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APPROXIMATION OF THE CLASSES  C Hββ
ψψ

ωω

BY GENERALIZED ZYGMUND SUMS

A. S. Serdyuk  and  E. Yu. Ovsii UDC 517.5

We obtain asymptotic equalities for the least upper bounds of approximations by Zygmund sums
in the uniform metric on the classes of continuous  2π-periodic functions whose  (ψ, β)-deriva-
tives belong to the set  Hω  in the case where the sequences  ψ   that generate the classes tend to

zero not faster than a power function. 

Let  L  be the space of  2π-periodic functions  f (t)  summable in  (0, 2π)  with the norm 

f L   =  
−
∫
π

π

f t dt( ) ,

let  M  be the space of measurable, essentially bounded,  2π-periodic functions  f (t)  with the norm 

f M   =  ess sup ( )
t

f t ,

and let  C  be the space of continuous  2π-periodic functions  f (t)  with the norm 

f C   =  max ( )
t

f t .

By  Cβ
ψ   we denote the classes of continuous  2π-periodic functions introduced by Stepanets [1, 2] as fol-

lows:  Let  f C∈   and let 

S f[ ]  =  
a0

2
  +  

k
k ka k x b k x

=

∞

∑ +
1

( cos sin ) (1)

be its Fourier series.  If a sequence  ψ = ψ  (k),    k ∈N ,  of real numbers and a number    β ∈R   are such that the
series 

k
k kk

a k x b k x
=

∞

∑ +⎛
⎝

⎞
⎠ + +⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

1

1
2 2ψ
βπ βπ

( )
cos sin
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is the Fourier series of a certain function  ϕ ∈L,  then  ϕ( )⋅   is called the  ( , )ψ β -derivative of the function  f ( )⋅
and is denoted by  fβ

ψ ( )⋅ .  In this case, we say that the function  f ( )⋅   belongs to the set  Cβ
ψ .  If  f C∈ β

ψ   and 

f
Mβ

ψ   ≤  1,

then we say that  f C∈ ∞β
ψ
, .  If  f C∈ β

ψ   and  f Hβ
ψ

ω∈ ,  where 

Hω   =    ϕ ϕ ϕ ω∈ − ≤ −( ) ∀ ∈{ }C t t t t t t: ( ) ( ) ,1 2 1 2 1 2 R

and  ω( )t   is a fixed modulus of continuity, then we write  f ∈ C Hβ
ψ

ω . 

For  ψ( )k  = k r− ,  r > 0,  the classes  Cβ
ψ
,∞  and  C Hβ

ψ
ω   coincide with the known Weyl–Nagy classes  W r

β

and  W Hr
β ω ,  respectively (see, e.g., [2, pp. 25 – 33]). 

In what follows, we assume that the sequence  ψ( )k   that defines the classes  C Hβ
ψ

ω   is the restriction of a

certain continuous function  ψ( )t   of a continuous argument  t  that belongs to the set 

�  =  ψ ψ ψ ψ ψ( ), : ( ) , ( ) ( ) , ;t t t t
t t

t t t≥ > − +⎛
⎝

⎞
⎠ + ≥ ∀ ∈ ∞[ )⎧

⎨
⎩

1 0 2
2

0 11
1 2

2 1 2 , lim ( )
t

t
→∞

= ⎫
⎬
⎭

ψ 0

to the set  N.  Following Stepanets (see, e.g., [3, p. 160], we consider the following subsets    � 0 ,    � C ,  and

  � ∞
+   of the set  � : 

  � 0   =    ψ μ ψ∈ < ≤ < ∞ ∀ ≥{ }� : ( ; )0 1t K t ,

� C   =    ψ μ ψ∈ < ≤ ≤ < ∞ ∀ ≥{ }� : ( ; )0 11 2K t K t ,

 � ∞
+   =    ψ μ ψ∈ ↑ ∞ → ∞{ }� : ( ; ) ,t t ,

where 

μ ψ( ; )t   =  t
t tη ψ( ; ) −

,

η ψ( ; )t   =  ψ ψ− ⎛
⎝⎜

⎞
⎠⎟

1

2

( )t
,

ψ− ⋅1( )  is the function inverse to  ψ( )⋅ ,  and the constants  K,  K1,  and  K2  may, generally speaking, depend on

the function  ψ.  Natural representatives of the set   � C   are, e.g., the functions  t r− ,  r  > 0,  representatives of

the set    � 0  \   � C   are the functions  ln( )t e+ −α , α > 0,  and representatives of the set   � ∞
+   are functions of the

form  e tr−α , α > 0,  r > 0.  Let    ′�   denote the subset of functions  ψ( )⋅   from  �  for which the following con-
dition is satisfied: 
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ψ( )t

t
dt

1

∞

∫   <  ∞.

We also set    ′� 0  =   � 0  ∩   ′� . 

Let  f x( )  be a summable  2π-periodic function and let series (1) be its Fourier series.  Consider polyno-
mials of the form 

Z f xn
ϕ( ; )  =  

a0

2
  +  

k

n

k k
k
n

a k x b k x
=

−

∑ −⎛
⎝⎜

⎞
⎠⎟

+( )
1

1

1
ϕ
ϕ

( )
( )

cos sin ,      n ∈N , (2)

where  ϕ( )k   are the values of a certain function  ϕ ∈F   at integer points, and  F  is the set of all continuous

functions  ϕ( )u   monotonically increasing to infinity on  1, ∞[ ) .  The polynomials  Z f xn
ϕ( ; )  were introduced in

[4, 5] and are called the generalized Zygmund sums.  It is clear that if  ϕ( )t  = ts ,  s > 0,  then  Z f xn
ϕ( ; )  coincide

with the classical Zygmund sums  Z f xn
s( ; ),  i.e., with polynomials of the form 

Z f xn
s( ; )  =  

a0

2
  +  

k

n s

s k k
k
n

a k x b k x
=

−

∑ −⎛
⎝⎜

⎞
⎠⎟

+( )
1

1

1 cos sin ,        n ∈N .

