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Abstract. A Markov evolution of a system of point particles in R
d is de-

scribed at micro-and mesoscopic levels. The particles reproduce themselves at
distant points (dispersal) and die, independently and under the influence of
each other (competition). The microscopic description is based on an infinite
chain of equations for correlation functions, similar to the BBGKY hierarchy
used in the Hamiltonian dynamics of continuum particle systems. The meso-
scopic description is based on a Vlasov-type kinetic equation for the particle’s
density obtained from the mentioned chain via a scaling procedure. The main
conclusion of the microscopic theory is that the competition can prevent the
system from clustering, which makes its description in terms of densities rea-
sonable. A possible homogenization of the solutions to the kinetic equation in
the long-time limit is also discussed.

1. Introduction

Phenomenological physical theories of substances like gases, liquids, etc, are
based on macroscopic observations and thus consider these substences as continu-
ous media. However, already in the time of L. Boltzmann and M. Smoluchowski
it was understood the importance of the microscopic structure of such and other
similar substances. Since then a challenging problem of theoretical and mathemat-
ical physics has been to derive the rules of the collective behavior of large systems
of interacting particles from their microscopic theory, based on the so called ‘first
principles’. Achievements in this direction laid the fundamentals of modern statisti-
cal physics; see, e.g., [10]. In the Hamiltonian mechanics, the motion of N physical
particles in R

d is described by a system of 2dN differential equations, subject to
initial conditions. For N ≫ 1, the abundance of equations, and hence of the initial
conditions, makes the point-wise description meaningless since no observation could
indicate at which point of the phase space the system actually is. Moreover, the
point-wise description would be ‘too detailed’ for understanding the collective be-
havior of the system. An alternative can be the statistical approach which provides
the possibility to link micro- and macroscopic descriptions to each other. In this
approach, one deals with probabilities with which such points lie in given subsets
of the phase space. Then instead of ‘point-wise evolution’ one studies the evolution
of probability measures, considered now as the states of the system. In [1], N. N.
Bogoliubov suggested another approach, which later became popular, especially in
the physical literature. Here, the evolution of probability measures is described
indirectly as the evolution of the so called moment or correlation functions. The
latter evolution is obtained from a hierarchy of equations, called now Bogoliubov

1



2DMITRI FINKELSHTEIN, YURI KONDRATIEV, YURI KOZITSKY, AND OLEKSANDR KUTOVIY

or BBGKY hierarchy or chain, that couples correlation functions of different order
with each other, see [10]. The description at this level is microscopic since one deals
with coordinates of individual particles; cf. the Introduction in [18]. More coarse-
grained levels are meso- and macroscopic ones. They are attained by choosing
appropriate scales for space and time, see [18, 19]. Of course, certain details of the
system’s behavior are lost due to such coarse-graining. Kinetic equations provide a
space-dependent mean-field-like approximate1 description of the evolution of large
particle systems. Such equations are deduced from the BBGKY chain by means of
various types of scaling, cf. Section 6 in [10] and also [18, 19].

Along with physics, in modern life sciences one also deals with systems con-
sisting of large number of interacting entities distributed in a continuous habitat
and evolving in time. Their collective behavior is observed at a macro-scale, and
thus the corresponding mathematical theories which explain this behavior tradi-
tionally describe their dynamics by means of phenomenologically (or heuristically)
deduced nonlinear equations, mostly differential or integro-differential, involving
macroscopic characteristics like density, mobility, etc. However, this kind of macro-
scopic phenomenology may often be insufficient also in life sciences, as they can col-
lect massive experimental data of high precision characterizing individual behavior
of constituting entities. For instance, technical advances in animal tracking and
genotyping allow for obtaining rich individual-level data on population dynamics,
population genetics, and evolutionary biology. However, mathematical methods
are absent that would enable one to derive the population-level consequences of
such individual-level observations. From this and many other examples one may
see how important is to elaborate a general mathematical theory in which the rules
of the collective behavior of a large number of interacting entities can be deduced
from the information about their individual behavior and the interactions. This
article is aimed at announcing some of our recent achievements in this field based
on the concepts of statistical physics mentioned above. The main principles which
we follow in our study are:

• The objects are large systems of entities distributed over a continuous habi-
tat (part of Rd, d ≥ 1) and evolving in continuous time.

