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Abstract. We construct the time evolution of Kawasaki dynamics for a spatial
infinite particle system in terms of generating functionals. This is carried out by

an Ovsjannikov-type result in a scale of Banach spaces, which leads to a local (in
time) solution. An application of this approach to Vlasov-type scaling in terms of

generating functionals is considered as well.

1. Introduction

Originally, Bogoliubov generating functionals (GF for short) were introduced by N. N.
Bogoliubov in [2] to define correlation functions for statistical mechanics systems. Apart
from this specific application, and many others, GF are, by themselves, a subject of
interest in infinite dimensional analysis. This is partially due to the fact that to a
probability measure µ defined on the space Γ of locally finite configurations γ ⊂ Rd one
may associate a GF

Bµ(θ) :=

∫
Γ

dµ(γ)
∏
x∈γ

(1 + θ(x)),

yielding an alternative method to study the stochastic dynamics of an infinite particle
system in the continuum by exploiting the close relation between measures and GF [4, 9].

Existence and uniqueness results for the Kawasaki dynamics through GF arise natu-
rally from Picard-type approximations and a method suggested in [6, Appendix 2, A2.1]
in a scale of Banach spaces (see e.g. [5, Theorem 2.5]). This method, originally presented
for equations with coefficients time independent, has been extended to an abstract and
general framework by T. Yamanaka in [12] and L. V. Ovsjannikov in [10] in the linear
case, and many applications were exposed by F. Treves in [11]. As an aside, within an
analytical framework outside of our setting, all these statements are very closely related
to variants of the abstract Cauchy-Kovalevskaya theorem. However, all these abstract
forms only yield a local solution, that is, a solution which is defined on a finite time
interval. Moreover, starting with an initial condition from a certain Banach space, in
general the solution evolves on larger Banach spaces.

As a particular application, this work concludes with the study of the Vlasov-type
scaling proposed in [3] for general continuous particle systems and accomplished in [1]
for the Kawasaki dynamics. The general scheme proposed in [3] for correlation functions
yields a limiting hierarchy which possesses a chaos preservation property, namely, starting
with a Poissonian (non-homogeneous) initial state this structural property is preserved
during the time evolution. In Section 4 the same problem is formulated in terms of GF
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and its analysis is carried out by the general Ovsjannikov-type result in a scale of Banach
spaces presented in [5, Theorem 4.3].

2. General Framework

In this section we briefly recall the concepts and results of combinatorial harmonic
analysis on configuration spaces and Bogoliubov generating functionals needed through-
out this work (for a detailed explanation see [7, 9]).

2.1. Harmonic analysis on configuration spaces. Let Γ := ΓRd be the configuration
space over Rd, d ∈ N,

Γ :=
{
γ ⊂ Rd : |γ ∩ Λ| <∞ for every compact Λ ⊂ Rd

}
,

where |·| denotes the cardinality of a set. We identify each γ ∈ Γ with the non-negative
Radon measure

∑
x∈γ δx on the Borel σ-algebra B(Rd), where δx is the Dirac measure

with mass at x, which allows to endow Γ with the vague topology and the corresponding
Borel σ-algebra B(Γ).

For any n ∈ N0 := N ∪ {0} let

Γ(n) := {γ ∈ Γ : |γ| = n}, n ∈ N, Γ(0) := {∅}.

Clearly, each Γ(n), n ∈ N, can be identify with the symmetrization of the set {(x1, ..., xn) ∈
(Rd)n : xi 6= xj if i 6= j}, which induces a natural (metrizable) topology on Γ(n) and the

corresponding Borel σ-algebra B(Γ(n)). In particular, for the Lebesgue product mea-
sure (dx)⊗n fixed on (Rd)n, this identification yields a measure m(n) on (Γ(n),B(Γ(n))).
For n = 0 we set m(0)({∅}) := 1. This leads to the definition of the space of finite
configurations

Γ0 :=

∞⊔
n=0

Γ(n)

endowed with the topology of disjoint union of topological spaces and the corresponding
Borel σ-algebra B(Γ0), and to the so-called Lebesgue-Poisson measure on (Γ0,B(Γ0)),

(2.1) λ := λdx :=

∞∑
n=0

1

n!
m(n).

Let Bc(Rd) be the set of all bounded Borel sets in Rd and, for each Λ ∈ Bc(Rd), let

ΓΛ := {η ∈ Γ : η ⊂ Λ}. Evidently ΓΛ =
⊔∞
n=0 Γ

(n)
Λ , where Γ

(n)
Λ := ΓΛ ∩ Γ(n), n ∈ N0.

Given a complex-valued B(Γ0)-measurable function G such that G�Γ\ΓΛ
≡ 0 for some

Λ ∈ Bc(Rd), the K-transform of G is a mapping KG : Γ→ C defined at each γ ∈ Γ by

(2.2) (KG)(γ) :=
∑
η⊂γ
|η|<∞

G(η).