For  s = 1,  the Zygmund sums  Z f xn
s( ; )  turn into the known Fejér sums  σn f x( ; )   of order  n – 1  for the func-

tion  f x( ). 
Based on the known results of Nikol’skii [6, p. 261] (see also [3, pp. 18, 20]) concerning necessary and suf-

ficient conditions for the regularity of linear summation methods for Fourier series, one can easily establish the

following statement for the polynomials  Z f xn
ϕ( ; ): 

Proposition 1.  Suppose that a function  ϕ( )u  ≥ 0,  u ∈  0, ∞[ ) ,  is such that  ϕ( )0  = 0,  ϕ ∈F ,  and, for

any  n = 2, 3, … ,  ϕ( )u   is convex upward or downward for  u ∈ 0, n[ ].  Then the condition 

1

1

1

ϕ
ϕ ϕ

( )
( ) ( )

n
n k
n kk

n

=

−

∑ −
−

  ≤  K (3)

is necessary and sufficient for the uniform convergence of the polynomials   Z f xn
ϕ( ; )  to the function  f x( )  in

the entire space  C. 

By using Theorem 2.1 from [3, p. 92], which contains sufficient conditions and saturation orders for general

linear summation methods for Fourier series, one can easily verify that the method  Zn
ϕ   generated by a positive

function  ϕ  is saturated in the space  C  with saturation order  1
ϕ( )n

.  This means that, for generalized Zygmund

sums, the relation 

f Z fn C
( ) ( ; )⋅ − ⋅ϕ   =  

o
n

( )
( )
1

ϕ
,      n → ∞,
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implies that  f (x) ≡ const  and there exists at least one nonconstant function  f (x)  for which 

f Z fn C
( ) ( ; )⋅ − ⋅ϕ   =  

O
n
( )
( )
1

ϕ
,      n → ∞.

The aim of the present work is to establish asymptotic equalities for the quantities 

  
E C H Zn Cβ

ψ
ω

ϕ;( )   =  sup ( ) ( ; )
f C H

n C
f Z f

∈
⋅ − ⋅

β
ψ

ω

ϕ ,      n → ∞, (4)

under certain natural restrictions imposed on the functions  ϕ( )⋅ ,  ψ( )⋅ ,  ω( )⋅ ,  and the parameter  β.  If these
equalities are obtained, then one says [3, 7] that the Kolmogorov – Nikol’skii problem is solved for the method

Zn
ϕ   on the class  C Hβ

ψ
ω   in the metric of the space  C.  For various linear summation methods for Fourier series

on various functional classes, this problem was solved in numerous works (see, e.g., [3, 8  – 19]).  For more de-
tails on the history of the problem, see the bibliography in [3, 7, 11, 12, 14]. 

The most complete results related to finding asymptotic equalities for the quantities 

    
E �; Zn

s
C( )   =  sup ( ) ( ; )

f
n
s

C
f Z f

∈
⋅ − ⋅

�
,      n → ∞,

were obtained by Telyakovskii [16] in the case where  � = W r
β ,  r > 0,   β ∈R ,  and by Bushev [20] in the case

where  � = Cβ
ψ
,∞,  β ∈R ,  ψ ∈ ′� .  In [4, 5, 21–24], the approximative properties of the generalized Zygmund

sums  Z f xn
ϕ ( ; )   were studied on the classes  Cβ

ψ
,∞   for different  ψ( )⋅ .  In [5], it was shown, in particular, that if

ψ ∈ ∞
+� �C ∪ ,  β = 0,  and  ϕ ψ( ) ( )t t = 1,  t ≥ 1,  then the following estimate holds for any  f C∈ ∞β

ψ
, : 

f Z fn C
( ) ( ; )⋅ − ⋅ϕ   =  O n n n( ) ( ) ln min ( ; ),1 1ψ μ ψ+ { }( ) ,      n > 1.

In [23, 25], asymptotic equalities were obtained for 

  
E �; Zn C

ϕ( )   =  sup ( ) ( ; )
f

n C
f Z f

∈
⋅ − ⋅

�

ϕ , (5)

in the case where  � = Cβ
ψ Hω ,    ψ ∈ ∞

+� ,  ϕ( )t ψ( )t  = 1,  t ≥ 1,   β ∈R ,  under certain additional restrictions on

the functions  ω( )t   and  μ ψ( ; )t .  In particular, it was shown in [23, p. 81] that if  β = 2l,   l ∈Z ,  and 

ω μ ψ( / ) ln min ( ; ),1 n n n{ }( )  =  o(1),      n → ∞,

then the following asymptotic equality holds as  n → ∞  : 

  
E C H Zn Cβ

ψ
ω

ϕ;( )   =  
2

2
0

2
ψ
π

ω
π

( )
( )

/
n

t dt∫   +  O n n n n( ) ( ) ( / ) ln min ( ; ),1 1ψ ω μ ψ{ }( ) . (6)
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It follows from the results of [24], in particular, that if   ψ ∈ ′� 0 ,    β ∈R ,  and the function  ϕ( )u ψ( )u   is nonde-

creasing and convex upward for  u ≥ 1,  then the following equality holds as  n → ∞  : 

 
E C Zn Cβ

ψ ϕ
, ;∞( )   =  2

2
1

1
π

βπ
ϕ

ϕ ψ ψ
sin

( )
( ) ( ) ( )

n
u u

u
du

u
u

du
n

n
∫ ∫+

⎛

⎝⎜
⎞

⎠⎟
∞

  +  O n( ) ( )1 ψ .

