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Abstract

We construct a correlation functions evolution corresponding to the
Glauber dynamics in continuum. Existence of the corresponding strongly
continuous contraction semigroup in a proper Banach space is shown.
Additionally we prove the existence of the evolution of states and study
their ergodic properties.

1 Introduction

Among all birth-and-death Markov processes on configuration spaces in con-
tinuum the Glauber type stochastic dynamics are objects of particular inter-
est. The reversible states for these dynamics are grand canonical Gibbs mea-
sures. This fact gives a standard way to construct properly associated stationary
Markov processes using the corresponding (non-local) Dirichlet forms related to
the considered Markov generators and Gibbs measures. These processes de-
scribe the equilibrium Glauber dynamics which preserve the initial Gibbs state
in the time evolution, see, e.g., [6, 13, 14], and [15]. Note that, in applications,
the time evolution of initial state is the subject of the primary interest. There-
fore, we understand the considered stochastic (non-equilibrium) dynamics as
the evolution of initial distributions for the system. Actually, the Markov pro-
cess (provided it exists) itself gives a general technical equipment to study this
problem. However, we note that the transition from the micro-state evolution
corresponding to the given initial configuration to the macro-state dynamics
is the well developed concept in the theory of infinite particle systems. This
point of view appeared initially in the framework of the Hamiltonian dynamics
of classical gases, see, e.g., [2].
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The study of the non-equilibrium Glauber dynamics needs construction of
the time evolution for a wider class of initial measures. The lack of the general
Markov processes techniques for the considered systems makes necessary to
develop alternative approaches to study the state evolutions in the Glauber
dynamics. The approach realized in [5, 11, 12] is probably the only known
at the present time. The description of the time evolutions for measures on
configuration spaces in terms of an infinite system of evolutional equations for
the corresponding correlation functions was used there. The latter system is a
Glauber evolution’s analog of the famous BBGKY-hierarchy for the Hamiltonian
dynamics.

Here we extend constructive approach developed in [5] to correlation func-
tion evolution of the Glauber dynamics in continuum. We describe a reasonable
Banach space where the evolution problem can be solved. Moreover, we con-
struct an explicit approximation by bounded operators of the corresponding
evolutional semigroup. We prove that functions in this evolution stay corre-
lation functions of some measures (states) on configuration spaces; this means
that we show the existence of states evolution. At the end we obtain the ergodic
properties of the state evolution.

2 Basic facts and notation

Let B(Rd) be the family of all Borel sets in Rd, d ≥ 1, and let Bb(Rd) denote
the system of all bounded sets in B(Rd).

The configuration space over Rd consists of all locally finite subsets (config-
urations) of Rd. Namely,

Γ = ΓRd :=
{
γ ⊂ Rd

∣∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)
}
. (2.1)

It is equipped with the vague topology, i.e., the minimal topology for which all
mappings Γ 3 γ 7→

∑
x∈γ f(x) ∈ R are continuous for any continuous function

f on Rd with compact support. We note that the summation in
∑
x∈γ f(x)

is taken over only finitely many points of γ which belong to the support of
f . It is worth pointing out that Γ with the vague topology may be metrizable
and it becomes a Polish space (i.e., complete separable metric space), see, e.g.,
[10]. The Borel σ-algebra B(Γ) corresponding to this topology is the smallest
σ-algebra for which all mappings Γ 3 γ 7→ |γΛ| ∈ N0 := N ∪ {0} are measurable
for any Λ ∈ Bb(Rd). Here γΛ := γ ∩Λ, and | · | means the cardinality of a finite
set.

The space of n-point configurations in an arbitrary Y ∈ B(Rd) is defined by

Γ(n)
Y :=

{
η ⊂ Y

∣∣∣ |η| = n
}
, n ∈ N; Γ(0)

Y := {∅}.

As a set, Γ(n)
Y may be identified with the symmetrization of

Ỹ n =
{

(x1, . . . , xn) ∈ Y n
∣∣∣ xk 6= xl if k 6= l

}
.
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Hence, one can introduce the corresponding Borel σ-algebra, which we denote
by B(Γ(n)

Y ). The space of finite configurations in an arbitrary Y ∈ B(Rd) is
defined by

Γ0,Y :=
⊔
n∈N0

Γ(n)
Y .

