-trivially the Poincaré group P (1, 3)
(the group of “external” symmetry) and a group of “internal” symmetry like SU(n).
As it is shown in refs. [10], it is impossible non-trivially to unity the algebra P (1, n)
and the algebra of “internal” symmetries in the framework of a finite-dimensional
algebra Lie G, if the spectrum of the mass operator M2 ≡ P 2

0 − �P 2 is discrete. In
ref. [11] a non-trivial example of the algebra G ⊃ P (1, 3) was constructed for the
case when the spectrum of the mass operator is already stripe; but the algebra G was
found to be infinite-dimensional in this case too. The consideration of the infinite-
dimensional algebras for the physical purposes is difficult both owing to the absence

2Our formulae (16′) for generators Pµ, Jαβ in the case P 2 > 0 coinside with the corresponding
formulae (B.25–28) in ref. [5] if the last are rewritten in the tensor form.
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of developed mathematical apparatus of such algebras and owing to the necessity
of solving a very difficult problem of physical interpretation of all the commuting
generators, the number of which is infinite. Do not speak about that the question
of writing down equations of motions, invariant under such an algebras, is quite
not clear. All this circumstances prompt that, to find a finite-dimensional algebra
G ⊂ P (1, 3) of a total symmetry group, we have to refuse from the demand of the
discreticity or even stripiticity of the mass spectrum. In this case one can propose
many groups as total symmetry groups (the groups of the type P (m,n)). However,
in a G = P (m,n), O(m,n), as like as in cases of other groups which are groups
of coordinate transformations in spaces of great dimensions, it still arises a diffi-
cult problem of necessity to give a physical interpretation to the great number of
commuting operators.
Below we deal only with the inhomogeneous de Sitter group P (1, 4) which is a

minimal extention of the Poincaré group P (1, 3). Here we discuss a main topics of
physical interpretation of a quantum mechanical scheme based on this group. The
group P (1, 4) is the most attractive because of in this case it is a success to give a
clear physical meaning to a complete set of commuting variables.
In p-representation a component of the wave function Ψ — the a solution of the

equation (19) with n = 4 is a function of six dynamical variables of corresponding
complete set:

Ψ(x0, �p, p4, s3, t3).

As usually, this component is interpreted as the probability amplitude of finding (by
measuring at the given moment of the time t = x0) the indicated values �p, p4, s3,
t3 of the complete set �P , P4, S3, T3. The physical meaning of the operators �P and
P4 is given in Section 1. We discuss below the definition and physical meaning of the
operators S3, T3 in the class I.
Remind that in the case of P (1, 3) the operators Skl k, l = 1, 2, 3 in (16′) which

constitute the spin vector �S = (S23, S31, S12), are generators of the group O(3) (the
little group of the group P (1, 3) in the class I) and they are interpreted as an angular
momenta of proper rotations. More exactly they should be interpreted as an angular
momenta which are connected with intrinsic (internal) motion because when �P = 0,
the angular momenta Jkl do not vanish but reduce to the spin angular monenta Skl.
In the case of P (1, 4) there are six angular momentum operators, which describe

the internal motion of particle (i.e., the motion when �p = p4 = 0): Jkl/�p=p4 = Skl,
k, l = 1, . . . , 4. The operators Skl are generators of the group O(4) (the little group
of the group P (1, 4)) in the class I). They can be combined into two 3-dimensional
vectors �S and �T defined by components

Sa ≡ 1
2
(Sbc + S4a), Ta ≡ 1

2
(Sbc − S4a), (21)

where (a, b, c) = cycl(1, 2, 3). These components satisfy the relations

[Sa, Sb] = iSc, [Ta, Tb] = iTc,[
Sa, �S 2

]
=
[
Ta, �T 2

]
= [Sa, Tb] = 0.