It has been shown in [7] that the K-transform is a linear and invertible mapping.
Let M1

fm(Γ) be the set of all probability measures µ on (Γ,B(Γ)) with finite local
moments of all orders, i.e.,∫

Γ

dµ(γ) |γ ∩ Λ|n <∞ for all n ∈ N and all Λ ∈ Bc(Rd),

and let Bbs(Γ0) be the set of all complex-valued bounded B(Γ0)-measurable functions
with bounded support, i.e., G�

Γ0\
(⊔N

n=0 Γ
(n)
Λ

)≡ 0 for some N ∈ N0,Λ ∈ Bc(Rd). Given
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a µ ∈ M1
fm(Γ), the so-called correlation measure ρµ corresponding to µ is a measure on

(Γ0,B(Γ0)) defined for all G ∈ Bbs(Γ0) by

(2.3)

∫
Γ0

dρµ(η)G(η) =

∫
Γ

dµ(γ) (KG) (γ).

This definition implies, in particular, that Bbs(Γ0) ⊂ L1(Γ0, ρµ).1 Moreover, still by (2.3),
on Bbs(Γ0) the inequality ‖KG‖L1(Γ,µ) ≤ ‖G‖L1(Γ0,ρµ) holds, allowing an extension of

the K-transform to a bounded operator K : L1(Γ0, ρµ) → L1(Γ, µ) in such a way that
equality (2.3) still holds for any G ∈ L1(Γ0, ρµ). For the extended operator the explicit
form (2.2) still holds, now µ-a.e. In particular, for coherent states eλ(f) of complex-
valued B(Rd)-measurable functions f ,

(2.4) eλ(f, η) :=
∏
x∈η

f (x) , η ∈ Γ0\{∅}, eλ(f, ∅) := 1.

Additionally, if f has compact support we have

(2.5) (Keλ(f)) (γ) =
∏
x∈γ

(1 + f(x))

for all γ ∈ Γ, while for functions f such that eλ(f) ∈ L1(Γ0, ρµ) equality (2.5) holds,
but only for µ-a.a. γ ∈ Γ. Concerning the Lebesgue-Poisson measure (2.1), we observe
that eλ(f) ∈ Lp(Γ0, λ) whenever f ∈ Lp := Lp(Rd, dx) for some p ≥ 1. In this case,
‖eλ(f)‖pLp = exp(‖f‖pLp). In particular, for p = 1, in addition we have∫

Γ0

dλ(η) eλ(f, η) = exp

(∫
Rd
dx f(x)

)
,

for all f ∈ L1. For more details see [8].

2.2. Bogoliubov generating functionals. Given a probability measure µ on (Γ,B(Γ))
the so-called Bogoliubov generating functional (GF for short) Bµ corresponding to µ is
the functional defined at each B(Rd)-measurable function θ by

(2.6) Bµ(θ) :=

∫
Γ

dµ(γ)
∏
x∈γ

(1 + θ(x)),

provided the right-hand side exists. It is clear from (2.6) that the domain of a GF Bµ
depends on the underlying measure µ and, conversely, the domain of Bµ reflects special
properties over the measure µ. Throughout this work we will consider GF defined on the
whole complex L1 space. This implies, in particular, that the underlying measure µ has
finite local exponential moments, i.e.,∫

Γ

dµ(γ) eα|γ∩Λ| <∞ for all α > 0 and all Λ ∈ Bc(Rd),

and thus µ ∈M1
fm(Γ). According to the previous subsection, this implies that to such a

measure µ one may associate the correlation measure ρµ, which leads to a description of
the functional Bµ in terms of either the measure ρµ:

Bµ(θ) =

∫
Γ

dµ(γ) (Keλ(θ)) (γ) =

∫
Γ0

dρµ(η) eλ(θ, η),

or the so-called correlation function kµ :=
dρµ
dλ corresponding to the measure µ, if ρµ is

absolutely continuous with respect to the Lebesgue–Poisson measure λ:

(2.7) Bµ(θ) =

∫
Γ0

dλ(η) eλ(θ, η)kµ(η).

1Throughout this work all Lp-spaces, p ≥ 1, consist of complex-valued functions.
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Throughout this work we will assume, in addition, that GF are entire on the L1

space [9], which is a natural environment, namely, to recover the notion of correlation
function. For a generic entire functional B on L1, this assumption implies that B has a
representation in terms of its Taylor expansion,

B(θ0 + zθ) =

∞∑
n=0

zn

n!
dnB(θ0; θ, ..., θ), z ∈ C, θ ∈ L1,

being each differential dnB(θ0; ·), n ∈ N, θ0 ∈ L1 defined by a symmetric kernel

δnB(θ0; ·) ∈ L∞(Rdn) := L∞
(
(Rd)n, (dx)⊗n

)
,

called the variational derivative of n-th order of B at the point θ0. That is,

dnB(θ0; θ1, ..., θn) :=
∂n

∂z1...∂zn
B

(
θ0 +

n∑
i=1

ziθi

)∣∣∣∣∣
z1=...=zn=0

(2.8)

= :