In the present work, we study the asymptotic behavior of  E C Hβ
ψ

ω( ; Zn C

ϕ)   for  ϕ( )t ψ( )t  = 1,  t ≥ 1,  in the

case where either    ψ ∈� 0   and  β = 0  or   ψ ∈ ′� 0   and    β ∈R .  The results obtained here complement the

aforementioned investigations of [23, 25] on the classes  C Hβ
ψ

ω ,  and, moreover, as corollaries, numerous new

statements are established for the classical Zygmund sums  Z f xn
s( ; ). 

The following theorem is true: 

Theorem 1.  Let    ψ ∈ ′� 0 ,    β ∈R ,  and   ϕ ψ( ) ( )u u  = 1  for all  u  ≥ 1.  Then the following relation

holds as  n → ∞  : 

 
E C H Zn Cβ

ψ
ω

ϕ( );   =  
θ
π

βπ ψ ω ω ψω sin ( ) ( ) ( ) ( ) sin
/

/

2
2 2

1

1

0

1

n t
t

dt t u ut dudt
n

n

n
∫ ∫ ∫+

⎛

⎝
⎜

⎞

⎠
⎟

∞
  +  O n( ) ( )1 ψ , (7)

where  θω  ∈ [2 / 3, 1]  and  θω  = 1  if  ω( )t   is a convex modulus of continuity. 
If, in addition, 

0

1

∫ ω( )t
t

dt   ≤  K, (8)

then the following estimate holds as  n → ∞  : 

E C H Zn Cβ
ψ

ω
ϕ( );   =  O n( ) ( )1 ψ . (9)

In relations (7) and (9),  O(1)  is a value uniformly bounded in  n  and  β. 

It follows from [3, pp. 214, 216] that, in the case where  ψ( )t  = t r− ,  r  > 0,  the second term on the right-
hand side of (7) does not exceed the remainder in order.  In this case, equality (7) was obtained in [15, p. 42].  In

the case where   ψ ∈ ∞
+� ,  a statement analogous to Theorem 1 was proved in [25, p. 185]. 

Comparing equality (3.10) in [3, p. 216] with equality (10) in [26, p. 662], we obtain the asymptotic relation

0

1

2
/

( ) ( ) sin
n

n

t u ut dudt∫ ∫
∞

ω ψ  

=  
0

1
1

/
( )

n

t
t

t
dt∫ ⎛

⎝
⎞
⎠ψ ω   +  O n n( ) ( ) ( / )1 1ψ ω   +  O n n n n( ) ( ) ( ) ( / )1 1 1ψ ψ ω− +( ) ,       ψ ∈ ′� 0 .
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Taking into account that, for an arbitrary function   ψ ∈ ′� 0 ,  one has 

n n nψ ψ( ) ( )− +( )1   =  O n( ) ( )1 ψ ,

0

1

2
/

( ) ( ) sin
n

n

t u ut dudt∫ ∫
∞

ω ψ   =  
0

1
1

/
( )

n

t
t

t
dt∫ ⎛

⎝
⎞
⎠ψ ω   +  O n n( ) ( ) ( / )1 1ψ ω ,        ψ ∈ ′� 0 , (10)

which readily follows from relation (12.10) in [3, p. 161], we can rewrite equality (7) in the form 

  
E C H Zn Cβ

ψ
ω

ϕ( );   =  
θ
π

βπ ψ ω ψ ωω sin ( ) ( ) ( )

/

/

2
2 1

1

1

0

1

n t
t

dt
t

t
t

dt
n

n

∫ ∫+ ⎛
⎝
⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟   +  O n( ) ( )1 ψ . (7’)

Note that, e.g., for the function  ψ( )t  = ln(t  + 1)−α ,  α  > 1,  and for a majorant  ω( )t   that coincides with the

function  ln( / )1 t −γ ,  0 < γ < 1,  in the interval  0 1, /e( ],  the first and the second term on the right-hand side of
(7’) are the leading terms, and, therefore, in this case, Theorem 1 contains a solution of the Kolmogorov – Ni-

kol’skii problem for the method  Zn
ϕ   on the classes  C Hβ

ψ
ω .  At the same time, one can easily give an example

of a majorant  ω( )t   for which this theorem allows one to obtain only an equality exact in order for the quantity

(5) in the case where  � = C Hβ
ψ

ω   (by choosing, in particular,  ω( )t  = tα ,  0 < α ≤ 1 ).  In the case where    β ∈Z,

one can obtain sharper estimates for  
 
E C H Zn Cβ

ψ
ω

ϕ( ); ,  which are presented in the following theorems: 

Theorem 2.  Let  ψ ∈ ′� 0 ,  β = 2l + 1,    l ∈Z ,  and  ϕ ψ( ) ( )u u  = 1  for all  u ≥ 1.  If 

0

δ
ω∫ ( )t

t
dt   =  O( ) ( )1 ω δ , (11)

then the following asymptotic equality holds as  n → ∞  : 

  
E C H Zn Cβ

ψ
ω

ϕ( );   =  
θ ψ

π
ωω

π
( ) ( )

sin

/
n t

t
dt

0

2
2∫   +  O n n( ) ( ) ( / )1 1ψ ω , (12)

where  θω  ∈  [2 / 3, 1],  θω  = 1  if  ω( )t   is a convex modulus of continuity, and  O( )1   is uniformly bounded

in  n  and  β. 

