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Abstract
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1 Introduction

Originally, Bogoliubov generating functionals (shortly GF) were introduced
by N. N. Bogoliubov in [Bog46] to define correlation functions for statistical
mechanics systems. Apart from this specific application, and many others,
GF are, by themselves, a subject of interest in infinite dimensional analysis.
This is partially due to the fact that to a probability measure µ defined on
the space Γ of locally finite configurations γ ⊂ Rd one may associate a GF

Bµ(θ) :=

∫
Γ

dµ(γ)
∏
x∈γ

(1 + θ(x)),

yielding an alternative method to study the stochastic dynamics of an infinite
particle system in the continuum by exploiting the close relation between
measures and GF [FKO09, KKO06].

Within the semigroups theory, a non-equilibrium Glauber dynamics has
been constructed through evolution equations for correlation functions in
[FKK09, FKKZ09, KKZ06]. However, within the GF context, semigroup
techniques seem do not work. Alternatively, existence and uniqueness re-
sults for the Glauber dynamics through GF arise naturally from Picard-type
approximations and a method suggested in [GS58, Appendix 2, A2.1] in a
scale of Banach spaces (Theorem 2.5). This method, originally presented
for equations with coefficients time independent, has been extended to an
abstract and general framework by T. Yamanaka in [Yam60] and L. V. Ovs-
jannikov in [Ovs65] in the linear case, and many applications were exposed
by F. Treves in [Tre68]. As an aside, within an analytical framework outside
of our setting, all these statements are very closely related to variants of the
abstract Cauchy-Kovalevskaya theorem. However, all these abstract forms,
namely, Theorem 2.5, only yield a local solution, that is, a solution which
is defined on a finite time interval. Moreover, starting with an initial condi-
tion from a certain Banach space, in general the solution evolves on larger
Banach spaces. It is only for a certain class of initial conditions that the
solution does not leave the initial Banach space. In this case, the solution
might be extended to a global solution (Corollary 3.7).

As a particular application, this work concludes with the study of the
Vlasov-type scaling proposed in [FKK10a] for generic continuous particle
systems and accomplished in [FKK10b] for the Glauber dynamics. The gen-
eral scheme proposed in [FKK10a] for correlation functions yields a limiting
hierarchy which possesses a chaos preservation property, namely, starting
with a Poissonian (non-homogeneous) initial state this structural property is
preserved during the time evolution. In Section 4 the same problem is for-
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mulated in terms of GF and its analysis is carried out by Ovsjannikov-type
approximations in a scale of Banach spaces (Theorem 4.3).

For further applications, let us pointing out that the alternative techni-
cal standpoint presented in this work shows to be efficient as well on the
treatment of other types of stochastic dynamics of infinite particle systems,
namely, the Kawasaki type dynamics in the continuum. This and other cases
are now being studied and will be reported in forthcoming publications.

2 General Framework

In this section we briefly recall the concepts and results of combinatorial har-
monic analysis on configuration spaces and Bogoliubov generating functionals
needed throughout this work (for a detailed explanation see [KK02, KKO06]).

2.1 Harmonic analysis on configuration spaces

Let Γ := ΓRd be the configuration space over Rd, d ∈ N,

Γ :=
{
γ ⊂ Rd : |γ ∩ Λ| <∞ for every compact Λ ⊂ Rd

}
,

where |·| denotes the cardinality of a set. We identify each γ ∈ Γ with the
non-negative Radon measure

∑
x∈γ δx on the Borel σ-algebra B(Rd), where

δx is the Dirac measure with mass at x, which allows to endow Γ with the
vague topology and the corresponding Borel σ-algebra B(Γ).

For any n ∈ N0 := N ∪ {0} let

Γ(n) := {γ ∈ Γ : |γ| = n}, n ∈ N, Γ(0) := {∅}.

Clearly, each Γ(n), n ∈ N, can be identify with the symmetrization of the
set {(x1, ..., xn) ∈ (Rd)n : xi 6= xj if i 6= j} under the permutation group
over {1, ..., n}, which induces a natural (metrizable) topology on Γ(n) and
the corresponding Borel σ-algebra B(Γ(n)) as well. This leads to the space of
finite configurations

Γ0 :=
∞⊔
n=0

Γ(n)

endowed with the topology of disjoint union of topological spaces and the
corresponding Borel σ-algebra B(Γ0).

Let now Bc(Rd) be the set of all bounded Borel sets in Rd, and for each

Λ ∈ Bc(Rd) let ΓΛ := {η ∈ Γ : η ⊂ Λ}. Evidently ΓΛ =
⊔∞
n=0 Γ

(n)
Λ , where

Γ
(n)
Λ := ΓΛ ∩ Γ(n), n ∈ N0, leading to a situation similar to the one for Γ0,
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described above. Given a complex-valued B(Γ0)-measurable function G such
that G�Γ\ΓΛ

≡ 0 for some Λ ∈ Bc(Rd), the K-transform of G is a mapping
KG : Γ→ C defined at each γ ∈ Γ by

(KG)(γ) :=
∑
η⊂γ
|η|<∞

G(η). (2.1)

It has been shown in [KK02] that the K-transform is a linear and invertible
mapping.

Among the functions in the domain of the K-transform we distinguish the
so-called coherent states eλ(f), defined for complex-valued B(Rd)-measurable
functions f by

eλ(f, η) :=
∏
x∈η

f (x) , η ∈ Γ0\{∅}, eλ(f, ∅) := 1.

The special role of these functions is partially due to the fact that their image
under the K-transform coincides with the integrand functions of generating
functionals (Subsection 2.2 below). More precisely, for any f described as
before, having in addition compact support, for all γ ∈ Γ

(Keλ(f)) (γ) =
∏
x∈γ

(1 + f(x)). (2.2)

Let M1
fm(Γ) be the set of all probability measures µ on (Γ,B(Γ)) with

finite local moments of all orders, i.e.,∫
Γ

dµ(γ) |γ ∩ Λ|n <∞ for all n ∈ N and all Λ ∈ Bc(Rd),

and let Bbs(Γ0) be the set of all complex-valued bounded B(Γ0)-measurable
functions with bounded support, i.e., G �

Γ0\
(⊔N

n=0 Γ
(n)
Λ

)≡ 0 for some N ∈

N0,Λ ∈ Bc(Rd). Given a µ ∈ M1
fm(Γ), the so-called correlation measure

ρµ corresponding to µ is a measure on (Γ0,B(Γ0)) defined for all G ∈ Bbs(Γ0)
by ∫