∫
(Rd)n

dx1 . . . dxn δ
nB(θ0;x1, . . . , xn)

n∏
i=1

θi(xi)

for all θ1, ..., θn ∈ L1. Moreover, the operator norm of the bounded n-linear functional
dnB(θ0; ·) is equal to ‖δnB(θ0; ·)‖L∞(Rdn) and for all r > 0 one has

‖δB(θ0; ·)‖L∞(Rd) ≤
1

r
sup

‖θ′‖L1≤r
|B(θ0 + θ′)|(2.9)

and, for n ≥ 2,

‖δnB(θ0; ·)‖L∞(Rdn) ≤ n!
(e
r

)n
sup

‖θ′‖L1≤r
|B(θ0 + θ′)|.(2.10)

In particular, if B is an entire GF Bµ on L1 then, in terms of the underlying measure
µ, the entireness property of Bµ implies that the correlation measure ρµ is absolutely
continuous with respect to the Lebesgue-Poisson measure λ and the Radon-Nykodim

derivative kµ =
dρµ
dλ

is given by

kµ(η) = δ|η|Bµ(0; η) for λ-a.a. η ∈ Γ0.

In what follows, for each α > 0, we consider the Banach space Eα of all entire func-
tionals B on L1 such that

‖B‖α := sup
θ∈L1

(
|B(θ)| e− 1

α‖θ‖L1

)
<∞,

see [9]. This class of Banach spaces has the particularity that, for each α0 > 0, the family
{Eα : 0 < α ≤ α0} is a scale of Banach spaces, that is,

Eα′′ ⊆ Eα′ , ‖ · ‖α′ ≤ ‖ · ‖α′′

for any pair α′, α′′ such that 0 < α′ < α′′ ≤ α0.

3. The Kawasaki dynamics

The Kawasaki dynamics is an example of a hopping particle model where, in this
case, particles randomly hop over the space Rd according to a rate depending on the
interaction between particles. More precisely, let a : Rd → [0,+∞) be an even and
integrable function and let φ : Rd → [0,+∞] be a pair potential, that is, a B(Rd)-
measurable function such that φ(−x) = φ(x) ∈ R for all x ∈ Rd \ {0}, which we will
assume to be integrable. A particle located at a site x in a given configuration γ ∈ Γ
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hops to a site y according to a rate given by a(x− y) exp(−E(y, γ)), where E(y, γ) is a
relative energy of interaction between the site y and the configuration γ defined by

E(y, γ) :=
∑
x∈γ

φ(x− y) ∈ [0,+∞].

Informally, the behavior of such an infinite particle system is described by

(3.1) (LF )(γ) =
∑
x∈γ

∫
Rd
dy a(x− y)e−E(y,γ) (F (γ \ {x} ∪ {y})− F (γ)) .

Given an infinite particle system, as the Kawasaki dynamics, its time evolution in
terms of states is informally given by the so-called Fokker-Planck equation,

(3.2)
dµt
dt

= L∗µt, µt
∣∣
t=0

= µ0,

where L∗ is the dual operator of L. Technically, the use of definition (2.3) allows an
alternative approach to the study of (3.2) through the corresponding correlation functions
kt := kµt , t ≥ 0, provided they exist. This leads to the Cauchy problem

∂

∂t
kt = L̂∗kt, kt|t=0 = k0,

where k0 is the correlation function corresponding to the initial distribution µ0 and L̂∗

is the dual operator of L̂ := K−1LK in the sense∫
Γ0

dλ(η) (L̂G)(η)k(η) =

∫
Γ0

dλ(η)G(η)(L̂∗k)(η).

Through the representation (2.7), this gives us a way to express the dynamics also in
terms of the GF Bt corresponding to µt, i.e., informally,

∂

∂t
Bt(θ) =

∫
Γ0

dλ(η) eλ(θ, η)

(
∂

∂t
kt(η)

)
=

∫
Γ0

dλ(η) eλ(θ, η)(L̂∗kt)(η)(3.3)

=

∫
Γ0

dλ(η) (L̂eλ(θ))(η)kt(η) =: (L̃Bt)(θ).

This leads to the time evolution equation

(3.4)
∂Bt
∂t

= L̃Bt,

where, in the case of the Kawasaki dynamics, L̃ is given cf. [4] by

(L̃B)(θ)(3.5)

=

∫
Rd
dx

∫
Rd
dy a(x− y)e−φ(x−y)(θ(y)− θ(x))δB(θe−φ(y−·) + e−φ(y−·) − 1;x).

Theorem 3.1. Given an α0 > 0, let B0 ∈ Eα0
. For each α ∈ (0, α0) there is a T > 0

(which depends on α, α0) such that there is a unique solution Bt, t ∈ [0, T ), to the initial
value problem (3.4), (3.5), Bt|t=0 = B0 in the space Eα.

This theorem follows as a particular application of an abstract Ovsjannikov-type result
in a scale of Banach spaces which can be found e.g. in [5, Theorem 2.5], and the following
estimate of norms.