This space is equipped with the topology of disjoint unions. Therefore, one can
introduce the corresponding Borel σ-algebra B(Γ0,Y ). In the case of Y = Rd we
will omit the index Y in the notation, namely, Γ0 := Γ0,Rd , Γ(n) := Γ(n)

Rd .
The restriction of the Lebesgue product measure (dx)n to

(
Γ(n),B(Γ(n))

)
we

denote by m(n). We set m(0) := δ{∅}. The Lebesgue–Poisson measure λ on Γ0

is defined by

λ :=
∞∑
n=0

1
n!
m(n). (2.2)

For any Λ ∈ Bb(Rd) the restriction of λ to ΓΛ := Γ0,Λ will also be denoted
by λ. The space

(
Γ,B(Γ)

)
is the projective limits of the family of spaces{

(ΓΛ,B(ΓΛ))
}

Λ∈Bb(Rd)
. The Poisson measure π on

(
Γ,B(Γ)

)
is given as the

projective limit of the family of measures {πΛ}Λ∈Bb(Rd), where πΛ := e−m(Λ)λ

is a probability measure on
(
ΓΛ,B(ΓΛ)

)
and m(Λ) is the Lebesgue measure of

Λ ∈ Bb(Rd).
For any measurable function f : Rd → R we define a Lebesgue–Poisson

exponent
eλ(f, η) :=

∏
x∈η

f(x), η ∈ Γ0; eλ(f, ∅) := 1. (2.3)

According to (2.2), we have eλ(f) ∈ L1(Γ0, dλ) for any f ∈ L1(Rd, dx). More-
over, ∫

Γ0

eλ(f, η)dλ(η) = exp
{∫

Rd
f(x)dx

}
. (2.4)

A set M ∈ B(Γ0) is called bounded if there exist Λ ∈ Bb(Rd) and N ∈ N
such that M ⊂

⊔N
n=0 Γ(n)

Λ . We will use the following classes of functions on Γ0:
L0

ls(Γ0) is the set of all measurable functions on Γ0 which have local support, i.e.
G ∈ L0

ls(Γ0) if there exists Λ ∈ Bb(Rd) such that G �Γ0\ΓΛ= 0; Bbs(Γ0) is the
set of bounded measurable functions with bounded support, i.e. G �Γ0\B= 0 for
some bounded B ∈ B(Γ0).

Any B(Γ0)-measurable function G on Γ0, in fact, is a sequence of functions{
G(n)

}
n∈N0

, where G(n) is a B(Γ(n))-measurable function on Γ(n).
On Γ we consider the set of cylinder functions Fcyl(Γ). These functions are

characterized by the following relation: F (γ) = F �ΓΛ (γΛ).
We consider the following mapping from L0

ls(Γ0) into Fcyl(Γ), which plays
the key role in our further considerations:

KG(γ) :=
∑
ηbγ

G(η), γ ∈ Γ, (2.5)
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where G ∈ L0
ls(Γ0), see, e.g., [9, 16, 17]. The summation in (2.5) is taken over all

finite subconfigurations η ∈ Γ0 of the (infinite) configuration γ ∈ Γ; we denote
this by the symbol η b γ. The mapping K is linear, positivity preserving, and
invertible with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.6)

Here and subsequently inclusions like ξ ⊂ η also hold for ξ = ∅ as well as for
ξ = η. We denote the restriction of K onto functions on Γ0 by K0.

For any fixed C > 1 we consider the following space of B(Γ0)-measurable
functions

LC :=
{
G : Γ0 → R

∣∣∣∣ ‖G‖C :=
∫

Γ0

|G(η)|C |η|dλ(η) <∞
}
. (2.7)

In the sequel, Lls
C denotes the set L0

ls(Γ0)∩LC . The space LC can be made into
a Banach space in a standard way; one simply takes the quotient space with
respect to the kernel of ‖ · ‖C . To simplify notations, we use the same symbol
LC for the corresponding Banach space.

A measure µ ∈ M1
fm(Γ) is called locally absolutely continuous with respect

to (w.r.t. for short) Poisson measure π if for any Λ ∈ Bb(Rd) the projection of
µ onto ΓΛ is absolutely continuous w.r.t. the projection of π onto ΓΛ. In this
case, there exists a correlation functional kµ : Γ0 → R+ (see, e.g., [9]) such that
for any G ∈ Bbs(Γ0) the following equality holds∫

Γ

(KG)(γ)dµ(γ) =
∫

Γ0

G(η)kµ(η)dλ(η). (2.8)

The functions k(0)
µ := 1 and

k(n)
µ : (Rd)n −→ R+, n ∈ N, (2.9)

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n

0, otherwise

are called correlation functions of µ.
We recall now without a proof the partial case of the well-known technical

lemma (cf., [15]), which plays very important role in our calculations.