Γ0

dρµ(η)G(η) =

∫
Γ

dµ(γ) (KG) (γ). (2.3)

Observe that under the above conditions K|G| is µ-integrable. In terms of
correlation measures this means that Bbs(Γ0) ⊂ L1(Γ0, ρµ).1

1Throughout this work all Lp-spaces, p ≥ 1, consist of complex-valued functions.
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Actually, Bbs(Γ0) is dense in L1(Γ0, ρµ). Moreover, still by (2.3), on
Bbs(Γ0) the inequality ‖KG‖L1(Γ,µ) ≤ ‖G‖L1(Γ0,ρµ) holds, allowing an ex-
tension of the K-transform to a bounded operator K : L1(Γ0, ρµ)→ L1(Γ, µ)
in such a way that equality (2.3) still holds for any G ∈ L1(Γ0, ρµ). For
the extended operator the explicit form (2.1) still holds, now µ-a.e. This
means, in particular, that for all B(Rd)-measurable functions f such that
eλ(f) ∈ L1(Γ0, ρµ) equality (2.2) holds for µ-a.a. γ ∈ Γ .

Example 2.1. The Poisson measure π := πdx with intensity the Lebesgue
measure dx on Rd is the probability measure defined on (Γ,B(Γ)) by∫

Γ

dπ(γ) exp

(∑
x∈γ

ϕ(x)

)
= exp

(∫
Rd
dx
(
eϕ(x) − 1

))
for all real-valued smooth functions ϕ on Rd with compact support. The corre-
lation measure corresponding to π is the so-called Lebesgue–Poisson measure,

λ := λdx :=
∞∑
n=0

1

n!
m(n),

where m(n), n ∈ N, is the measure on (Γ(n),B(Γ(n))) obtained by symmetriza-
tion of the Lebesgue product measure (dx)⊗n through the symmetrization pro-
cedure described above. For n = 0 we set m(0)({∅}) := 1. This special case
emphasizes the technical role of coherent states in our setting, namely, due
to the fact eλ(f) ∈ Lp(Γ0, λ) whenever f ∈ Lp := Lp(Rd, dx) for some p ≥ 1,
and, moreover, ‖eλ(f)‖pLp = exp(‖f‖pLp). In particular, for p = 1, one addi-
tionally has ∫

Γ0

dλ(η) eλ(f, η) = exp

(∫
Rd
dx f(x)

)
, (2.4)

for all f ∈ L1. For more details see [KKO04].

2.2 Bogoliubov generating functionals

Given a probability measure µ on (Γ,B(Γ)) the so-called Bogoliubov gener-
ating functional (shortly GF) Bµ corresponding to µ is the functional defined
at each B(Rd)-measurable function θ by

Bµ(θ) :=

∫
Γ

dµ(γ)
∏
x∈γ

(1 + θ(x)), (2.5)

provided the right-hand side exists. It is clear from (2.5) that one cannot
define the GF for all probability measures on Γ but, if it exists for some
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measure µ, then the domain of Bµ depends on µ and, conversely, the domain
of Bµ reflects special properties over the underlying measure µ [KKO06]. For
instance, if µ has finite local exponential moments, i.e.,∫

Γ

dµ(γ) eα|γ∩Λ| <∞ for all α > 0 and all Λ ∈ Bc(Rd),

then Bµ is well-defined, for instance, on all bounded functions θ with compact
support. According to the previous subsection, this implies that to such
a measure µ one may associate the correlation measure ρµ, leading to a
description of the functional Bµ in terms of either the measure ρµ:

Bµ(θ) =

∫
Γ

dµ(γ) (Keλ(θ)) (γ) =

∫
Γ0

dρµ(η) eλ(θ, η),

or the so-called correlation function kµ := dρµ
dλ

corresponding to the mea-
sure µ, if ρµ is absolutely continuous with respect to the Lebesgue–Poisson
measure λ:

Bµ(θ) =

∫
Γ0

dλ(η) eλ(θ, η)kµ(η). (2.6)

Throughout this work we will consider GF defined on the whole complex
L1 space. Furthermore, we will assume that the GF are entire. We recall
that a functional A : L1 → C is entire on L1 whenever A is locally bounded
and for all θ0, θ ∈ L1 the mapping C 3 z 7→ A(θ0 + zθ) ∈ C is entire. Thus,
at each θ0 ∈ L1, every entire functional A on L1 has a representation in terms
of its Taylor expansion,

A(θ0 + zθ) =
∞∑
n=0

zn

n!
dnA(θ0; θ, ..., θ), z ∈ C, θ ∈ L1.

The next theorem states properties specific for entire functionals A on L1

and their higher order derivatives dnA(θ0; ·) (for a detailed explanation see
[KKO06] and the references therein).

Theorem 2.2. Let A be an entire functional on L1. Then each differential
dnA(θ0; ·), n ∈ N, θ0 ∈ L1 is defined by a symmetric kernel

δnA(θ0; ·) ∈ L∞(Rdn) := L∞
(
(Rd)n, (dx)⊗n

)
called the variational derivative of n-th order of A at the point θ0. More
precisely,

dnA(θ0; θ1, ..., θn) :=
∂n

∂z1...∂zn
A

(
θ0 +

n∑
i=1

ziθi

)∣∣∣∣∣
z1=...=zn=0

=:

∫
(Rd)n

dx1 . . . dxn δ
nA(θ0;x1, . . . , xn)

n∏
i=1

θi(xi)
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for all θ1, ..., θn ∈ L1. Moreover, the operator norm of the bounded n-linear
functional dnA(θ0; ·) is equal to ‖δnA(θ0; ·)‖L∞(Rdn) and for all r > 0 one has

‖δA(θ0; ·)‖L∞(Rd) ≤
1

r
sup

‖θ′‖L1≤r
|A(θ0 + θ′)| (2.7)

and, for n ≥ 2,

‖δnA(θ0; ·)‖L∞(Rdn) ≤ n!
(e
r

)n
sup

‖θ′‖L1≤r
|A(θ0 + θ′)|. (2.8)

The first part of Theorem 2.2 stated for GF and their variational deriva-
tives at θ0 = 0 yields the next result.

Proposition 2.3. Let Bµ be an entire GF on L1. Then the measure ρµ is
absolutely continuous with respect to the Lebesgue–Poisson measure λ and

the Radon–Nykodim derivative kµ =
dρµ
dλ

is given by

kµ(η) = δ|η|Bµ(0; η) for λ-a.a. η ∈ Γ0.