(22)
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Remined that �S 2 and �T 2 are the invariants of the algebra O(4) being for irreduci-
ble representations D(s, t) of this algebra

�S 2 = s(s + 1)1̂, �T 2 = t(t + 1)1̂, (23)

where s, t = 0, 1
2 , 1, . . . and 1̂ is the (2s + 1)(2s + 1)-dimensional unit matrix. It was

just the relations (22) and (23) to allow us [1] to interpret 3-vectors �S and �T as the
spin and isospin operators.
It is clear from (16′) that in the representations of the class I the generators of

the algebra P (1, 4) are constructed not only from the spin operators but also from the
isospin operators (and, of course, of xk and pk). In this sense in quantum mechanic
scheme based on the group P (1, 4) the spin and isospin are presented on the same foot,
unlike from the case of conventional theory. Furthermore, unlike from to the latter, in
our case both the spin and isospin are entered dynamically. Indeed, in the conventional
approach the group P (1, 3)⊗SU(2)T is taken as the total symmetry group, so that the
generators of SU(2)T commute with the generators of P (1, 3) (even in the presence
of interactions). The group P (1, 4) which we taken as a total symmetry group, is not
isomorphic to the group P (1, 3)⊗SU(2)T furthermore, as in can be seen from (21) and
(16′), SU(2)T ⊂ O(4) ⊂ P (1, 4) as like as SU(2)S ⊂ O(4) ⊂ P (1, 4), and the isospin
operators (as like as the spin operators) do not commute with P (1, 3) ⊂ P (1, 4).
The manifold of solutions of the equation (19) realizes in the case discussed the

irreducible representation D±(s, t) of the algebra P (1, 4), where the sings “±” refer
to the values ε = ±1 of the invariant — the sign of energy, the numbers as s and t
determine the eigenvalues of the invariants

�S 2 =
W

4p2
+

V

2
√

p2
, �T 2 =

W

4p2
− V

2
√

p2
, (24)

which are invariants both of P (1, 4) and O(4).
In quantum scheme based on P (1, 4), possible states of an “elementary particle”

(when ε = +1) or “antiparticle” (when ε = −1) with given values of s, t and p2 = κ
2

are states which constitute the representation space for an irreducible representation
D±(s, t) of the group P (1, 4). This is just the definition of the elementary particle
in the P (1, 4)-quantum scheme. The simplest states of this particle are identified by
eigenvalues of complete set of comuting variables. It is clear that the representation
D±(s, t), irreducible with respect to P (1, 4), is reducible with respect to P (1, 3) ⊂
P (1, 4) therefore the “elementary particle” defined here, is not elementary in the
conventional sense (i.e., with respect to the group P (1, 3)). Indeed, a solution Ψ of
Eq. (19) with given s and t contains componets identified not only by values of the
3-component s3 of spin but also by values of the 3-components t3, of isospin, so that
the vector Ψ describes in fact the whole multiplet – the set of states with different
values of t3, −t ≤ t3 ≤ t (and, of course, of s3, s ≤ s3 ≤ s). For example, the vector
Ψ± with ε ± 1, s = 0 and t = 1

2 describes a meson isodublet like

Ψ+ ≡
(

Ψ+
(0, 1

2 )

Ψ+
(0,− 1

2 )

)
=
(

K+

K0

)
, Ψ− =

(
K̃0

K−

)
.

The parameter κ (the threshold value of the free state energy or the “bare” rest mass)
is the same for all the members of the given multiplet. Of course, the introduction
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of a sutable interaction into the equation (19) leads to the mass splitting within a
multiplet.
The approach proposed may be found successful for a consequent description of

unstable systems (resonances, particles or systems with non-fixed mass) already in
the framework of the quantum mechanics3. As it is known, the conventional quantum
mechanical approach deals a with finding complex eigenvalues of energy operators
which must be Hermitian in a Hilbert space of wave functions, i.e., in fact, one must
go put of the framework of Hilbert space; the latter is connected with breaking of
such a fundamental principles as unitarity, hermiticity etc. [12].
There are no similar difficulties in the quantum mechanical approach proposed.

Indeed, here the mass operator is an independent dynamical variable (1), it is Her-
mitian, defined in the Hilbert space; therefore one can find its eigenvalues m2 and
distributions ρ(m2) in the same Hilbert space, as like as they find eigenvalues and
distributions for operators of energy, momentum and other dynamical variables. For
example, if we have a stationary wave function Ψ = {Ψ(�x, x4, s3, t3)} of, generally
speaking, an unstable multiplet (we meant: a solution of an equation of the type (19)
with an interaction not depending on the time x0) then

ρ(m2, s3, t3) =
∫

d3x

∣∣∣∣∫ dx4 e−i
√

m2−κ
2x4Ψ(�x, x4, s3, t3)

∣∣∣∣2 . (25)