Lemma 2.1. For any measurable function H : Γ0 × Γ0 × Γ0 → R∫
Γ0

∑
ξ⊂η

H (ξ, η \ ξ, η) dλ (η) =
∫

Γ0

∫
Γ0

H (ξ, η, η ∪ ξ) dλ (ξ) dλ (η) (2.10)

if only both sides of the equality make sense.
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3 Non-equilibrium Glauber dynamics in contin-
uum

Let φ : Rd → R+ := [0; +∞) be an even non-negative function which satisfies
the following integrability condition

Cφ :=
∫

Rd

(
1− e−φ(x)

)
dx < +∞ (3.1)

For any γ ∈ Γ and x ∈ Rd \ γ we define

Eφ(x, γ) :=
∑
y∈γ

φ(x− y) ∈ [0;∞]. (3.2)

Let us introduce the (pre-)generator of the Glauber dynamics: for any F ∈
Fcyl(Γ) we set

(LF )(γ) :=
∑
x∈γ

[
F (γ \ x)− F (γ)

]
(3.3)

+ z

∫
Rd

[
F (γ ∪ x)− F (γ)

]
exp
{
−Eφ(x, γ)

}
dx, γ ∈ Γ.

Here z > 0 is the activity parameter. Note that for any F ∈ Fcyl(Γ) there exists
Λ ∈ Bb(Rd) such that F (γ \ x) = F (γ) for all x ∈ γΛc and F (γ ∪ x) = F (γ)
for all x ∈ Λc. On account of exp

{
−Eφ(x, γ)

}
≤ 1, we conclude that sum and

integral in (3.3) are finite.
In [5], it was shown that the mapping L̂ := K−1LK given on Bbs(Γ0) by

the following expression

(L̂G)(η) =− |η|G(η) (3.4)

+ z
∑
ξ⊂η

∫
Rd
e−E

φ(x,ξ)G(ξ ∪ x)eλ(e−φ(x−·) − 1, η \ ξ)dx

is a linear operator on LC with the dense domain D(L̂) = L2C ⊂ LC . If,
additionally,

z ≤ min
{
Ce−CCφ ; 2Ce−2CCφ

}
, (3.5)

then
(
L̂,D(L̂)

)
is a closable linear operator in LC and its closure (which we

also denote by L̂) generates a strongly continuous contraction semigroup T̂ (t)
on LC .

Let us define dλC := C |·|dλ. The topologically dual space to LC is the space
(LC)′ =

(
L1(Γ0, dλC)

)′ = L∞(Γ0, dλC). The space L∞(Γ0, dλC) is isometri-
cally isomorphic to the Banach space

KC :=
{
k : Γ0 → R

∣∣∣ k · C−|·| ∈ L∞(Γ0, λ)
}
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with the norm ‖k‖KC :=
∥∥C−|·|k(·)

∥∥
L∞(Γ0,λ)

. The latter isomorphism is given
by the following isometry RC

(LC)′ 3 k 7−→ RCk := k · C |·| ∈ KC . (3.6)

In fact, the duality between Banach spaces LC and KC can be expressed
clearly in the following way

〈〈G, k〉〉 :=
∫

Γ0

G · k dλ, G ∈ LC , k ∈ KC (3.7)

with
|〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC . (3.8)

It is obvious that for any k ∈ KC

|k(η)| ≤ ‖k‖KC C |η| for λ-a.a. η ∈ Γ0. (3.9)

Let
(
L̂′, D(L̂′)

)
be an operator in (LC)′ which is adjoint to the closed oper-

ator
(
L̂,D(L̂)

)
. We consider its image in KC under isometry RC . Namely, let

L̂∗ = RCL̂
′RC−1 with a domain D(L̂∗) = RCD(L̂′). Then, for any G ∈ D(L̂)

and k ∈ D(L̂∗)∫
Γ0

G · L̂∗kdλ =
∫

Γ0

G ·RCL̂′RC−1kdλ =
∫

Γ0

G · L̂′RC−1kdλC

=
∫

Γ0

L̂G ·RC−1kdλC =
∫

Γ0

L̂G · kdλ.

Therefore, L̂∗ is the dual operator to L̂ w.r.t. the duality (3.7). By [7], we have
the precise form of L̂∗ on D(L̂∗):

(L̂∗k)(η) =− |η|k(η) (3.10)

+ z
∑
x∈η

e−E
φ(x,η\x)

∫
Γ0

eλ(e−φ(x−·) − 1, ξ)k((η \ x) ∪ ξ) dλ(ξ).