Concerning the second part of Theorem 2.2, namely, estimates (2.7) and
(2.8), we note that A being entire does not ensure that for every r > 0 the
supremum appearing on the right-hand side of (2.7), (2.8) is always finite.
This will hold if, in addition, the entire functional A is of bounded type, that
is,

∀ r > 0, sup
‖θ‖L1≤r

|A(θ0 + θ)| <∞, ∀ θ0 ∈ L1.

Hence, as a consequence of Proposition 2.3, it follows from (2.7) and (2.8)
that the correlation function kµ of an entire GF of bounded type on L1 fulfills
the so-called generalized Ruelle bound, that is, for any 0 ≤ ε ≤ 1 and any
r > 0 there is some constant C ≥ 0 depending on r such that

kµ(η) ≤ C (|η|!)1−ε
(e
r

)|η|
, λ−a.a. η ∈ Γ0. (2.9)

In our case, ε = 0. We observe that if (2.9) holds for ε = 1 and for at least
one r > 0, then condition (2.9) is the classical Ruelle bound. In terms of GF,
the latter means that

|Bµ(θ)| ≤ C exp
(e
r
‖θ‖L1

)
,

as can be easily checked using the representation (2.6) and (2.4). This special
case motivates the definition of the following family of Banach spaces, see
[KKO06, Proposition 23].
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Definition 2.4. For each α > 0, let Eα be the Banach space of all entire
functionals B on L1 such that

‖B‖α := sup
θ∈L1

(
|B(θ)| e−

1
α
‖θ‖L1

)
<∞.

2.3 Time evolution equations

Informally, the stochastic evolution of an interacting particle system on Rd

may be described through a Markov generator L defined on a proper space
of functions on Γ. The problem of construction of the corresponding Markov
process on Γ is related to the existence (on a proper space of functions) of
the semigroup corresponding to L, which will be the solution to a Cauchy
problem

dFt
dt

= LFt, Ft
∣∣
t=0

= F0.

However, from the technical point of view, to show that L is the generator
of a semigroup on some reasonable space of functions defined on Γ seems to
be often a difficult question.

In applications, the properties of the evolution of the system through its
states, that is, probability measures on Γ, is a subject of interest. Informally,
such a time evolution is given by the dual Kolmogorov equation, the so-called
Fokker-Planck equation,

dµt
dt

= L∗µt, µt
∣∣
t=0

= µ0, (2.10)

where L∗ is the dual operator of L. Technically, the use of definition (2.3)
allows an alternative approach to the study of (2.10) through the correspond-
ing correlation functions kt := kµt , t ≥ 0, provided they exist. This leads to
the Cauchy problem

∂

∂t
kt = L̂∗kt, kt|t=0 = k0,

where k0 is the correlation function corresponding to the initial distribution
µ0 and L̂∗ is the dual operator of L̂ := K−1LK in the sense∫

Γ0

dλ(η) (L̂G)(η)k(η) =

∫
Γ0

dλ(η)G(η)(L̂∗k)(η).

Through the representation (2.6), this gives us a way to express the dynamics
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also in terms of the GF Bt corresponding to µt, i.e., informally,

∂

∂t
Bt(θ) =

∫
Γ0

dλ(η) eλ(θ, η)

(
∂

∂t
kt(η)

)
=

∫
Γ0

dλ(η) eλ(θ, η)(L̂∗kt)(η)

=

∫
Γ0

dλ(η) (L̂eλ(θ))(η)kt(η) =: (L̃Bt)(θ). (2.11)

Concerning the evolution equation

∂Bt

∂t
= L̃Bt, (2.12)

we observe that from the previous construction follows that if a solution
Bt, t ≥ 0, exists for some GF as an initial condition, then one may expect
that each Bt is the GF corresponding to the state of the system at the time
t. However, besides the existence problem, at this point it is opportune to
underline that if a solution to (2.12) exists, a priori it does not have to be a
GF (corresponding to some measure). This verification requests an additional
analysis, see e.g. [KKO06], [Kun99].

In most concrete applications, to find a solution to (2.12) on a Banach
space seems to be often a difficult question. However, the problem may
be simplified within the framework of scales of Banach spaces. We recall
that a scale of Banach spaces is a one-parameter family of Banach spaces
{Bs : 0 < s ≤ s0} such that

Bs′′ ⊆ Bs′ , ‖ · ‖s′ ≤ ‖ · ‖s′′

for any pair s′, s′′ such that 0 < s′ < s′′ ≤ s0, where ‖ · ‖s denotes the norm
in Bs. As an example, it is clear from Definition 2.4 that for any α0 > 0 the
family {Eα : 0 < α ≤ α0} is a scale of Banach spaces.

Within this framework, one has the following existence and uniqueness
result (see e.g. [Tre68]).

Theorem 2.5. On a scale of Banach spaces {Bs : 0 < s ≤ s0} consider the
initial value problem

du(t)

dt
= Au(t), u(0) = u0 ∈ Bs0 (2.13)

where, for each s ∈ (0, s0) fixed and for each pair s′, s′′ such that s ≤ s′ <
s′′ ≤ s0, A : Bs′′ → Bs′ is a linear mapping so that there is an M > 0 such
that for all u ∈ Bs′′

‖Au‖s′ ≤
M

s′′ − s′
‖u‖s′′ .
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Here M is independent of s′, s′′ and u, however it might depend continuously
on s, s0.

Then, for each s ∈ (0, s0), there is a constant δ > 0 (which depends
on M) such that there is a unique function u :

[
0, δ(s0 − s)

)
→ Bs which is

continuously differentiable on
(
0, δ(s0−s)

)
in Bs, Au ∈ Bs, and solves (2.13)

in the time-interval 0 ≤ t < δ(s0 − s).

In Appendix we present a sketch of the proof of Theorem 2.5, which will
be used to prove Theorem 4.3 below.

3 The Glauber dynamics

The Glauber dynamics is an example of a birth-and-death model where,
in this special case, particles appear and disappear according to a death
rate identically equal to 1 and to a birth rate depending on the interaction
between particles. More precisely, let φ : Rd → R∪{+∞} be a pair potential,
that is, a B(Rd)-measurable function such that φ(−x) = φ(x) ∈ R for all
x ∈ Rd \{0}, which we will assume to be non-negative and integrable. Given
a configuration γ ∈ Γ, the birth rate of a new particle at a site x ∈ Rd \ γ
is given by exp(−E(x, γ)), where E(x, γ) is a relative energy of interaction
between a particle located at x and the configuration γ defined by

E(x, γ) :=
∑
y∈γ

φ(x− y) ∈ [0,+∞].