For  ψ( )k  = k−1,  β = 1,  and  ω( )t  = tα ,  0 < α ≤ 1,  equality (12) was proved by Nikol’skii [9, p.  26];  for
an arbitrary convex modulus of continuity, it was proved by Stepanets (see Theorem 5 in [27]).  For  ψ( )k  =

k r− ,  r = 1, 3, … ,  β = r,  and  ω( )t  = tα ,  0 < α ≤ 1,  equality (12) was proved by Nagy [10, p. 48]. 

Theorem 3.  Let    ψ ∈� 0 ,  β  = 2l,   l ∈Z ,  and  ϕ ψ( ) ( )u u  = 1  for all  u ≥ 1.  Then the following as-

ymptotic equality holds as  n → ∞  : 
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E C H Zn Cβ

ψ
ω

ϕ( );   =  
2

2
0

2
ψ
π

ω
π

( )
( )

/
n

t dt∫   +  O n n( ) ( ) ( / )1 1ψ ω , (12)

where  O( )1   is uniformly bounded in  n  and  β. 

For  ψ( )k  = k−2   and  β = 2,  equality (13) was proved by Stepanets [28, p. 352]. 

Taking (6) and (13) into account, we conclude that if    ψ ∈� 0  ∪   � ∞
+ ,  β = 2l,    l ∈Z ,  and  ϕ ψ( ) ( )u u  = 1,

u ≥ 1,  then 

 
E C H Zn Cβ

ψ
ω

ϕ( );   =  
2

2
0

2
ψ
π

ω
π

( )
( )

/
n

t dt∫   +   O n n n n( ) ( ) ( / ) ln min ( ; ),1 1 1ψ ω μ ψ+ { }( )( )+       as    n  →  ∞,

where  ln ( )+ t  = ln( )t   for  t > 1  and  ln ( )+ t  = 0  for  t ≤ 1.

Prior to the proof of Theorems 1 – 3, note that, since the classes  C Hβ
ψ

ω   are invariant under the shift of an

argument (see, e.g., [1, pp. 121, 122]), the following equality is true: 

  
E C H Zn Cβ

ψ
ω

ϕ( );   =  sup ( ; )
f C H

n f
∈ β

ψ
ω

ρ 0 , (14)

where 

ρn f( ; )0   =  ρn f( ; 0 ; Zn
ϕ)  =df   f (0)  –  Z fn

ϕ( ; )0 .

For the estimation of  ρn f( ; )0 ,  we need the following statement: 

Lemma 1.  Let    ψ ∈ ′� 0 ,    β ∈R   or    ψ ∈� 0 ,  β  = 2l,    l ∈Z .  If  ϕ ψ( ) ( )u u  = 1  for  u ≥ 1,  then the

following equality holds for any  f ∈ C Hβ
ψ

ω   and    n ∈N  : 

ρn f( ; )0   =  − ⎛
⎝
⎞
⎠

⎛

⎝

⎜
⎜

≥
∫1

2
1

2π
βπ ψ δsin ( )

sin
n n t

n

t
n

t
dt

t

  +  
t

t
n

nu ut dudt
≤

∞

∫ ∫⎛
⎝
⎞
⎠

⎞

⎠

⎟
⎟

1 1

δ ψ( ) sin

+  n n t
n

t
n
t

dt
π

βπ ψ δcos ( )
cos

2

1

2
−∞

∞

∫ ⎛
⎝
⎞
⎠

−
  +  O n n( ) ( ) ( / )1 1ψ ω , (15)

where  δ( )⋅  =df  fβ
ψ ( )⋅  – fβ

ψ ( )0   and  O( )1   is uniformly bounded in  n  and  β. 

Proof.  We set 
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τn u( )  =  

ψ

ψ

ψ

( ) , ,

( ), ,

( ), ,

n nu u
n

n
n

u

nu u

0 1

1 1

1

≤ ≤

≤ ≤

≥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

      νn u( )   =  
ψ

ψ

( ) , ,

( ), ,

n u u

nu u

0 1

1

≤ ≤

≥

⎧
⎨
⎪

⎩⎪

and  μn u( ) = τn u( ) – νn u( )   for  u ≥ 0.  Assume that  ψ  satisfies the conditions of Lemma 1.  Then, by virtue of
Lemma 3.1 in [3, p. 186], the transformation 

ˆ ( )νn t   =  1
2

0
π

ν βπ∞

∫ +⎛
⎝

⎞
⎠n u ut du( ) cos

(understood as an improper integral) is a function summable on the entire axis, i.e., 

−∞

∞

∫ ˆ ( )νn t dt   <  ∞. (16)

Since the function  μn u( )  is absolutely continuous in  [0, 1],  μn( )1  = 0,  and, as can easily be verified, the inte-
grals 

0

1

1∫ − ′u u d un( ) ( )μ ,      
0

1

∫ μn u

u
du

( )
,      

0

1

1∫ −
μn u

u
du

( )

are convergent, by virtue of the theorem in [16, p. 70]) we have 

−∞

∞

∫ ∫ +⎛
⎝

⎞
⎠

0

1

2
μ βπ

n u ut du dt( ) cos   <  ∞. (17)