Proposition 3.2. Let 0 < α < α0 be given. If B ∈ Eα′′ for some α′′ ∈ (α, α0], then

L̃B ∈ Eα′ for all α ≤ α′ < α′′, and we have

‖L̃B‖α′ ≤ 2e
‖φ‖

L1
α ‖a‖L1

α0

α′′ − α′
‖B‖α′′ .
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To prove this result as well as other forthcoming ones the next lemma shows to be
useful.

Lemma 3.3. Let ϕ,ψ : Rd × Rd → R be such that, for a.a. y ∈ Rd, ϕ(y, ·) ∈ L∞ :=
L∞(Rd), ψ(y, ·) ∈ L1 and ‖ϕ(y, ·)‖L∞ ≤ c0, ‖ψ(y, ·)‖L1 ≤ c1 for some constants c0, c1 >
0 independent of y. For each α > 0 and all B ∈ Eα let

(L0B)(θ) :=

∫
Rd
dx

∫
Rd
dy a(x− y)e−kφ(x−y) (θ(y)− θ(x)) δB(ϕ(y, ·)θ + ψ(y, ·);x),

θ ∈ L1. Here a and φ are defined as before and k ≥ 0 is a constant. Then, for all α′ > 0
such that c0α

′ < α, we have L0B ∈ Eα′ and

‖L0B‖α′ ≤ 2e
c1
α ‖a‖L1

α′

α− c0α′
‖B‖α.

Proof. First we observe that from the considerations done in Subsection 2.2 it follows
that L0B is an entire functional on L1 and, in addition, that for all r > 0, θ ∈ L1, and
a.a. x, y ∈ Rd,

|δB(ϕ(y, ·)θ + ψ(y, ·);x)| ≤ ‖δB(ϕ(y, ·)θ + ψ(y, ·); ·)‖L∞

≤ 1

r
sup

‖θ0‖L1≤r
|B(ϕ(y, ·)θ + ψ(y, ·) + θ0)| ,

where, for all θ0 ∈ L1 such that ‖θ0‖L1 ≤ r,

|B(ϕ(y, ·)θ + ψ(y, ·) + θ0)| ≤ ‖B‖αe
‖ϕ(y,·)θ+ψ(y,·)‖

L1
α + r

α ≤ ‖B‖αe
c0‖θ‖L1+c1+r

α .

As a result, due to the positiveness of φ and to the fact that a is an even function, for
all θ ∈ L1 one has

|(L0B)(θ)| ≤ 1

r
e
c0‖θ‖L1+c1+r

α ‖B‖α
∫
Rd
dx

∫
Rd
dy a(x− y)e−kφ(x−y)|θ(y)− θ(x)|

≤ 2

r
e
c1+r
α ‖a‖L1‖θ‖L1e

c0‖θ‖L1
α ‖B‖α.

Thus,

‖L0B‖α′ = sup
θ∈L1

(
e−

1
α′ ‖θ‖L1 |(L0B)(θ)|

)
≤ 2

r
e
c1+r
α ‖a‖L1‖B‖α sup

θ∈L1

(
e−( 1

α′−
c0
α )‖θ‖L1‖θ‖L1

)
,

where the supremum is finite provided 1
α′ −

c0
α > 0. In such a situation, the use of the

inequality xe−mx ≤ 1
em , x ≥ 0, m > 0 leads for each r > 0 to

‖L0B‖α′ ≤
2

r
‖a‖L1e

c1+r
α

αα′

e(α− c0α′)
‖B‖α.

The required estimate of norms follows by minimizing the expression 1
r e

c1+r
α in the pa-

rameter r, that is, r = α. �

Proof of Proposition 3.2. In Lemma 3.3 replace ϕ by e−φ and ψ by e−φ−1, and consider
k = 1. Due to the positiveness and integrability properties of φ one has e−φ ≤ 1 and
|e−φ − 1| = 1− e−φ ≤ φ ∈ L1, ensuring the conditions to apply Lemma 3.3. �

Remark 3.4. Concerning the initial conditions considered in Theorem 3.1, observe that,
in particular, B0 can be an entire GF Bµ0

on L1 such that, for some constants α0, C > 0,

|Bµ0
(θ)| ≤ C exp(

‖θ‖L1

α0
) for all θ ∈ L1. In such a situation an additional analysis is need

in order to guarantee that for each t the local solution Bt given by Theorem 3.1 is a GF
(corresponding to some measure). For more details see e.g. [5, 9] and references therein.
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4. Vlasov scaling

We proceed to investigate the Vlasov-type scaling proposed in [3] for generic contin-
uous particle systems and accomplished in [1] for the Kawasaki dynamics. As explained
in both references, we start with a rescaling of an initial correlation function k0, denoted

by k
(ε)
0 , ε > 0, which has a singularity with respect to ε of the type k

(ε)
0 (η) ∼ ε−|η|r0(η),

η ∈ Γ0, being r0 a function independent of ε. The aim is to construct a scaling of the
operator L defined in (3.1), Lε, ε > 0, in such a way that the following two conditions

are fulfilled. The first one is that under the scaling L 7→ Lε the solution k
(ε)
t , t ≥ 0, to