Informally, in terms of Markov generators, this means that the behavior of
such an infinite particle system is described by

(LF )(γ) :=
∑
x∈γ

(
F (γ \ {x})− F (γ)

)
+ z

∫
Rd
dx e−E(x,γ)

(
F (γ ∪ {x})− F (γ)

)
, (3.1)

where z > 0 is an activity parameter (for more details see e.g. [FKO09,
KKZ06]). As a consequence of Subsection 2.3, this implies that the operator
L̃ defined in (2.11) is given cf. [FKO09] by

(L̃B)(θ) = −
∫
Rd
dx θ(x)

(
δB(θ;x)− zB

(
θe−φ(x−·) + e−φ(x−·) − 1

))
. (3.2)

Theorem 3.1. Given an α0 > 0, let B0 ∈ Eα0. For each α ∈ (0, α0) there
is a T > 0 (which depends on α, α0) such that there is a unique solution Bt,

t ∈ [0, T ), to the initial value problem
∂Bt

∂t
= L̃Bt, Bt|t=0 = B0 in the space

Eα.
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This theorem follows as a concrete application of Theorem 2.5 and the
following estimate of norms.

Proposition 3.2. Let α0 > α > 0 be given. If B ∈ Eα′′ for some α′′ ∈ (α, α0],
then L̃B ∈ Eα′ for all α ≤ α′ < α′′, and we have

‖L̃B‖α′ ≤
α0

α′′ − α′

(
1 + zα0e

‖φ‖
L1
α
−1

)
‖B‖α′′ .

To prove this result, the next two lemmata show to be useful.

Lemma 3.3. Given an α > 0, for all B ∈ Eα let

(L0B)(θ) :=

∫
Rd
dx θ(x)δB(θ;x), θ ∈ L1.

Then, for all α′ < α, we have L0B ∈ Eα′ and, moreover, the following
estimate of norms holds:

‖L0B‖α′ ≤
α′

α− α′
‖B‖α.

Proof. First we observe that an application of Theorem 2.2 shows that L0B
is an entire functional on L1 and, in addition, that for all r > 0 and all
θ ∈ L1,

|(L0B)(θ)| ≤ ‖θ‖L1 ‖δB(θ; ·)‖L∞(Rd) ≤
‖θ‖L1

r
sup

‖θ0‖L1≤r
|B(θ + θ0)| ,

where, for all θ0 ∈ L1 such that ‖θ0‖L1 ≤ r,

|B(θ + θ0)| ≤ ‖B‖αe
‖θ‖

L1
α

+ r
α .

Thus,

‖L0B‖α′ = sup
θ∈L1

(
e−

1
α′ ‖θ‖L1 |(L0B)(θ)|

)
≤ e

r
α

r
‖B‖α sup

θ∈L1

(
e−( 1

α′−
1
α)‖θ‖L1‖θ‖L1

)
,

where the latter supremum is finite provided 1
α′
− 1

α
> 0. In such a situation,

the use of the inequality xe−mx ≤ 1
em

, x ≥ 0, m > 0 leads for each r > 0 to

‖L0B‖α′ ≤
e
r
α

r

αα′

e(α− α′)
‖B‖α.

The required estimate of norms follows by minimizing the expression e
r
α

r
αα′

e(α−α′)
in the parameter r, that is, r = α.
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Lemma 3.4. Let ϕ, ψ : Rd×Rd → R be such that, for a.a. x ∈ Rd, ϕ(x, ·) ∈
L∞ := L∞(Rd), ψ(x, ·) ∈ L1 and ‖ϕ(x, ·)‖L∞ ≤ c0, ‖ψ(x, ·)‖L1 ≤ c1 for some
constants c0, c1 > 0 independent of x. For each α > 0 and all B ∈ Eα let

(L1B)(θ) :=

∫
Rd
dx θ(x)B(ϕ(x, ·)θ + ψ(x, ·)), θ ∈ L1.

Then, for all α′ > 0 such that c0α
′ < α, we have L1B ∈ Eα′ and

‖L1B‖α′ ≤
αα′

α− c0α′
e
c1
α
−1‖B‖α.

Proof. As before, it follows from Theorem 2.2 that L1B is an entire functional
on L1. Hence, given a B ∈ Eα, for all θ ∈ L1 one has

|B(ϕ(x, ·)θ + ψ(x, ·))| ≤ ‖B‖α e
1
α(‖ϕ(x,·)θ‖L1+‖ψ(x,·)‖L1),

and thus

‖L1B‖α′ ≤ sup
θ∈L1

(
e−

1
α′ ‖θ‖L1

∫
Rd
dx |θ(x)B(ϕ(x, ·)θ + ψ(x, ·))|

)
≤ e

c1
α ‖B‖α sup

θ∈L1

(
e−( 1

α′−
c0
α )‖θ‖L1‖θ‖L1

)
.

The proof follows as in the proof of Lemma 3.3.

Proof of Proposition 3.2. In Lemma 3.4 replace ϕ by e−φ and ψ by e−φ − 1.
Due to the positiveness and integrability properties of φ one has e−φ ≤ 1 and
|e−φ − 1| = 1− e−φ ≤ φ ∈ L1, ensuring the conditions to apply Lemma 3.4.
This together with Lemma 3.3 leads to the required result.

Remark 3.5. It follows from the proof of Theorem 2.5 that for each t ∈ (0, T )
there is an αt ∈ (α, α0) such that Bt ∈ Eβ for all β ∈ [α, αt), cf. [FKK11].

Remark 3.6. Concerning the initial conditions considered in Theorem 3.1,
observe that, in particular, B0 can be an entire GF Bµ0 on L1 such that, for

some constants α0, C > 0, |Bµ0(θ)| ≤ C exp(
‖θ‖L1

α0
) for all θ ∈ L1. As we

have mentioned before, in such a situation an additional analysis is required
in order to guarantee that for each time t the local solution Bt given by
Theorem 3.1 is a GF. Such an analysis is outside of our goal, but it may be
done using e.g. [GK06, Theorem 2.13], which yields the existence of a proper
S ⊂ Γ and a S-valued process with sample paths in the Skorokhod space
DS([0,+∞)) associated with L defined in (3.1). This shows the existence
of the time evolution µ0 7→ µt, where µt is the law of the S-valued process,
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leading apart from existence problems to the time evolution Bµ0 7→ Bµt of the
corresponding GF. The latter will be a solution to the initial value problem
(2.12), (3.2) with Bt|t=0 = Bµ0. By the uniqueness stated in Theorem 3.1,
this implies that for each t ∈ [0, T ) we will have Bt = Bµt, and thus Bt is a
GF.