Taking (16) and (17) into account, we  conclude that the function 

ˆ ( )τn t   =  1
2

0
π

τ βπ∞

∫ +⎛
⎝

⎞
⎠n u ut du( ) cos

is summable on the entire axis.  Since 

τn u( )  =  
1 1 1 0

1

1
1

−( ) ≤ ≤

−( ) ≤

λ ψ

λ ψ

n

n

n nu u
n

u nu
n

( / ) ( ) , ,

( ) ( ), uu n≤ ∈

⎧

⎨
⎪⎪

⎩
⎪
⎪ 1, ,N
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where 

λn u( )  =  

1
1

0
1

1
1

1

− ≤ ≤

− ≤ ≤ ∈

ϕ
ϕ

ϕ
ϕ

ϕ

( )

( )
, ,

( )

( )
, , ,

n
nu u

n

nu

n n
u F

⎧⎧

⎨
⎪
⎪

⎩
⎪
⎪

by virtue of Theorem 3.2 in [2, p. 56] the following equality holds for every function  f ∈ C Hβ
ψ

ω  : 

ρn f( ; )0   =  
−∞

∞

∫ ⎛
⎝
⎞
⎠f t

n
t dtnβ

ψ τ̂ ( ) . (18)

Taking into account that  τn( )0  = 0  and using Lemma 3 from [16, p. 71], according to which 

ˆ ( )τn t dt
−∞

∞

∫   =  0,

we rewrite equality (18) in the form 

ρn f( ; )0   =  
−∞

∞

∫ ⎛
⎝
⎞
⎠ −

⎛
⎝

⎞
⎠f t

n
f t dtnβ

ψ
β
ψ τ( ) ˆ ( )0   =  

−∞

∞

∫ ⎛
⎝
⎞
⎠δ τt

n
t dtnˆ ( )

=  
cos

( ) cos

βπ

π
δ τ2

0−∞

∞ ∞

∫ ∫⎛
⎝
⎞
⎠

t
n

u ut dudtn   –  
sin

( ) sin

βπ

π
δ τ2

0−∞

∞ ∞

∫ ∫⎛
⎝
⎞
⎠

t
n

u ut dudtn . (19)

Integrating by parts and taking into account that  τn( )∞  = 0,  we get 

0

∞

∫ τn u ut du( ) cos   =  ψ( )
cos

n n

t
n
t

− 1

2   –  n
t

nu ut du
1

∞

∫ ′ψ ( ) sin ,     ′ψ ( )t  =df  ′ +ψ ( )t 0 (20)

and 

0

∞

∫ τn u ut du( ) sin   =  ψ( )
sin

n
n t

n
t2   +  n

t
nu ut du

1

∞

∫ ′ψ ( ) cos . (21)

Relations (19) – (21) yield 
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ρn f( ; )0   =  
n

n t
n

t
n
t

dt
cos

( )
cos

βπ

π
ψ δ2

1

2

⎛

⎝
⎜⎜

⎛
⎝
⎞
⎠

−

−∞

∞

∫   –  
−∞

∞ ∞

∫ ∫⎛
⎝
⎞
⎠

′
⎞

⎠
⎟δ ψt

n t
nu ut dudt1

1

( ) sin

–  
sin

( )
sin

βπ

π
ψ δ2

1
2n n t

n

t
n

t
dt

t

⎛

⎝
⎜⎜

⎛
⎝
⎞
⎠

≥
∫   +  n t

n t
nu ut dudt

t ≥

∞

∫ ∫⎛
⎝
⎞
⎠

′
1 1

1δ ψ ( ) cos

+  
t

n
t
n

u ut dudt
≤
∫ ∫⎛

⎝
⎞
⎠

1 0

1

δ τ ( ) sin   +  
t

t
n

nu ut dudt
≤

∞

∫ ∫⎛
⎝
⎞
⎠

⎞

⎠
⎟

1 1

δ ψ( ) sin . (22)

Since  τn u( ) ≤ ψ( )n   for  u ∈ [0, 1]  and  δ ( )t  ≤ ω t( ),  we have 

t
n

t
n

u ut dudt
≤
∫ ∫⎛

⎝
⎞
⎠

1 0

1

δ τ ( ) sin   =  O n n( ) ( ) ( / )1 1ψ ω . (23)

It follows from [3, pp. 223, 226] (see also [29, p. 285]) that the following estimates are true: 

n t
n t

nu ut dudt
−∞

∞ ∞

∫ ∫⎛
⎝
⎞
⎠

′δ ψ1

1

( ) sin   =  O n n( ) ( ) ( / )1 1ψ ω ,      ψ ∈� 0 , (24)

and 

n t
n t

nu ut dudt
t ≥

∞

∫ ∫⎛
⎝
⎞
⎠

′
1 1

1δ ψ ( ) cos   =  O n n( ) ( ) ( / )1 1ψ ω ,       ψ ∈ ′� 0 . (25)

Combining (22) – (25), we obtain equality (15). 
The lemma is proved. 