∂

∂t
k

(ε)
t = L̂∗εk

(ε)
t , k

(ε)
t |t=0 = k

(ε)
0

preserves the order of the singularity with respect to ε, that is, k
(ε)
t (η) ∼ ε−|η|rt(η),

η ∈ Γ0. The second condition is that the dynamics r0 7→ rt preserves the Lebesgue-
Poisson exponents, that is, if r0 is of the form r0 = eλ(ρ0), then each rt, t > 0, is of
the same type, i.e., rt = eλ(ρt), where ρt is a solution to a non-linear equation (called a
Vlasov-type equation).

The previous scheme was accomplished in [1] through the scale transformation φ 7→ εφ
of the operator L, that is,

(LεF )(γ) :=
∑
x∈γ

∫
Rd
dy a(x− y)e−εE(y,γ) (F (γ \ {x} ∪ {y})− F (γ)) .

As shown in [3, Example 12], [1], the corresponding Vlasov-type equation is given by

(4.1)
∂

∂t
ρt(x) = (ρt ∗ a)(x)e−(ρt∗φ)(x) − ρt(x)(a ∗ e−(ρt∗φ))(x), x ∈ Rd,

where ∗ denotes the usual convolution of functions. Existence of classical solutions 0 ≤
ρt ∈ L∞ to (4.1) has been discussed in [1]. Therefore, it is natural to consider the same
scaling, but in GF.

To proceed towards GF, we consider k
(ε)
t defined as before and k

(ε)
t,ren(η) := ε|η|k

(ε)
t (η).

In terms of GF, these yield

B
(ε)
t (θ) :=

∫
Γ0

dλ(η)eλ(θ, η)k
(ε)
t (η),

and

B
(ε)
t,ren(θ) :=

∫
Γ0

dλ(η) eλ(θ, η)k
(ε)
t,ren(η) =

∫
Γ0

dλ(η) eλ(εθ, η)k
(ε)
t (η) = B

(ε)
t (εθ),

leading, as in (3.3), to the initial value problem

(4.2)
∂

∂t
B

(ε)
t,ren = L̃ε,renB

(ε)
t,ren, B

(ε)
t,ren|t=0

= B
(ε)
0,ren.

Proposition 4.1. For all ε > 0 and all θ ∈ L1, we have

(L̃ε,renB)(θ) =

∫
Rd
dx

∫
Rd
dy a(x− y)e−εφ(x−y)(θ(y)− θ(x))

× δB
(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
;x

)
.(4.3)

Proof. Since

(L̃ε,renB)(θ) =

∫
Γ0

dλ(η) (L̂ε,reneλ(θ))(η)k(η),
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first we have to calculate (L̂ε,reneλ(θ))(η) := ε−|η|L̂ε(eλ(εθ, η)), L̂ε = K−1LεK cf. [3].
Similar calculations done in [4, Subsection 4.2.1] show

(L̂ε,reneλ(θ))(η) =
∑
x∈η

∫
Rd
dy a(x− y)e−εφ(x−y)(θ(y)− θ(x))

× eλ
(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
, η \ {x}

)
,

and thus, using the relation between variational derivatives derived in [9, Proposition
11], one finds

(L̃ε,renB)(θ) =

∫
Γ0

dλ(η) k(η)
∑
x∈η

∫
Rd
dy a(x− y)e−εφ(x−y)(θ(y)− θ(x))

× eλ
(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
, η \ {x}

)
=

∫
Rd
dx

∫
Rd
dy a(x− y)e−εφ(x−y)(θ(y)− θ(x))∫

Γ0

dλ(η) k(η ∪ {x})eλ
(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
, η

)
=

∫
Rd
dx

∫
Rd
dy a(x− y)e−εφ(x−y)(θ(y)− θ(x))

× δB
(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
;x

)
. �

Proposition 4.2. (i) If B ∈ Eα for some α > 0, then, for all θ ∈ L1, (L̃ε,renB)(θ)
converges as ε tends to zero to

(L̃VB)(θ) :=

∫
Rd
dx

∫
Rd
dy a(x− y)(θ(y)− θ(x))δB(θ − φ(y − ·);x).

(ii) Let α0 > α > 0 be given. If B ∈ Eα′′ for some α′′ ∈ (α, α0], then
{
L̃ε,renB, L̃VB

}
⊂

Eα′ for all α ≤ α′ < α′′, and we have

‖L̃#B‖α′ ≤ 2‖a‖L1

α0

(α′′ − α′)
e
‖φ‖

L1
α ‖B‖α′′

where L̃# = L̃ε,ren or L̃# = L̃V .