• The phase space of the model is the collection Γ of possibly infinite sets of
identical points – configurations γ ⊂ R

d.
• In the microscopic theory, the states are probability measures on the phase
space Γ, the evolution of which is assumed to be Markovian, described by
Kolmogorov-type equations. The main acts of the evolution are particle’s
birth, death, and spatial motion – jumps or diffusion.

• The evolution of states is described indirectly as the evolution of the corre-
sponding correlation functions obeying equations similar to BBGKY chains.

• The mesoscopic theory is based on kinetic equations, deduced from the
equations for correlation functions by means of scaling procedures, in which
one scales interactions and densities, whereas time is left unscaled.

2. The setup

The object of our study in this paper is a large population of motionless entities
(e.g., perennial plants) which reproduce themselves, compete and die at random.

1In the physical literature, it is rather called random phase approximation.
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The reproduction (dispersal) consists in random independent sending by an entity
an offspring to a distant point, which immediately after that becomes a member of
the population. Each entity can die independently with a constant rate, as well as
under the influence of other population members. The latter event is interpreted
as competition-caused. In theoretical biology such models were introduced and
studied, e.g., in [2, 3, 16]. A more detailed bibliography can be found in [6].

As was suggested already in [2], the right mathematical context for studying
models of this kind is the theory of random point fields in R

d; cf. also page 1311
in [15]. Herein, populations appear as particle configurations constituting the set

(1) Γ := {γ ⊂ R
d : |γ ∩K| <∞ for any bounded K ⊂ R

d },

where, for a set A, by |A| we denote the number of points in A. For our model, Γ
is a phase space. Its metric properties, as well as the main aspects of the analysis
on such spaces, were studied in [11]. Along with finite ones the set Γ contains also
infinite configurations, which allows for describing ‘bulk’ properties of a large finite
system ignoring boundary and size effects2. If the initial configuration γ0 is fixed,
the evolution might be described as a map t 7→ γt ∈ Γ, which in view of the random
character of the events mentioned above ought to be a random process. However, at
least so far, for the model considered here this way can be realized only if γ0 is finite.
Hence, to describe mentioned bulk properties one ought to go beyond the point-
wise setting, as it has been done in the statistical physics of interacting particle
systems. As mentioned above, in the statistical description states of the system
are probability measures on Γ. To characterize them one employs observables –
appropriate functions F : Γ → R. As in the Heisenberg approach in quantum
physics, the evolution of states can be described via the evolution of observables. In
view of the assumed Markov property, this evolution is obtained from the equation

(2)
d

dt
Ft = LFt, Ft|t=0 = F0, t ≥ 0,

in which the operator L determines the model. In our case, it is

(LF )(γ) =
∑

x∈γ

[

m+ E−(x, γ \ x)
]

[F (γ \ x)− F (γ)](3)

+

∫

Rd

E+(y, γ) [F (γ ∪ y)− F (γ)] dy,

where

(4) E±(x, γ) :=
∑

y∈γ

a±(x− y).

Here a± ≥ 0 are suitable functions, see (10) below. As given in (3), L is a typical
‘birth-and-death’ generator in which the first term corresponds to the death of the
particle located at x occurring (a) independently with rate m ≥ 0, and (b) under
the influence of the other particles in γ with rate E−(x, γ \ x) ≥ 0. Here and in
the sequel in the corresponding context, we treat each x ∈ R

d also as a single-point
configuration {x}. That is, if x belongs to γ (resp. y does not), by γ \ x (resp.
γ∪y) we mean the configuration which is obtained from γ by removing x (resp. by
adding y). The second term in (3) describes the birth of a particle at y ∈ R

d given

2A discussion on how infinite systems provide approximations for large finite systems can be
found in [4, 5].
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by the whole configuration γ with rate E+(y, γ) ≥ 0. The model described by (3)
is called a spatial logistic model (SLM). A particular case of SLM is the continuous
contact model [12, 13] where a− ≡ 0, and hence the competition is absent.