Proof of Theorem 1.  We begin with equalities (14) and (15).  Performing the change of variables in the
first and the third integral on the right-hand side of (15) and using the relation (see, e.g., [30, p. 1084]) 

−∞

∞

∫ −
y t

t

t
dt( )

cos1
2   =  1

2
−
∫
π

π
y t dt( )      ∀ ∈y L , (26)

after elementary transformations we obtain 

ρn f( ; )0   =  − + ⎛
⎝
⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

≥ ≤

∞

∫ ∫ ∫
sin

( ) ( )
sin

( ) sin
/

βπ

π
ψ δ δ ψ2

1
2

1 1

n t
t

t
dt t

n
nu ut dudt

t n t

  +  O n( ) ( )1 ψ . (27)
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Further, we simplify the right-hand side of (27) without losing its principal value.  It is easy to see that 

t n

t
t

t
dt

≥
∫
1

2
/

( )
sinδ   =  

1 1
2 1

/

( )
sin

( )
n t

t
t

t
dt O

≤ ≤
∫ +δ  

=  
1 1/

( )

n t

t
t

dt
≤ ≤
∫ δ

  +  
1 1

2 1
/

( )
sin

( )
n t

t
t t

t
dt O

≤ ≤
∫ − +δ . (28)

Since the function  
sin t t

t

−
2   is bounded on the segment  [–1, 1],  combining relations (27) and (28) we get 

ρn f( ; )0   =  − + ⎛
⎝
⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

≤ ≤ ≤

∞

∫ ∫ ∫
sin

( )
( )

( ) sin
/

βπ

π
ψ δ δ ψ2

1 1 1 1

n
t

t
dt t

n
nu ut dudt

n t t

  +  O n( ) ( )1 ψ . (29)

By virtue of Lemma 3.1.6 in [7, p. 143], the function 

ψ( ) sinnu utdu
1

∞

∫

is positive for  t ∈ 0 1,( ],  and, since it is odd, we get 

t

t
n

nu ut dudt
≤

∞

∫ ∫⎛
⎝
⎞
⎠

1 1

δ ψ( ) sin   =  
0

1

1
∫ ∫⎛

⎝
⎞
⎠ − −⎛⎝

⎞
⎠

⎛
⎝

⎞
⎠

∞
δ δ ψt

n
t
n

nu ut dudt( ) sin

≤  
0

1

2
/

( ) ( ) sin
n

n

t u ut dudt∫ ∫
∞

ω ψ . (30)

Taking into account the estimate

1 1/

( )

n t

t
t

dt
≤ ≤
∫ δ

  =  
1

1

/

( ) ( )

n

t t
t

dt∫ − −δ δ
  ≤  

1

1
2

/

( )

n

t
t

dt∫ ω

and relations (14), (29), and (30), we obtain 

  
E C H Zn Cβ

ψ
ω

ϕ;( )   ≤  sin
( ) ( ) ( ) ( ) sin

/

/
βπ ψ

π
ω

π
ω ψ

2
2 1 2

1

1

0

1
n t

t
dt t u ut dudt

n

n

n
∫ ∫ ∫+

⎛

⎝
⎜

⎞

⎠
⎟

∞
  +  O n( ) ( )1 ψ . (31)

Let 
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ϕ∗( )t   =  

1
2

2 0
2

1
2

2 2
2

0

ω π

ω π π π

ϕ π

( ), ,

( ), ,

( ), ,

t t

t t

t t

≤ ≤

− ≤ ≤

− − − ≤ ≤

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ ∗

      ϕ π∗ +( )t 2  = ϕ∗( )t

and let  ω( )t   be a convex modulus of continuity.  In this case (see, e.g., [15, pp. 28, 29]), the function  ϕ∗( )t   be-

longs to the class  Hω .  It is clear that  ϕ ω
∗ ∈H0 ,  where  Hω

0  = ϕ{  : ϕ ω∈H , ϕ ⊥ }1 .  Then, according to Sec. 7.2

of [2, pp. 109, 110], the class  C Hβ
ψ

ω ,   ψ ∈ ′� 0 ,  contains a function  g∗ ⋅( )  whose  ( , )ψ β -derivative  g t∗
β
ψ

( )

satisfies the equation 

g t∗
β
ψ

( )   =  ϕ∗( )t . (32)

For the function  g t∗( ) ,  according to (29), we have 

ρn g( ; )∗ 0   =  sin
( ) ( ) ( ) ( ) sin

/

/
βπ ψ

π
ω

π
ω ψ

2
2 1 2

1

1

0

1
n t

t
dt t u ut dudt

n

n

n
∫ ∫ ∫+

⎛

⎝
⎜

⎞

⎠
⎟

∞
  +  O n( ) ( )1 ψ .

This implies that we can take the equality sign in (31).  Thus, equality (7) is proved in the case where  ω( )t   is a
convex modulus of continuity. 

If  ω( )t   is an arbitrary modulus of continuity, then the function  ϕ∗( )t   need not belong to the class  Hω .
However, as is shown in [15, p. 11], the function 

ϕ∗( )t   =  
2

3

ϕ∗( )t

already belongs to the class  Hω .  This means that the class  C Hβ
ψ

ω   contains a function  g t∗( )  whose  ( , )ψ β -

derivative  g t∗β
ψ ( )  satisfies the equality 

g t∗β
ψ ( )  =  ϕ∗( )t . (33)

For the function  g t∗( ),  according to formula (29), we have 

ρn g( ; )∗ 0   =  2
3 2

2 1 2
1

1

0

1

sin
( ) ( ) ( ) ( ) sin

/

/
βπ ψ

π
ω

π
ω ψn t

t
dt t u ut dudt

n

n

n
∫ ∫ ∫+

⎛

⎝
⎜

⎞

⎠
⎟

∞
  +  O n( ) ( )1 ψ .