Proof. (i) To prove this result we first analyze the pointwise convergence of the variational

derivative (4.3) appearing in L̃ε,ren. For this purpose we will use the relation between
variational derivatives derived in [9, Proposition 11], i.e.,

δB(θ1 + θ2;x) =

∫
Γ0

dλ(η) δ|η|+1B(θ1; η ∪ {x})eλ(θ2, η), a.a. x ∈ Rd, θ1, θ2 ∈ L1,

which allows to rewrite (4.3) as

δB

(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
;x

)
=

∫
Γ0

dλ(η) δ|η|+1B(θ − φ(y − ·); η ∪ {x})(4.4)

× eλ
(
θ
(
e−εφ(y−·) − 1

)
+
e−εφ(y−·) − 1

ε
+ φ(y − ·), η

)
,
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for a.a. x, y ∈ Rd. Concerning the function

fε := fε(θ, φ, y) := θ
(
e−εφ(y−·) − 1

)
+
e−εφ(y−·) − 1

ε
+ φ(y − ·)

which appears in (4.4), for a.a. y ∈ Rd, one clearly has limε→0 fε = 0 a.e. in Rd. By
definition (2.4), the latter implies that eλ(fε) converges λ-a.e. to eλ(0). Moreover, for
the whole integrand function in (4.4), estimates (2.9), (2.10) yield for any r > 0 and
λ-a.a. η ∈ Γ0, ∣∣∣δ|η|+1B(θ − φ(y − ·); η ∪ {x})eλ(fε, η)

∣∣∣
≤
∥∥∥δ|η|+1B(θ − φ(y − ·); ·)

∥∥∥
L∞(Rd(|η|+1))

eλ(|fε|, η)

≤ (|η|+ 1)!
(e
r

)|η|+1

eλ(|fε|, η) sup
‖θ0‖L1≤r

|B(θ − φ(y − ·) + θ0)|

≤ (|η|+ 1)!
(e
r

)|η|+1

eλ(|θ|+ 2|φ(y − ·)|, η)e
‖θ−φ(y−·)‖

L1+r

α ‖B‖α

with∫
Γ0

dλ(η) (|η|+1)!
(e
r

)|η|+1

eλ(|θ|+2|φ(y−·)|, η) =

∞∑
n=0

(n+1)
(e
r

)n+1 (
‖θ‖L1 +2‖φ‖L1

)n
being finite for any r > e(‖θ‖L1 + 2‖φ‖L1).

As a result, by an application of the Lebesgue dominated convergence theorem we
have proved that, for a.a. x, y ∈ Rd, (4.4) converges as ε tends to zero to∫

Γ0

dλ(η) δ|η|+1B(θ − φ(y − ·); η ∪ {x})eλ(0, η) = δB(θ − φ(y − ·);x).

In addition, for the integrand function which appears in (L̃ε,renB)(θ) we have∣∣∣∣a(x− y)e−εφ(x−y)(θ(y)− θ(x))δB

(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
;x

)∣∣∣∣
≤ e

α
a(x− y)|θ(y)− θ(x)|‖B‖α exp

(
1

α
‖θ‖L1 +

1

α
‖φ‖L1

)
,

for all ε > 0 and a.a. x, y ∈ Rd, leading through a second application of the Lebesgue
dominated convergence theorem to the required limit.

(ii) In Lemma 3.3 replace ϕ by e−εφ, ψ by e−εφ−1
ε , and k by ε. Arguments similar to

prove Proposition 3.2 complete the proof for L̃ε,ren. A similar proof holds for L̃V . �

Proposition 4.2 (ii) provides similar estimate of norms for L̃ε,ren, ε > 0, and the

limiting mapping L̃V . According to the Ovsjannikov-type result used to prove Theorem

3.1, this means that given any B0,V , B
(ε)
0,ren ∈ Eα0

, ε > 0, for each α ∈ (0, α0) there is

a T > 0 such that there is a unique solution B
(ε)
t,ren : [0, T ) → Eα, ε > 0, to each initial

value problem (4.2) and a unique solution Bt,V : [0, T )→ Eα to the initial value problem

(4.5)
∂

∂t
Bt,V = L̃VBt,V , Bt,V |t=0 = B0,V .

In other words, independent of the initial value problem under consideration, the solu-
tions obtained are defined on the same time-interval and with values in the same Banach
space. For more details see e.g. Theorem 2.5 and its proof in [5]. Therefore, it is natural
to analyze under which conditions the solutions to (4.2) converge to the solution to (4.5).
This follows from a general result presented in [5] (Theorem 4.3). However, to proceed
to an application of this general result one needs the following estimate of norms.
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Proposition 4.3. Assume that 0 ≤ φ ∈ L1 ∩ L∞ and let α0 > α > 0 be given. Then,
for all B ∈ Eα′′ , α′′ ∈ (α, α0], the following estimate holds

‖L̃ε,renB − L̃VB‖α′

≤ 2ε‖a‖L1‖φ‖L∞
eα0

α
‖B‖α′′e

‖φ‖
L1
α

((
2e‖φ‖L1 +

α0

e

) 1

α′′ − α′
+

8α2
0

(α′′ − α′)2

)
for all α′ such that α ≤ α′ < α′′ and all ε > 0.