Theorem 3.1 only ensures the existence of a local solution. However,
under certain initial conditions, such a solution might be extend to a global
one, that is, to a solution defined on the whole time interval [0,+∞), as
follows. Assume that the initial condition B0 is an entire GF on L1. Then, by
Proposition 2.3, B0 can be written in terms of the corresponding correlation
function k0,

B0(θ) =

∫
Γ0

dλ(η) eλ(θ, η)k0(η), θ ∈ L1.

Assuming, in addition, that k0 fulfills the Ruelle bound k0(η) ≤ z|η|, η ∈ Γ0,
being z the activity parameter appearing in definition (3.1), then, in terms of
B0, this leads to |B0(θ)| ≤ ez‖θ‖L1 , θ ∈ L1, showing that B0 ∈ E1/z and, more-
over, ‖B0‖ 1

z
≤ 1. Thus, fixing an α ∈ (0, 1/z), an application of Theorem 3.1

yields a solution Bt, t ∈ [0, δ(1/z − α)), to the initial value problem (2.12),
(3.2) with Bt|t=t0 = B0. Assume that each Bt is an entire GF on L1. As
shown in [FKK11, Lemma 3.10], in this case the corresponding correlation
function kt still fulfills the Ruelle bound with the same constant z, mean-
ing that the local solution Bt, t ∈ [0, δ(1/z − α)), does not leave the initial
Banach space E1/z. This allows us to consider any t0 ∈ [0, δ(1/z − α)) suffi-
ciently close to δ(1/z−α) as an initial time and, as before, to study the initial
value problem (2.12), (3.2) with Bt|t=t0 = Bt0 in the same scale of Banach
spaces. This will give a solution Bt on the time-interval [t0, t0 + δ(1/z − α)).
Assuming again that each Bt, t ∈ [t0, t0 + δ(1/z − α)), is an entire GF on L1,
naturally that Bt ∈ E1/z with ‖Bt‖1/z ≤ 1, for all t ∈ [t0, t0 + δ(1/z − α)).
Therefore, one may repeat the above arguments.

This argument iterated yields at the end a solution to the initial value
problem ∂Bt

∂t
= L̃Bt, Bt|t=0 = B0 defined on [0,+∞). Of course, by the

uniqueness stated in Theorem 3.1, the global solution constructed in this
way is necessarily unique. In this context, one may state the following result.

Corollary 3.7. Given an entire GF B0 on L1 such that the corresponding
correlation function k0 fulfills the Ruelle bound k0(η) ≤ z|η|, η ∈ Γ0, for the
activity parameter z appearing in definition (3.1), the local solution to the

initial value problem
∂Bt

∂t
= L̃Bt, Bt|t=0 = B0 (given by Theorem 3.1) might

be extended to a global solution which, for each time t ≥ 0, is an entire GF
on L1.
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4 Vlasov scaling

We proceed to investigate the Vlasov-type scaling proposed in [FKK10a] for
generic continuous particle systems and accomplished in [FKK10b] for the
Glauber dynamics, now in terms of GF. As explained in both references, the
aim is to construct a scaling of the operator L defined in (3.1), Lε, ε > 0, in
such a way that the rescale of a starting correlation function k0, denote by
k

(ε)
0 , provides a singularity with respect to ε of the type k

(ε)
0 (η) ∼ ε−|η|r0(η),

η ∈ Γ0, being r0 a function independent of ε, and, moreover, the following
two conditions are fulfilled. The first one is that under the scaling L 7→ Lε
the solution k

(ε)
t , t ≥ 0, to

∂

∂t
k

(ε)
t = L̂∗εk

(ε)
t , k

(ε)
t |t=0 = k

(ε)
0

preserves the order of the singularity with respect to ε, that is, k
(ε)
t (η) ∼

ε−|η|rt(η), η ∈ Γ0. The second condition is that the dynamics r0 7→ rt
preserves the Lebesgue-Poisson exponents, that is, if r0 is of the form r0 =
eλ(ρ0), then each rt, t > 0, is of the same type, i.e., rt = eλ(ρt), where ρt is a
solution to a non-linear equation (called a Vlasov-type equation). As shown
in [FKK10a, Example 8], [FKK10b], this equation is given by

∂

∂t
ρt(x) = −ρt(x) + ze−(ρt∗φ)(x), x ∈ Rd, (4.1)

where ∗ denotes the usual convolution of functions. Existence of classical
solutions 0 ≤ ρt ∈ L∞ to (4.1) has been discussed in [FKK10b], [FKK11].
Therefore, it is natural to consider the same scaling, but in GF.

The previous scheme was accomplished in [FKK10b] through the scale
transformations z 7→ ε−1z and φ 7→ εφ of the operator L, that is,

(LεF )(γ) :=
∑
x∈γ

(
F (γ \{x})−F (γ)

)
+
z

ε

∫
Rd
dx e−εE(x,γ)

(
F (γ∪{x})−F (γ)

)
.

To proceed towards GF, we consider k
(ε)
t defined as before and k

(ε)
t,ren(η) :=

ε|η|k
(ε)
t (η). In terms of GF, these yield

B
(ε)
t (θ) :=

∫
Γ0

dλ(η)eλ(θ, η)k
(ε)
t (η),

and

B
(ε)
t,ren(θ) :=

∫
Γ0

dλ(η) eλ(θ, η)k
(ε)
t,ren(η) =

∫
Γ0

dλ(η) eλ(εθ, η)k
(ε)
t (η) = B

(ε)
t (εθ),
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leading, as in (2.11), to the initial value problem

∂

∂t
B

(ε)
t,ren = L̃ε,renB

(ε)
t,ren, B

(ε)
t,ren|t=0

= B
(ε)
0,ren. (4.2)

Proposition 4.1. For all ε > 0 and all θ ∈ L1, we have

(L̃ε,renB)(θ) = −
∫
Rd
dx θ(x)

(
δB(θ, x)− zB

(
θe−εφ(x−·) +

e−εφ(x−·) − 1

ε

))
.

Proof. As shown in [FKK10b, Proposition 3.1],

(L̂ε,reneλ(θ))(η)

= −|η|eλ(θ, η) + z
∑
ξ⊆η

eλ(θ, ξ)

∫
Rd
dx θ(x)e−εE(x,ξ)eλ

(
e−εφ(x−·) − 1

ε
, η \ ξ

)
.