This implies that equality (7) is true in the case of an arbitrary modulus of continuity  ω( )t . 
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Assume, in addition, that the majorant  ω( )t   satisfies condition (8).  It was shown in [3, p. 191] that 

n

u ut du
∞

∫ ψ( ) sin   <  
n

n t

u du
+

∫
2π

ψ
/

( )      ∀ ∈ ′ψ � 0.

Hence, 

0

1

2
/

( ) ( ) sin
n

n

t u ut dudt∫ ∫
∞

ω ψ   =  O t u du dt
n

n

n t

( ) ( ) ( )
/ /

1 2
0

1 2

∫ ∫
+

ω ψ
π

  =  O n
t

t
dt

n

( ) ( )
( )

/

1
0

1

ψ ω∫ . (34)

Then, using relations (8), (31), and (34), we obtain (9). 
Theorem 1 is proved. 

Proof of Theorem 2.  Without loss of generality, we can consider only the case  β = 1.  Performing the
change of variables in the first integral on the right-hand side of (15) and using the equality (see, e.g., [30,
p. 1084]) 

−∞

∞

∫ −
y t

t t

t
dt( )

sin
2   =  0    ∀ ∈y L ,

we get 

ρn f( ; )0   =  − −
⎛

⎝
⎜

⎞

⎠
⎟

−∞

∞

−
∫ ∫ψ

π
δ( )

( )
sin

/

/
n

t
t

t
dt

n

n

1

1

2   –  1

1 1
π

δ ψ
t

t
n

nu ut dudt
≤

∞

∫ ∫⎛
⎝
⎞
⎠ ( ) sin   +  O n n( ) ( ) ( / )1 1ψ ω

=  − + − − − −( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−∞

∞

−∞

∞

∫ ∫ ∫ψ
π

δ δ δ δ( ) ( )
( )

sin
( ) ( )

sin
/

n t
t

dt t
t t

t
dt t t

t

t
dt

n

2
0

1

2

–  1

1 1
π

δ ψ
t

t
n

nu ut dudt
≤

∞

∫ ∫⎛
⎝
⎞
⎠ ( ) sin   +  O n n( ) ( ) ( / )1 1ψ ω

=  −
−∞

∞

∫ψ
π

δ( ) ( )n t
t

dt   –  1

1 1
π

δ ψ
t

t
n

nu ut dudt
≤

∞

∫ ∫⎛
⎝
⎞
⎠ ( ) sin

+  O n t
t

t
dt n

n

( ) ( ) ( )
sin

( / )
/

1 2 1
0

1

2ψ ω ω∫ +
⎛

⎝
⎜

⎞

⎠
⎟

=  − − ⎛
⎝
⎞
⎠

−∞

∞

≤

∞

∫ ∫ ∫ψ
π

δ
π

δ ψ( ) ( ) ( ) sin
n t

t
dt t

n
nu ut dudt

t

1

1 1

 + O n t
t

dt n
n

( ) ( ) ( ) ( / )
/

1 1
0

1

ψ ω ω∫ +
⎛

⎝
⎜

⎞

⎠
⎟ . (35)



640 A. S. SERDYUK  AND  E. YU. OVSII

According to relation (1.33) in [2, p. 43], the following equality is true: 

−∞

∞

∫ y t
t

dt
( )

  =  
1

2 2−
∫
π

π

y t
t

dt( )cot      ∀ ∈y L .

Using this equality and relations (11), (30), and (35), we obtain 

ρn f( ; )0   =  −
−
∫

ψ
π

δ
π

π
( )

( )
n

t
t

dt
2 2

cot   +  O n n( ) ( ) ( / )1 1ψ ω . (36)

Further, since

−
∫
π

π

δ( )t
t

dtcot
2

  =  
−
∫ ∫+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

π

π

π

π

δ
/

/

/

/

( )
2

2

2

3 2

2
t

t
dtcot

=  δ δ
π

( ) – ( )
/

t t
t

dt−( )∫ cot
2

0

2

  –  
0

2

2

π

δ π δ π
/

( ) – ( )∫ + −( )t t
t

dttan ,

we have 

−
∫
π

π

δ( )t
t

dtcot
2

  ≤  
0

2

2

π

ω
/

∫ (2 ) cott
t

dt   +  
0

2

2

π

ω
/

∫ (2 ) tant
t

dt   =  2
0

2π
ω

/

∫ (2 )
sin

t
t

dt . (37)

Combining relations (14), (36), and (37), we get 

  
E C H Zn Cβ

ψ
ω

ϕ( );   ≤  
ψ
π

ω
π

( ) ( )
sin

/
n t

t
dt

0

2
2∫   +  O n n( ) ( ) ( / )1 1ψ ω . (38)

Using equality (36), one can easily verify that, for the function  ˜( )g t   that coincides with the function  g t∗( )  con-
sidered above in the case where  ω( )t   is a convex majorant and with the function  g t∗( )  otherwise, the follow-
ing relation is true: 

ρn g( ˜; )0   =  α ω ψ
π

ω
π

( )
( ) ( )

sin

/
n t

t
dt

0

2
2∫   +  O n n( ) ( ) ( / )1 1ψ ω , (39)

where  α ω( ) = 1  if  ω( )t   is a convex modulus of continuity and  α ω( ) = 2 / 3  otherwise.  Combining relations
(38) and (39), we obtain (12). 