Proof. First we observe that∣∣∣(L̃ε,renB)(θ)− (L̃VB)(θ)
∣∣∣ ≤ ∫

Rd
dx

∫
Rd
dy a(x− y) |θ(y)− θ(x)|

×
∣∣∣∣e−εφ(x−y)δB

(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
;x

)
− δB (θ − φ(y − ·);x)

∣∣∣∣
with ∣∣∣∣e−εφ(x−y)δB

(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
;x

)
− δB (θ − φ(y − ·);x)

∣∣∣∣
≤
∣∣∣∣δB(θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
;x

)
− δB (θ − φ(y − ·);x)

∣∣∣∣(4.6)

+
(

1− e−εφ(x−y)
)
|δB (θ − φ(y − ·);x)| .

In order to estimate (4.6), given any θ0, θ1, θ2 ∈ L1, let us consider the function Cθ0,θ1,θ2(t) =
dB (tθ1 + (1− t)θ2; θ0), t ∈ [0, 1], where dB is the first order differential of B, defined in
(2.8). One has

∂

∂t
Cθ0,θ1,θ2(t) =

∂

∂s
Cθ0,θ1,θ2(t+ s)

∣∣∣
s=0

=
∂

∂s
dB
(
θ2 + t(θ1 − θ2) + s(θ1 − θ2); θ0

)∣∣∣
s=0

=
∂2

∂s1∂s2
B
(
θ2 + t(θ1 − θ2) + s1(θ1 − θ2) + s2θ0

)∣∣∣
s1=s2=0

=

∫
Rd
dx

∫
Rd
dy (θ1(x)− θ2(x))θ0(y) δ2B(θ2 + t(θ1 − θ2);x, y),

leading to ∣∣dB(θ1; θ0)− dB(θ2; θ0)
∣∣

=
∣∣Cθ0,θ1,θ2(1)− Cθ0,θ1,θ2(0)

∣∣
≤ max

t∈[0,1]

∫
Rd
dx

∫
Rd
dy |θ1(x)− θ2(x)| |θ0(y)|

∣∣δ2B(θ2 + t(θ1 − θ2);x, y)
∣∣

≤‖θ1 − θ2‖L1‖θ0‖L1 max
t∈[0,1]

‖δ2B(θ2 + t(θ1 − θ2); ·)‖L∞(R2d),

where, through estimate (2.10) with r = α′′,

‖δ2B(θ2 + t(θ1 − θ2); ·)‖L∞(R2d) ≤ 2
e3

α′′2
‖B‖α′′ exp

(
‖θ2 + t(θ1 − θ2)‖L1

α′′

)
.

As a result,∣∣dB(θ1; θ0)− dB(θ2; θ0)
∣∣

≤ 2
e3

α′′2
‖θ1 − θ2‖L1‖θ0‖L1‖B‖α′′ max

t∈[0,1]
exp

(
t‖θ1‖L1 + (1− t)‖θ2‖L1

α′′

)
,
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for all θ0, θ1, θ2 ∈ L1. In particular, this shows that for all θ0 ∈ L1,∣∣∣∣dB(θe−εφ(y−·) +
e−εφ(y−·) − 1

ε
; θ0

)
− dB (θ − φ(y − ·); θ0)

∣∣∣∣
≤ 2ε

e3

α′′2
‖φ‖L∞‖B‖α′′ (‖θ‖L1 + ‖φ‖L1) ‖θ0‖L1

× max
t∈[0,1]

exp

(
1

α′′
(t (‖θ‖L1 + ‖φ‖L1) + (1− t) (‖θ‖L1 + ‖φ‖L1))

)
= 2ε

e3

α′′2
‖φ‖L∞‖B‖α′′ (‖θ‖L1 + ‖φ‖L1) exp

(
1

α′′
(‖θ‖L1 + ‖φ‖L1)

)
‖θ0‖L1 ,

where we have used the inequalities

‖θe−εφ(y−·) − θ‖L1 ≤ ε‖φ‖L∞‖θ‖L1 ,∥∥∥e−εφ(y−·) − 1

ε
+ φ(y − ·)

∥∥∥
L1
≤ ε‖φ‖L∞‖φ‖L1 ,∥∥∥θe−εφ(y−·) +

e−εφ(y−·) − 1

ε

∥∥∥
L1
≤ ‖θ‖L1 + ‖φ‖L1 .

In other words, we have shown that the norm of the bounded linear functional on L1

L1 3 θ0 7→ dB

(
θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
; θ0

)
− dB (θ − φ(y − ·); θ0)

is bounded by

Q := 2ε
e3

α′′2
‖φ‖L∞‖B‖α′′ (‖θ‖L1 + ‖φ‖L1) exp

(
1

α′′
(‖θ‖L1 + ‖φ‖L1)

)
.