The sums in (3) and (4) may contain infinite number of summands and hence may
diverge. This means that the direct study of the corresponding equation (2) for our
model is rather problematic. Following the way suggested by N. N. Bogoliubov, the
evolution of states will be studied via the evolution of the corresponding correlation
functions k0 7→ kt. By a correlation function k we mean an infinite collection of
symmetric positive functions k(n) : (Rd)n → R, n ∈ N0, which determine the state
in a certain way, see [6, 7, 8, 9] for more detail. Such k can also be viewed as infinite-
dimensional (Fock-type) vectors. Note that k(0) = 1 and k(1) is the particle density.
For the Poisson measure with intensity κ > 0, one has k(n)(x1, . . . , xn) = κ

n,
n ∈ N0. We say that a correlation function k, and hence the corresponding state,
are sub-Poissonian if

(5) k(n)(x1, . . . , xn) ≤ Cn,

which holds for some C > 0, all n ∈ N0, and (Lebesgue) almost all (x1, . . . , xn).
Then a sub-Poissonian state is, in a way, similar to the Poissonian state in which
the particles are independently scattered over Rd. At the same time, the increase
of k(n) with n as n! (see (9) below), may correspond to the formation of clusters.
The evolution k0 7→ kt is obtained from the equation

(6)
d

dt
kt = L∆kt, kt|t=0 = k0,

which, in fact, is a chain of equations for particular k
(n)
t , analogous to the Bogoli-

ubov hierarchy for physical particles. The generator L∆ is constructed from L as
in (3) by a certain procedure, see [7, 9]. In particular, the first equations in the

chain (6) have the following form: dk
(0)
t /dt = 0 and

(7)
d

dt
k
(1)
t (x) = −mk

(1)
t (x) −

∫

Rd

a−(x− y)k
(2)
t (x, y)dy +

∫

Rd

a+(x− y)k
(1)
t (y)dy.

The RHS of the equation with dk
(2)
t /dt contains k

(n)
t with n = 1, 2, 3, etc. Theo-

retical biologists try to solve chains like (6) by decoupling them; cf. [14]. In the
simplest version, one sets

k(2)(x, y) ≃ k(1)(x)k(1)(y),

which is equivalent to neglecting spatial pair correlations. This turns (7) into the
following nonlinear equation
(8)
d

dt
k
(1)
t (x) = −mk

(1)
t (x) − k

(1)
t (x)

∫

Rd

a−(x− y)k
(1)
t (y)dy +

∫

Rd

a+(x − y)k
(1)
t (y)dy,

which, in fact, is a kinetic equation for our model. Its eventual solution provides
a mean-field-like approximation of the evolution of the density. Note that the
question of whether the evolution of states preserves sub-Poissonicity, and hence
clusters do not occur, can be answered only by studying the whole chain in (6).
For the contact model, which one obtains from (3) by setting a− ≡ 0, it is known
[7] that

(9) const · n! cnt ≤ k
(n)
t (x1, . . . , xn) ≤ const · n!Cn

t ,
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where the left-hand inequality holds if all xi belong to a ball of small enough radius.
Hence, in spite of the fact that Ct → 0 as t → +∞ if the mortality dominates the
dispersal, kt are definitely not sub-Poissonian if a− ≡ 0.

In this article we address the following questions:

(1) Can the competition in (3) provide that the problem (6) has a solution that
obeys (5)?

(2) Can one deduce (8) rigorously; e.g., by a kind of scaling procedure, which
would allow for error control?

(3) What can be said of solutions to (8) in that case?

The answers are given in the form of theorems stated below. The proof of Theorem
1 can be found in [6]; the remaining theorems will be proven in our work under
preparation.

3. The results

We assume that the competition and dispersal rates are additive, cf. (4), and
the corresponding kernels a± are symmetric, essentially bounded, and integrable.
That is,

(10) a± ∈ L1(Rd) ∩ L∞(Rd), a±(x) = a±(−x) ≥ 0,

and thus we set

(11) 〈a±〉 =

∫

Rd

a±(x)dx, ‖a±‖ = ess sup
x∈Rd

a±(x).