Therefore,

(L̃ε,renB)(θ) =

∫
Γ0

dλ(η) (L̂ε,reneλ(θ))(η)k(η),

with ∫
Γ0

dλ(η) |η|eλ(θ, η)k(η) =

∫
Rd
dx θ(x)δB(θ;x)

and ∫
Γ0

dλ(η) k(η)
∑
ξ⊆η

eλ(θ, ξ)

∫
Rd
dx θ(x)e−εE(x,ξ)eλ

(
e−εφ(x−·) − 1

ε
, η \ ξ

)

=

∫
Rd
dx θ(x)

∫
Γ0

dλ(η) eλ

(
e−εφ(x−·) − 1

ε
, η

)∫
Γ0

dλ(ξ) k(η ∪ ξ)eλ(θe−εφ(x−·), ξ)

=

∫
Rd
dx θ(x)

∫
Γ0

dλ(η) eλ

(
e−εφ(x−·) − 1

ε
, η

)
δ|η|B(θe−εφ(x−·); η)

=

∫
Rd
dx θ(x)B

(
θe−εφ(x−·) +

e−εφ(x−·) − 1

ε

)
,

where we have used the relation between variational derivatives derived in
[KKO06, Proposition 11].

Proposition 4.2. (i) If B ∈ Eα for some α > 0, then, for all θ ∈ L1,
(L̃ε,renB)(θ) converges as ε tends zero to

(L̃VB)(θ) := −
∫
Rd
dx θ(x) (δB(θ;x)− zB (θ − φ(x− ·))) .
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(ii) Let α0 > α > 0 be given. If B ∈ Eα′′ for some α′′ ∈ (α, α0], then{
L̃ε,renB, L̃VB

}
⊂ Eα′ for all α ≤ α′ < α′′, and we have

‖L̃#B‖α′ ≤
α0

α′′ − α′

(
1 + zα0e

‖φ‖
L1
α
−1

)
‖B‖α′′ ,

where L̃# = L̃ε,ren or L̃# = L̃V .

Proof. (i) First we observe that for a.a. x ∈ Rd one clearly has

lim
ε↘0

(
θe−εφ(x−·) +

e−εφ(x−·) − 1

ε

)
= θ − φ(x− ·) in L1,

and thus, due to the continuity of B in L1 (B is even entire on L1), the
following limit holds

lim
ε↘0

B

(
θe−εφ(x−·) +

e−εφ(x−·) − 1

ε

)
= B (θ − φ(x− ·)) , a.a. x ∈ Rd.

This shows the pointwise convergence of the integrand functions which ap-
pear in the definition of (L̃ε,renB)(θ) and (L̃VB)(θ). In addition, for all ε > 0
we have∣∣∣∣B(θe−εφ(x−·) +

e−εφ(x−·) − 1

ε

)∣∣∣∣ ≤ ‖B‖α exp

(
1

α
‖θ‖L1 +

1

α
‖φ‖L1

)
,

leading through an application of the Lebesgue dominated convergence the-
orem to the required limit.

(ii) In Lemma 3.4 replace ϕ by e−εφ and ψ by e−εφ−1
ε

. Arguments similar
to prove Proposition 3.2 together with Lemma 3.3 complete the proof for
L̃ε,ren. For L̃V , the proof follows similarly.

Proposition 4.2 (ii) provides similar estimate of norms for L̃ε,ren, ε > 0,
and the limiting mapping L̃V , namely, ‖L̃ε,renB‖α′ , ‖L̃VB‖α′ ≤ M

α′′−α′‖B‖α′′ ,
0 < α ≤ α′ < α′′ ≤ α0, with

M := α0

(
1 + zα0e

‖φ‖
L1
α
−1

)
.

Therefore, given any B0,V , B
(ε)
0,ren ∈ Eα0 , ε > 0, it follows from Theorem 3.1

and its proof that for each α ∈ (0, α0) and δ = 1
eM

there is a unique solution

B
(ε)
t,ren : [0, δ(α0 − α)) → Eα, ε > 0, to each initial value problem (4.2) and a

unique solution Bt,V : [0, δ(α0 − α))→ Eα to the initial value problem

∂

∂t
Bt,V = L̃VBt,V , Bt,V |t=0 = B0,V . (4.3)
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That is, independent of the initial value problem under consideration, the
solutions obtained are defined on the same time-interval and with values
in the same Banach space. Therefore, it is natural to analyze under which
conditions the solutions to (4.2) converge to the solution to (4.3). This follows
straightforwardly from a general result which proof (see Appendix) follows
closely the lines of the proof of Theorem 2.5.

Theorem 4.3. On a scale of Banach spaces {Bs : 0 < s ≤ s0} consider a
family of initial value problems

duε(t)

dt
= Aεuε(t), uε(0) = uε ∈ Bs0 , ε ≥ 0, (4.4)

where, for each s ∈ (0, s0) fixed and for each pair s′, s′′ such that s ≤ s′ <
s′′ ≤ s0, Aε : Bs′′ → Bs′ is a linear mapping so that there is an M > 0 such
that for all u ∈ Bs′′

‖Aεu‖s′ ≤
M

s′′ − s′
‖u‖s′′ .

Here M is independent of ε, s′, s′′ and u, however it might depend continu-
ously on s, s0. Assume that there is a p ∈ N and for each ε > 0 there is an
Nε > 0 such that for each pair s′, s′′, s ≤ s′ < s′′ ≤ s0, and all u ∈ Bs′′

‖Aεu− A0u‖s′ ≤
p∑

k=1

Nε

(s′′ − s′)k
‖u‖s′′ .

In addition, assume that limε→0Nε = 0 and limε→0 ‖uε(0)− u0(0)‖s0 = 0.
Then, for each s ∈ (0, s0), there is a constant δ > 0 (which depends on

M) such that there is a unique solution uε : [0, δ(s0 − s)) → Bs, ε ≥ 0, to
each initial value problem (4.4) and for all t ∈ [0, δ(s0 − s)) we have

lim
ε→0
‖uε(t)− u0(t)‖s = 0.

To proceed to an application of this general result one needs the following
estimate of norms.