Since this operator norm is given by∥∥∥∥δB(θe−εφ(y−·) +
e−εφ(y−·) − 1

ε
; ·
)
− δB (θ − φ(y − ·); ·)

∥∥∥∥
L∞

cf. Subsection 2.2, this means that∥∥∥∥δB(θe−εφ(y−·) +
e−εφ(y−·) − 1

ε
; ·
)
− δB (θ − φ(y − ·); ·)

∥∥∥∥
L∞
≤ Q.

In this way we obtain∣∣∣(L̃ε,renB)(θ)− (L̃VB)(θ)
∣∣∣

≤
∫
Rd
dx

∫
Rd
dy a(x− y) |θ(y)− θ(x)|

×
{∥∥∥∥δB(θe−εφ(y−·) +

e−εφ(y−·) − 1

ε
; ·
)
− δB (θ − φ(y − ·); ·)

∥∥∥∥
L∞

+ε‖φ‖L∞ ‖δB (θ − φ(y − ·); ·)‖L∞
}

≤ 2ε‖φ‖L∞‖a‖L1

e

α′′
exp

(
1

α′′
(‖θ‖L1 + ‖φ‖L1)

)
‖θ‖L1

×
{

2
e2

α′′
(‖θ‖L1 + ‖φ‖L1) + 1

}
‖B‖α′′ ,
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and thus

‖L̃ε,renB − L̃VB‖α′

≤ 2ε‖φ‖L∞‖a‖L1

e

α′′
e
‖φ‖

L1

α′′

{
2
e2

α′′
sup
θ∈L1

(
‖θ‖2L1 exp

(
‖θ‖L1

(
1

α′′
− 1

α′

)))
+

(
2
e2

α′′
‖φ‖L1 + 1

)
sup
θ∈L1

(
‖θ‖L1 exp

(
‖θ‖L1

(
1

α′′
− 1

α′

)))}
‖B‖α′′ ,

and the proof follows using the inequalities xe−mx ≤ 1
me and x2e−mx ≤ 4

m2e2 for x ≥ 0,
m > 0. �

We are now in conditions to state the following result.

Theorem 4.4. Given an 0 < α < α0, let B
(ε)
t,ren, Bt,V , t ∈ [0, T ), be the local solutions in

Eα to the initial value problems (4.2), (4.5) with B
(ε)
0,ren, B0,V ∈ Eα0 . If 0 ≤ φ ∈ L1 ∩ L∞

and limε→0 ‖B(ε)
0,ren −B0,V ‖α0

= 0, then, for each t ∈ [0, T ),

lim
ε→0
‖B(ε)

t,ren −Bt,V ‖α = 0.

Moreover, if B0,V (θ) = exp
(∫

Rd dx ρ0(x)θ(x)
)
, θ ∈ L1, for some function 0 ≤ ρ0 ∈ L∞

such that ‖ρ0‖L∞ ≤ 1
α0

, then for each t ∈ [0, T ),

(4.7) Bt,V (θ) = exp

(∫
Rd
dx ρt(x)θ(x)

)
, θ ∈ L1,

where 0 ≤ ρt ∈ L∞ is a classical solution to the equation (4.1).

Proof. The first part follows directly from Proposition 4.3 and [5, Theorem 4.3], taking
in [5, Theorem 4.3] p = 2 and

Nε = 2ε‖a‖L1‖φ‖L∞
eα0

α
e
‖φ‖

L1
α max

{
2e‖φ‖L1 +

α0

e
, 8α2

0

}
.

Concerning the last part, we begin by observing that it has been shown in [1, Sub-
section 4.2] that given a 0 ≤ ρ0 ∈ L∞ such that ‖ρ0‖L∞ ≤ 1

α0
, there is a solution

0 ≤ ρt ∈ L∞ to (4.1) such that ‖ρt‖L∞ ≤ 1
α0

. This implies that Bt,V , given by (4.7),
does not leave the initial Banach space Eα0

⊂ Eα. Then, by an argument of uniqueness,
to prove the last assertion amounts to show that Bt,V solves equation (4.5). For this
purpose we note that for any θ, θ1 ∈ L1 we have

∂

∂z1
Bt,V (θ + z1θ1)

∣∣∣∣
z1=0

= Bt,V (θ)

∫
Rd
dxρt(x)θ1(x),

and thus δBt,V (θ;x) = Bt,V (θ)ρt(x). Hence, for all θ ∈ L1,

(L̃VBt,V )(θ) =Bt,V (θ)

(∫
Rd
dx

∫
Rd
dy a(x− y) (θ(y)− θ(x)) ρt(x)e−(ρt∗φ)(y)

)
=Bt,V (θ)

(∫
Rd
dy θ(y) (a ∗ ρt) (y)e−(ρt∗φ)(y)

−
∫
Rd
dx θ(x)

(
a ∗ e−(ρt∗φ)(y)

)
(x)ρt(x)

)
.

Since ρt is a classical solution to (4.1), ρt solves a weak form of equation (4.1), that is,
the right-hand side of the latter equality is equal to

Bt,V (θ)
d

dt

∫
Rd
dx ρt(x)θ(x) =

∂

∂t
Bt,V (θ). �
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