Let Γ0 be the subset of Γ as in (1) consisting of finite configurations only. For
γ ∈ Γ0, by |γ| we denote the number of points in γ. One observes that, for γ ∈ Γ0,
the sums in (4) and in the expressions below are well-defined. Set

E±(γ) =
∑

x∈γ

E±(x, γ \ x) =
∑

x∈γ

∑

y∈γ\x

a±(x− y), γ ∈ Γ0.

Then the operator in (6) acts as follows

(L∆k)(γ) = −(m|γ|+ E−(γ))k(γ) +
∑

x∈γ

E+(x, γ \ x)k(γ \ x)(12)

−

∫

Rd

E−(x, γ)k(γ ∪ x)dx +

∫

Rd

∑

x∈γ

a+(x− y)k(γ \ x ∪ y)dy,

where γ ∈ Γ0. For a one-point γ = {x}, one readily derives from (12) the right-hand
side of (7).

So far, (12) is just a formal expression. Then our next aim is to introduce a
Banach space, in which L∆ can be defined as a linear operator, and hence (6) can
be studied. For k : Γ0 → R, let us assume that each k(n) : (Rd) → R is essentially
bounded, and then, for α ∈ R, set

(13) ‖k‖α = sup
n∈N0

eαnqn(k),

where q0(k) = |k(0)|, and

qn(k) := ess sup
(x1,...,xn)∈(Rd)n

|k(n)(x1, . . . , xn)|, n ∈ N.
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Afterwards, we set

(14) Kα = {k : Γ0 → R : ‖k‖α <∞}.

That is, Kα is an infinite dimensional real vector space equipped with norm (13),
complete with respect to this norm. For α′′ < α′, we have ‖k‖α′′ ≤ ‖k‖α′; and
hence,

(15) Kα′ ⊂ Kα′′ , for α′′ < α′.

That is, the bigger is α, the ‘smaller’ is the corresponding space (14). For k ∈ Kα, by
(13) we readily have qn(k) ≤ ‖k‖α exp(−αn), which yields that k is sub-Poissonian;
cf. (5). Thus, for each α ∈ R, the space (14) contains only sub-Poissonian k, and
each such a k is contained in some Kα. Therefore, the collection of spaces (14) with
all possible α ∈ R, cf. (15), provides an appropriate framework for describing the
evolution of sub-Poissonian correlation functions.

Now let us turn to defining the operator (12). First of all, we note that, for
k ∈ Kα, L

∆k need not be in the same Kα, which means that L∆, as a map from
Kα into itself, cannot be defined on the whole Kα. On the other hand, it is possible
to obtain the following estimate, see Section 4 in [6],

‖L∆k‖α ≤ ψ(α′ − α)‖k‖α′ , α′ > α,

where ψ : (0,+∞) → (0,+∞) is a certain function such that ψ(τ) → +∞ as
τ → 0+. That is L∆ acts as a bounded operator to Kα from any smaller Kα′ . Then
the domain of L∆ in Kα is defined to be the set of all those elements of this space
which belong to smaller spaces Kα′ . That is

Dα =
⋃

α′:α′>α

Kα′ .

Now we can make precise what do we mean by solving (6). Namely, for 0 < T ≤
+∞, a map [0, T ) ∋ t 7→ kt ∈ Kα is said to be a classical solution3 to the problem
(6) in space Kα on time interval [0, T ) if: (a) it is continuously differentiable on
(0, T ); (b) kt ∈ Dα for all t ∈ (0, T ); (c) it obeys both the equation and the initial
condition in (6).

Let us take some α∗ ∈ R, and then any α∗ > α∗, and then set

(16) T∗ =
α∗ − α∗

〈a+〉+ 〈a−〉e−α∗

,

where 〈a±〉 are the same as in (11). Our first result is given in the next statement.

Theorem 1. Suppose that there exists θ > 0 such that, for almost all x ∈ R
d,

(17) a+(x) ≤ θa−(x).

Then, for each α∗ ∈ R such that

(18) θeα
∗

< 1,

and any α∗ < α∗, the problem (6) with k0 ∈ Kα∗ has a unique classical solution in
Kα∗

on time interval [0, T∗), with T∗ given in (16).