Theorem 2 is proved. 
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Proof of Theorem 3.  Without loss of generality, we can consider only the case  β = 0.  Performing the
change of variables in the third integral on the right-hand side of (15) and taking equality (26) into account, we
get 

ρn f( ; )0   =  1 1
2π

ψ δ( ) ( )
cos

n t
t

t
dt

−∞

∞

∫ −
  +  O n n( ) ( ) ( / )1 1ψ ω

=  
ψ
π

π

π

β
ψ

β
ψ( )

( ) ( )
n

f t f dt
2

0
−
∫ −( )   +  O n n( ) ( ) ( / )1 1ψ ω . (40)

Relation (40) yields 

ρn f( ; )0   =  
ψ
π

π

β
ψ

β
ψ

π

β
ψ

β
ψ( )

( ) ( ) ( ) ( )
n

f t f dt f t f dt
2

0 0
0 0
∫ ∫−( ) + − −( )   +  O n n( ) ( ) ( / )1 1ψ ω

≤  2 2
0

2

π
ψ ω

π

( ) ( )
/

n t dt∫   +  O n n( ) ( ) ( / )1 1ψ ω . (41)

Using (14) and (41), we obtain 

  
E C H Zn Cβ

ψ
ω

ϕ( );   ≤  2 2
0

2

π
ψ ω

π

( ) ( )
/

n t dt∫   +  O n n( ) ( ) ( / )1 1ψ ω . (42)

We set 

ϕ0( )t   =  

2
2 0

0

0

2

0

π
ω τ τ ω π

ϕ π

π

( ) ( ), ,

( ), ,

/

d t t

t t

∫ − ≤ ≤

− − ≤ ≤

⎧

⎨
⎪⎪⎪

⎩
⎪
⎪

       ϕ π0 2( )t +   =  ϕ0( )t .

It is clear that  ϕ ω0
0∈H ,  and, therefore (see Sec. 7.2 of [2, pp. 109, 110]), the class  C Hβ

ψ
ω ,    ψ ∈� 0 ,  contains

a function  g0( )⋅   whose  (ψ, β)-derivative coincides with the function  ϕ0( )t   on a period.  For the function
g t0( ) ,  relation (40) yields 

ρn g( ; )0 0   =  2 2
0

2

π
ψ ω

π

( ) ( )
/

n t dt∫   +  O n n( ) ( ) ( / )1 1ψ ω .

This implies that the we can take the equality sign in (42). 
Theorem 3 is proved. 
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Setting  ψ( )t  = t r− , r > 0,  in Theorems 2 and 3 and taking into account that  C Hβ
ψ

ω  = W Hr
β ω   in this case,

we obtain the following statement: 

Corollary 1.  Suppose that  r  > 0,  s = r,    β ∈Z,  and condition (11) is satisfied for  β = 2l + 1,   l ∈Z .

Then the following asymptotic equalities hold as  n → ∞  : 

  
E W H Zr

n
s

Cβ ω( );   =  

2
2 1 1 2

0

2

0

π
ω ω β

θ

π

π

ω
π

n
t dt O n n l

n

r
r

r

/

( ) ( ) ( / ), ,∫ + =−

//
( )

sin
( ) ( / ), ,

2
2

1 1 2 1∫ + = +

⎧

⎨

⎪
⎪⎪

⎩

−ω ω βt

t
dt O n n lr

⎪⎪
⎪
⎪

        l ∈Z , (43)

where  θω   and  O( )1   have the same meaning as in Theorem 2. 

Note that, for  ω( )t  = t,  one has  W Hr
r
−
−
1
1

ω  = W r , r = 2, 3, … ,  where  W r   is the class of  2π-periodic

functions such that their  (r – 1) th derivatives are absolutely continuous and  f r( )  ≤ 1  almost everywhere.

Therefore, taking into account the relation 

0

2π /

sin∫
t

t
dt   =  2G,

where  G  is the Catalan constant (see, e.g., [31, p. 431]), and using Corollary 1, we arrive at the following state-
ment: 

Corollary 2.  Let  s = r – 1  and  r = 2, 3, … .  Then the following asymptotic equalities hold as  n → ∞  :

E W Zr
n
s

C
( );   =  

4
1 2 4

2
1 3 5

G

n
O n r

n
O n r

s
r

s
r

π

π

+ = …

+ = …

−

−

( ) , , , ,

( ) , , , ,

⎧⎧

⎨
⎪
⎪

⎩
⎪
⎪

(44)

where  G  is the Catalan constant and  O( )1   is uniformly bounded in  n. 

It is easy to see that, since (see, e.g., [31, p. 21]) 

G  =  
k

k

k=

∞

∑ −
+0

2

1

2 1

( )

( )
,

the constants in the leading terms of (44) coincide with the so-called Favard–Akhiezer– Krein constants  K̃ j   and

K j   for  j = 1  (see, e.g., [11, pp. 89, 329]): 
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K j   =  4 1
2 10

1

1π k

k j

jk=

∞ +

+∑ −
+

( )
( )

( )
,      K̃ j   =  4 1

2 10
1π k

kj

jk=

∞

+∑ −
+

( )
( )

,      j = 0, 1, 2, … .

The asymptotic equalities (44) were proved by Nagy [10, p. 47]. 
It is easy to see that, by virtue of (2), the condition  ϕ ψ( ) ( )t t  = 1,  t ≥ 1,  in Theorems (1) – (3) can be re-

placed by the condition ϕ ψ( ) ( )t t  = const,  t ≥ 1. 
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