If the distribution (25) with the given s3, t3 has one maximum, the experimentally
observed mass of the particle with given s3, t3 is defined either by the position of the
maximum or form

m̄2 =
∫

d3x dx4 Ψ∗(�x, x4, s3, t3)(p2
4 + κ

2)Ψ(�x, x4, s3, t3) (26)

and its mean lifetime τ is defined from

m̄2τ̄2 = 1. (27)

If the distribution (25) has more than one maximum, the position of them defines
an experimentally observed masses of unstable particles and the semi-widths of the
distribution (25) in the regions of maximums define the lifetimes of corresponding
unstable particles. If, finally, ρ(m2, s3, t3) has a δ-like singularity in a point m2 = m2

0,
the m0 is identified with the mass of a stable particle.
It is important to emphasize that in accord with our interpretation, the parti-

cles experimentally observed are described not by the free equation (19), but by
an equation of the type (19) with a sutable interaction which may breakdown the
P (1, 4)-invariance, but, of course conserves the P (1, 3)-invariance4. As for solutions
of the free equation (19) they are some hypothetical (“bare”) states which may not
correspond, to any real particles. From view point of this interpretation there are
two types of interactions: interactions which cause a “dressing” of particles and are
inhierent even in asymptotical states, and usual interactions which cause a scatteri-
ng processes of real (“dressed”) particles. Therefore, in particular, the 5-dimensional

3The consequent consideration of such problems demands, obviously, the quantum field approach, but a
quantum mechanical approach can be regarded as a half-fenomenology.

4In this sense the consideration of P (1, 4)-symmetry here presented is only a base for its sutable
violation — analogously to considerations and violations of SU(n)-symmetries.
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conservation law following from the free P (1, 4)-invariant scheme; may have not a
real sense.
In the interpretation of the P (1, 4)-scheme proposed we automatically have the

SU(2)T -systematic of particles. In contrast to the conventional systematics, our one
is a dynamical in the sense that for compaund model like those of Fermi–Yang,
Goldhaber–Györgyi–Kristy and others we can write down an equation in which spin
and isospin variables are mixed non-trivially.
Emphasize, that the interpretation of the P (1, 4)-scheme proposed and, in particu-

lar, of the complete set of commuting variables mentioned above, was mainly based on
the definition (1) of the varlable-mass operator as an independent dynamical variable.
This interpretation does not pretend, of course, to be the only one and complete. In
particular, the problem of giving the “fifth coordinate” x4 the more immediate physical
sense than that one laying under its definition as a dynamical variable canonically
conjugated to the mass variable p4, and the same problem refers to operators like
J04, Ja4, a = 1, 2, 3 we do not discusse here. The more detail discussion of these
problem is possible only in connection with considerations of solutions of equations
like Eq. (19) with sutable interactions what is not a subject of this article.
Here we have considered the P (1, n)-invariant equations of the Schrödinger–Foldy

type in an arbitrary dimensional Minkowski space, in which the differential operators
∂k ≡ ∂/∂xk of the “space” variables are presented under square root. This equations
describing the positive and negative states separatelly, are suitable for quasirelativistic
quantum mechanical considerations (e.g., for calculations of spin-isospin effects in
P (1, 4)-invariant equations with interactions included). Theoretic-field considerations
are usually based on equations of first order on ∂µ. The general form of P (1, n)-
invariant linear on ∂µ equation is

(Bµ∂µ ± κ)Φ± = 0, µ = 1, 2, . . . , n, n + 1, (28)

where the operators Bµ are defined by the relations

[Bµ, Jρσ] = δµρBσ − δµσBρ, (µ, ρ, σ = 1, . . . , n + 1). (29)

For the representation of the class I the operators Bµ are finite-dimensional; for those
of the class III the operators Bµ can be both finite- and infinite-dimensional. Concrete
forms of operators Bµ can be founed by the method proposed in ref. [13].
In this paper we have not considered the problem of invariance of the equation (28)

as to discrete transformations, that is relatively to

x′
k = −xk, x′

0 = −x0. (30)

This problem has been investigated by one of us [14]. As it is shown in [14] the equa-
tion (28) for n = 2m, m = 1, 2, 3, . . ., is neither invariant as to transformations (30)
nor

x′
0 = −x0, x′

k = xk, k = 1, 2, . . . , 2m. (31)

Thus, in the field theory constructed on the basis of the groups P (1, 2), P (1, 4),
P (1, 6) and so on the theorem CPT may be broken down. It should be emphasized,
however, that the direct of the manifold of solutions {Φ+} and {Φ−} T -, CPT -
invariant.
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