3In infinite dimensional Banach spaces, there can be solutions in weaker senses.
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Let us make some comments on this result. First of all we note that the solution
to (6) is sub-Poissonian, as hence clusters do not occur, if the initial k0 shares this
property. Second, the solution lies in a ‘bigger’ space than k0 does. The choice of
this initial space is restricted by (18). For a fixed α∗, T∗ has a unique maximum as
a function of α∗, that means that there exists an optimal choice of α∗, for which
the time interval [0, T∗) has maximal length. In (17) we, in fact, assume that the
dispersal is dominated by the competition. The essence of this condition can be
formulated as follows: each particle can ‘kill’ its offspring and can be ‘killed’ by it.

Now let us turn to the mesoscopic theory, which we base on a Vlasov-type scaling;
cf. Section 6 in [5]. According to the general scheme developed in [8], this amounts
to passing to the scale at which the microscopic density gets of order ε−1 and the
interaction of order ε, where ε ∈ (0, 1] is a scaling parameter. This means that the
initial correlation function k0(γ) gets of order ε

−|γ|; and hence, one assumes that

(19) ε|γ|k0(γ) → r0(γ), as ε→ 0+, γ ∈ Γ0,

where r0 is a correlation function. Additionally, one assumes that also kt for t > 0,
have the same divergence, and hence should be ‘renormalized’ as in (19). The
interaction in L∆ is represented by the competition kernel a− which thus should be
replaced by εa− (weak interaction limit). Let L∆

ε be the operator which we obtain
by such a replacement. Then we set, cf. (19),

(20) k
(ε)
t,ren(γ) = ε|γ|kt(γ), (L∆

ε,renk)(γ) = ε|γ|(L∆
ε k)(γ).

Thereafter, the problem (6) turns into the following

(21)
d

dt
k
(ε)
t,ren = L∆

ε,renk
(ε)
t,ren, k

(ε)
t,ren|t=0 = k

(ε)
0,ren.

The expression for L∆
ε,ren can be calculated from (20) explicitly, which yields it in

the form

(22) L∆
ε,ren = V + εB,

where, cf. (12),

(V k)(γ) = −mk(γ)−

∫

Rd

E−(x, γ)k(γ ∪ x)dx(23)

+

∫

Rd

∑

x∈γ

a+(x− y)k(γ \ x ∪ y)dy,

and

(Bk)(γ) = −E−(γ)k(γ) +
∑

x∈γ

E+(x, γ \ x)k(γ \ x).

Note that L∆
ε,ren|ε=1 = L∆. For each ε ∈ (0, 1], (21) has a unique classical solution

in the same space and on the same time interval as (6) does. This can be proven
exactly as Theorem 1. For r0 as in (19) and V as in (23), let us consider

(24)
d

dt
rt = V rt, rt|t=0 = r0.

For this problem, one can probe an analog of Theorem 1, even without assuming
(17) because the latter condition relates to the operator B, cf. (22).
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Theorem 2. Let α∗, α∗, and T∗ be as in Theorem 1, and let k
(ε)
t,ren (resp. rt)

be solutions to (20) (resp. (24)) in Kα∗
on time interval [0, T∗), with the initial

conditions k
(ε)
t,ren|t=0 = rt|t=0 = r0 ∈ Kα∗ . Then, for every positive T < T∗, it

follows that

sup
t∈[0,T ]

‖k
(ε)
t,ren − rt‖α∗

→ 0, as ε→ 0+.

The equation in (24) is, in fact, a chain of equations for r(n), n ∈ N0. It is called a
Vlasov hierarchy. Theorem 2 states that, in the scaling limit ε→ 0+, the solutions
to (21) converge in Kα∗

to the solution to the Vlasov hierarchy, uniformy on closed

subintervals of [0, T∗). The reason to pass from kt = k
(ε)
t,ren|ε=1 to rt = k

(ε)
t,ren|ε=0 can

be seen from the following arguments. Suppose that r0 in (24) is such that r
(0)
0 = 1

and

r
(n)
0 (x1, . . . , xn) = ̺0(x1) · · · ̺0(xn), n ∈ N,

for some positive ̺0 ∈ L∞(Rd). In other words, we assume that r0 is the correlation
function of a heterogeneous Poisson measure, with density function ̺0. Let us now
seek the solution to (24) also as the product of certain unknown ̺t. The peculiarity
of V as in (23) is that it is possible to do, and that ̺t can be found from the
following equation