Proposition 4.4. Assume that 0 ≤ φ ∈ L1 ∩ L∞ and let α0 > α > 0 be
given. Then, for all B ∈ Eα′′, α′′ ∈ (α, α0], the following estimate holds

‖L̃ε,renB − L̃VB‖α′ ≤ εz‖φ‖L∞‖B‖α′′e
‖φ‖

L1
α

(
‖φ‖L1α0

α′′ − α′
+

4α3
0

(α′′ − α′)2e

)
for all α′ such that α ≤ α′ < α′′ and all ε > 0.
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Proof. First we observe that∣∣∣(L̃ε,renB)(θ)− (L̃VB)(θ)
∣∣∣ ≤ z

∫
Rd
dx |θ(x)|

×
∣∣∣∣B(θe−εφ(x−·) +

e−εφ(x−·) − 1

ε

)
−B (θ − φ(x− ·))

∣∣∣∣ . (4.5)

In order to estimate (4.5), given any θ1, θ2 ∈ L1, let us consider the function
Cθ1,θ2(t) = B (tθ1 + (1− t)θ2), t ∈ [0, 1]. One has

∂

∂t
Cθ1,θ2(t) =

∂

∂s
Cθ1,θ2(t+ s)

∣∣∣
s=0

=
∂

∂s
B
(
θ2 + t(θ1 − θ2) + s(θ1 − θ2)

)∣∣∣
s=0

=

∫
Rd
dx (θ1(x)− θ2(x)) δB(θ2 + t(θ1 − θ2);x),

leading to∣∣B(θ1)−B(θ2)
∣∣ =

∣∣Cθ1,θ2(1)− Cθ1,θ2(0)
∣∣

≤ max
t∈[0,1]

∫
Rd
dx
∣∣θ1(x)− θ2(x)

∣∣∣∣δB(θ2 + t(θ1 − θ2);x)
∣∣

≤ ‖θ1 − θ2‖L1 max
t∈[0,1]

‖δB(θ2 + t(θ1 − θ2); ·)‖L∞ ,

where, through similar arguments to prove Lemma 3.3,∥∥δB(θ2 + t(θ1 − θ2); ·)
∥∥
L∞
≤ e

α′′
‖B‖α′′ exp

(
‖θ2 + t(θ1 − θ2)‖L1

α′′

)
.

As a result∣∣B(θ1)−B(θ2)
∣∣ ≤ e

α′′
‖θ1− θ2‖L1‖B‖α′′ max

t∈[0,1]
exp

(
t‖θ1‖L1 + (1− t)‖θ2‖L1

α′′

)
,

for all θ1, θ2 ∈ L1. In particular, this shows that∣∣∣∣B(θe−εφ(x−·) +
e−εφ(x−·) − 1

ε

)
−B

(
θ − φ(x− ·)

)∣∣∣∣
≤ε e

α′′
‖φ‖L∞‖B‖α′′ (‖θ‖L1 + ‖φ‖L1)

× max
t∈[0,1]

exp

(
1

α′′
(t (‖θ‖L1 + ‖φ‖L1) + (1− t) (‖θ‖L1 + ‖φ‖L1))

)
= ε

e

α′′
‖φ‖L∞‖B‖α′′ (‖θ‖L1 + ‖φ‖L1) exp

(
1

α′′
(‖θ‖L1 + ‖φ‖L1)

)
,
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where we have used the inequalities

‖θe−εφ(x−·) − θ‖L1 ≤ ε‖φ‖L∞‖θ‖L1 ,∥∥∥e−εφ(x−·) − 1

ε
+ φ(x− ·)

∥∥∥
L1
≤ ε‖φ‖L∞‖φ‖L1 ,∥∥∥θe−εφ(x−·) +

e−εφ(x−·) − 1

ε

∥∥∥
L1
≤ ‖θ‖L1 + ‖φ‖L1 .

In this way we obtain

‖L̃ε,renB − L̃VB‖α′

≤ ε
ze

α′′
‖φ‖L∞‖B‖α′′e

‖φ‖
L1

α′′

{
sup
θ∈L1

(
‖θ‖2

L1 exp

(
‖θ‖L1

(
1

α′′
− 1

α′

)))
+‖φ‖L1 sup

θ∈L1

(
‖θ‖L1 exp

(
‖θ‖L1

(
1

α′′
− 1

α′

)))}
,

and the proof follows using the inequalities xe−mx ≤ 1
me

and x2e−mx ≤ 4
m2e2

for x ≥ 0, m > 0.

We are now in conditions to state the following result.

Theorem 4.5. Given an 0 < α < α0, let B
(ε)
t,ren, Bt,V , t ∈ [0, δ(α0 − α)),

be the local solutions in Eα to the initial value problems (4.2), (4.3) with

B
(ε)
0,ren, B0,V ∈ Eα0. If 0 ≤ φ ∈ L1 ∩ L∞ and limε→0 ‖B(ε)

0,ren − B0,V ‖α0 = 0,
then, for each t ∈ [0, δ(α0 − α)),

lim
ε→0
‖B(ε)

t,ren −Bt,V ‖α = 0.

Moreover, if B0,V (θ) = exp
(∫

Rd dx ρ0(x)θ(x)
)
, θ ∈ L1, for some function

0 ≤ ρ0 ∈ L∞ such that ‖ρ0‖L∞ ≤ 1
α0

, and if max{ 1
α0
, z} < 1

α
then, for each

t ∈ [0, δ(α0 − α)),

Bt,V (θ) = exp

(∫
Rd
dx ρt(x)θ(x)

)
, θ ∈ L1, (4.6)

where 0 ≤ ρt ∈ L∞ is a classical solution to the equation (4.1) such that, for
each t ∈ [0, δ(α0 − α)), ‖ρt‖L∞ ≤ 1

α
.

Proof. The first part follows directly from Proposition 4.4 and Theorem 4.3

for p = 2 and Nε = εz‖φ‖L∞α0e
‖φ‖

L1
α max

{
‖φ‖L1 ,

4α2
0

e

}
.

Concerning the last part, we begin by observing that it has been shown
in [FKK10b, Proof of Theorem 3.3] that given a 0 ≤ ρ0 ∈ L∞ such that
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‖ρ0‖L∞ ≤ 1
α0

, the solution ρt to (4.1) (which existence has been proved in

[FKK11]) fulfills 0 ≤ ρt ∈ L∞, ‖ρt‖L∞ ≤ max{ 1
α0
, z}. In this way, the

assumption max{ 1
α0
, z} < 1

α
implies that Bt,V , given by (4.6), fulfills Bt,V ∈

Eα. Then, by an argument of uniqueness, to prove the last assertion amounts
to show that Bt,V solves equation (4.3). For this purpose we note that for
any θ, θ1 ∈ L1 we have

∂

∂z1

Bt,V (θ + z1θ1)

∣∣∣∣
z1=0

= Bt,V (θ)

∫
Rd
dxρt(x)θ1(x),

and thus δBt,V (θ;x) = Bt,V (θ)ρt(x). Hence, for all θ ∈ L1,

(L̃VBt,V )(θ) = −Bt,V (θ)

(∫
Rd
dx θ(x)ρt(x)− z

∫
Rd
dx θ(x) exp (−(ρt ∗ φ)(x))

)
.