(25)
d

dt
̺t(x) = −m̺t(x)− ̺t(x)

∫

Rd

a−(x− y)̺t(y)dy +

∫

Rd

a+(x− y)̺t(y)dy,

with the initial condition ̺t|t=0 = ̺0, which is exactly the kinetic equation (8). In
particular, the passage from ε = 1 to ε = 0 has led us from (7) to (8). Since we
know that the Vlasov hierarchy (24) has a unique solution, then this solution has

the form r
(n)
t (x1, . . . , xn) = ̺t(x1) · · · ̺t(xn), n ∈ N, whenever (25) has a unique

solution in L∞(Rd) on time interval [0, T∗), which obeys the condition

‖̺t‖L∞(Rd) ≤ e−α∗ .

The latter is to guarantee that rt lies in Kα∗
; cf. (13) and (14).

Our next problem is to study the solvability of (25). For some technical reasons,
it is more convenient to solve it in the space Cb(R

d) of all bounded continuous
functions φ : Rd → R. We equip this space with the norm

‖φ‖ = sup
x∈Rd

|φ(x)|,

which turns it into a Banach space, that can be isomorphically embedded into
L∞(Rd). We say that φ ∈ Cb(R

d) is positive if φ(x) ≥ 0 for all x ∈ R
d. Our first

result in this domain is the following statement.

Theorem 3. For each positive ̺0 ∈ Cb(R
d), the problem (25) with the initial

condition ̺t|t=0 = ̺0 has a unique classical positive solution ̺t ∈ Cb(R
d) on time

interval [0,+∞).

Now let ̺0 ∈ Cb(R
d) be constant as a function of x. Then the solution as

in Theorem 3 will also be independent of x and can be obtained explicitly. Set
̺t(x) ≡ ut. Then ut has to solve the following

(26)
d

dt
ut = (〈a+〉 −m)ut − 〈a−〉u

2
t ,
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see (11), which is a Bernoulli equation. For m > 〈a+〉, its solution decays to zero
exponentially as t → +∞. For m = 〈a+〉, the solution is ut = u0/(1 + 〈a−〉u0t),
and hence also decays to zero as t→ +∞. For m < 〈a+〉, we set

q =
〈a+〉 −m

〈a−〉
.

In this case the solution to (26) has the form

(27) ut =
u0q

u0 + (q − u0) exp(−q〈a−〉t)
,

which, in particular, means that ut → q as t→ +∞.

Theorem 4. Suppose that q > 0 and, for almost all x ∈ R
d, the following holds

(28)
a+(x)

〈a+〉
≥

(

1−
m

〈a+〉

)

a−(x)

〈a−〉
.

Let also the initial condition ̺0 ∈ Cb(R
d) to the problem (25) obeys

0 < δ ≤ ̺0(x) < q,

which holds for some δ and all x ∈ R
d. Then, for each x ∈ R

d and t > 0, the
solution as in Theorem 3 obeys the bounds ut ≤ ̺t(x) < q, where ut is given in
(27) with u0 = δ. Hence ̺t(x) → q point-wise as t→ +∞.

The result just obtained can be interpreted as an asymptotic homogenization
of the density. Let us add some comments to (28). If a+(x) = θa−(x), for some
θ > 0 and almost all x, cf. (17), then (28) holds for all m ∈ [0, 〈a+〉). Note that
the case of a+(x) = a−(x) was studied in [17]. In population biology, competition
often has the range shorter than that of dispersal. In such a case, the mentioned
homogenization occurs at nonzero mortality m. For instance, let a+ = αIR and
a− = βIr for some positive α, β, r, and R, and also R ≥ r. Here Ir(x) = 1 if |x| ≤ r
and Ir(x) = 0 otherwise. Then (28) holds if

1−
m

〈a+〉
≤

( r

R

)d

.
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