Since ρt is a classical solution to (4.1), ρt solves a weak form of equation
(4.1), that is, the right-hand side of the latter equality is equal to

Bt,V (θ)
d

dt

∫
Rd
dx ρt(x)θ(x) =

∂

∂t
Bt,V (θ).

Appendix: Proofs of Theorems 2.5 and 4.3

Sketch of the proof of Theorem 2.5. For some t > 0 which later on will be
properly chosen, let us consider the sequence of functions (un)n∈N0 with
u0(t) ≡ u0 ∈ Bs0 and

un(t) := u0 +

∫ t

0

(Aun−1)(s)ds, n ∈ N.

By an induction argument, it is easy to check that un(t) ∈ Bs for any s < s0

and, in an equivalent way, the sequence may be rewritten as

un(t) = u0 +
n∑

m=1

tm

m!
Amu0. (4.7)

Fixed an 0 < s < s0, let us now consider a partition of the interval
[s, s0] into m equals parts, m ∈ N. That is, we define sl := s0 − l(s0−s)

m
for

l = 0, . . . ,m. By assumption, observe that for each l = 0, . . . ,m the linear
mapping A : Bsl → Bsl+1

verifies

‖A‖slsl+1
:= ‖A‖Bsl 7→Bsl+1

≤ mM

s0 − s
,
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and thus

‖Am‖s0s ≤ ‖A‖s0s1 · · · ‖A‖sm−1s ≤
(
mM

s0 − s

)m
. (4.8)

From this and the Stirling formula follow the convergence of the series

n∑
m=1

tm

m!
‖Amu0‖s ≤ ‖u0‖s0

n∑
m=1

mm

m!

(
Mt

s0 − s

)m
whenever tM

s0−s <
1
e
. This means that for all t < s0−s

eM
the sequence (4.7)

converges in Bs to the function

u(t) := u0 +
∞∑
m=1

1

m!
tmAmu0.

Moreover, setting δ := 1
eM

, M = M(s, s0), this convergence is uniform on
any interval [0, T ] ⊂ [0, δ(s0−s)). Similar arguments show that an analogous
situation occurs for the series

∞∑
m=1

1

m!

d

dt
tmAmu0 =

∞∑
m=0

1

m!
tmAm+1u0. (4.9)

This shows that on the time-interval (0, δ(s0 − s)) the function u is continu-
ously differentiable in Bs.

Of course, these considerations hold for any s1 ∈ (s, s0), showing that
the sequence (4.7) also converges in the space Bs1 uniformly to a function
ũ on any time interval [0, T ] ⊂ [0, δ1(s0 − s1)), δ1 := 1

eM1
, M1 = M1(s0, s1).

On the other hand, due to the continuity of M(s0, ·) on (0, s0), for each
t ∈ [0, δ(s0 − s)) fixed there is an s1 ∈ (s, s0) such that t ∈ [0, δ1(s0 − s1)).
As a result, un(t) converges to a ũ(t) in the space Bs1 ⊂ Bs. Since

‖ũ(t)− u(t)‖Bs ≤ ‖ũ(t)− un(t)‖Bs1 + ‖u(t)− un(t)‖Bs ,

it follows that ũ(t) = u(t) in Bs. In other words, u(t) ∈ Bs1 . Therefore, u(t)
is in the domain of A : Bs1 → Bs, and thus Au(t) ∈ Bs. Since this holds for
every t ∈ [0, δ(s0 − s)), the convergence of the series (4.9) then implies that
u is a solution to the initial value problem (2.13). To check the uniqueness
see e.g. [Tre68, pp. 16–17].

Proof of Theorem 4.3. To prove this result amounts to check the conver-
gence. Following the scheme used to prove Theorem 2.5, we begin by re-
calling that in that proof each solution uε, ε ≥ 0, to (4.4) was obtained as a
limit in Bs of

uε,n(t) = uε +
n∑

m=1

1

m!
tmAmε uε,
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where t ∈ [0, δ(s0− s)) with δ = 1
eM

. Thus, for each ε′ > 0, there is an n ∈ N
such that

‖uε(t)− u0(t)‖s ≤‖uε(t)− uε,n(t)‖s + ‖uε,n(t)− u0,n(t)‖s + ‖u0,n(t)− u0(t)‖s

<
ε′

2
+ ‖uε − u0‖s +

n∑
m=1

tm

m!
‖Amε uε − Am0 u0‖s

≤ ε
′

2
+ ‖uε − u0‖s +

n∑
m=1

tm

m!
‖Amε (uε − u0)‖s

+
n∑

m=1

tm

m!
‖(Amε − Am0 )u0)‖s. (4.10)

Observe that by (4.8)

‖Amε (uε − u0)‖s ≤
(
mM

s0 − s

)m
‖uε − u0‖s0 .

To estimate (4.10) we proceed as in the proof of Theorem 2.5. For this
purpose, we will use the decomposition

Amε − Am0 = (Aε − A0)Am−1
ε + A0 (Aε − A0)Am−2

ε +

+ · · ·+ Am−2
0 (Aε − A0)Aε + Am−1

0 (Aε − A0) .

Then, considering again a partition of the interval [s, s0] into m parts and

the points sl = s0 − l(s0−s)
m

, l = 0, . . . ,m, one finds the estimate

‖(Amε − Am0 )u0)‖s ≤
m−1∑
l=0

‖Aε − A0‖slsl+1

(
mM

s0 − s

)m−1

‖u0‖s0

≤
p∑

k=1

Nε

(s0 − s)k−1

(
mM

s0 − s

)m
mk

M
‖u0‖s0 .

As a result, defining for each t ∈
[
0, δ(s0 − s)

)
, δ = 1

eM
,

fq(t) :=
∞∑
m=1

mq

m!

(
tmM

s0 − s

)m
<∞, q ≥ 0,

we obtain from the previous considerations the estimate

‖uε(t)−u0(t)‖s <
ε′

2
+‖uε−u0‖s+‖uε−u0‖s0f0(t)+

p∑
k=1

Nε

M(s0 − s)k−1
‖u0‖s0fk(t).

Here we observe that, by assumption, uε converges in Bs0 to u0. Thus, by
the definition of a scale of Banach spaces, this convergence also holds in Bs.
Therefore, for small enough ε, one has ‖uε(t)−u0(t)‖s < ε′, which completes
the proof.
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