Under condition (3.5), we consider the adjoint semigroup T̂ ′(t) in (LC)′

and its image T̂ ∗(t) in KC . Now, we may apply general results about adjoint
semigroups (see, e.g., [3]) to the semigroup T̂ ∗(t). The last semigroup will be
weak*-continuous, moreover, weak*-differentiable at 0 and L̂∗ will be weak*-
generator of T̂ ∗(t). Here and below we mean “weak*-properties” w.r.t. the
duality (3.7). Let

K̊C =
{
k ∈ KC

∣∣∣ ∃ lim
t↓0
‖T̂ ∗(t)k − k‖KC = 0

}
. (3.11)

Then, K̊C is a closed, weak*-dense, T̂ ∗(t)-invariant linear subspace of KC . More-
over, K̊C = D(L̂∗) (the closure is in the norm of KC). Let T̂�(t) denote the
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restriction of T̂ ∗(t) to the Banach space K̊C . Then, T̂�(t) is a C0-semigroup on
K̊C and its generator L̂� will be part of L̂∗, namely,

D(L̂�) =
{
k ∈ D(L̂∗)

∣∣∣ L̂∗k ∈ D(L̂∗)
}

and L̂∗k = L̂�k for any k ∈ D(L̂�).
Our next goal is to construct another T̂ ∗(t)-invariant subspace which can be

described precisely. We first introduce a useful subspace in D(L̂∗).

Proposition 3.1. For any α ∈ (0; 1) the following inclusions hold KαC ⊂
D(L̂∗) ⊂ D(L̂∗) ⊂ KC .

Proof. Let α ∈ (0; 1) and k ∈ KαC . Then, using (2.4) and (3.9), for λ-a.a.
η ∈ Γ0 we have

C−|η| |η| |k (η)|+
∑
x∈η

∫
Γ0

eλ

(
1− e−φ(x−·), ξ

)
C−|η| |k ((η \ x) ∪ ξ)| dλ (ξ)

≤C−|η| |η| ‖k‖KαC (αC)|η|

+
∑
x∈η

∫
Γ0

eλ

(
1− e−φ(x−·), ξ

)
C−|η| ‖k‖KαC (αC)|(η\x)∪ξ|

dλ (ξ)

=α|η||η| ‖k‖KαC +
1
αC
‖k‖KαC α

|η|
∑
x∈η

∫
Γ0

eλ

(
αC

(
1− e−φ(x−·)

)
, ξ
)
dλ (ξ)

=α|η||η| ‖k‖KαC +
1
αC
‖k‖KαC α

|η| |η| exp {αCCφ}

≤ ‖k‖KαC
−1
e lnα

(
1 +

1
αC

exp {αCCφ}
)
,

since xαx ≤ − 1
e lnα

for any α ∈ (0; 1) and x ≥ 0. Using the definition of D(L̂∗)
and Lemma 2.1 we get immediately the statement of the proposition.

Remark 3.2. By the same arguments, the set of all functions k ∈ KC such that

|k(η)| ≤ const · 1
|η|
C |η|, η ∈ Γ0 \ {∅}

is a subset of D(L̂∗). Due to the elementary inequality αx < const · x−1 for
any α ∈ (0; 1), x > 0, it follows that the above introduced set contains KαC .
However, the set KαC will be more useful for our further calculations.

Proposition 3.3. Suppose that (3.5) is satisfied. Furthermore, we additionally
assume that

z < Ce−CCφ , if CCφ ≤ ln 2. (3.12)

Then there exists α0 = α0(z, φ, C) ∈ (0; 1) such that for any α ∈ (α0; 1) the set
KαC is the T̂ ∗(t)-invariant linear subspace of KC .
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Proof. Let us consider function f(x) := xe−x, x ≥ 0. It has the following prop-
erties: f is increasing on [0; 1] from 0 to e−1 and it is asymptotically decreasing
on [1; +∞) from e−1 to 0; f(x) < f(2x) for x ∈ (0, ln 2); x = ln 2 is the only
non-zero solution to f(x) = f(2x).

By assumption (3.5), it follows that zCφ ≤ min{CCφe−CCφ , 2CCφe−2CCφ}.
Therefore, if CCφe−CCφ 6= 2CCφe−2CCφ then (3.5) with necessity implies

zCφ < e−1. (3.13)

This inequality remains also true if CCφ = ln 2 because of (3.12). Under condi-
tion (3.13), the equation f(x) = zCφ has exactly two roots, say, 0 < x1 < 1 <
x2 < +∞. Then, (3.12) implies x1 < CCφ < 2CCφ ≤ x2.

If CCφ > 1 then we set α0 := max
{

1
2 ; 1

CCφ
; 1
C

}
< 1. This yields 2αCCφ > CCφ

and αCCφ > 1 > x1. If x1 < CCφ ≤ 1 then we set α0 := max
{

1
2 ; x1

CCφ
; 1
C

}
< 1

that gives 2αCCφ > CCφ and αCCφ > x1.
As a result,

x1 < αCCφ < CCφ < 2αCCφ < 2CCφ ≤ x2 (3.14)

and 1 < αC < C < 2αC < 2C. The last inequality shows that L2C ⊂ L2αC ⊂
LC ⊂ LαC . Moreover, by (3.14), we may prove that the operator (L̂,L2αC) is
closable in LαC and its closure is a generator of a contraction semigroup T̂α(t)
on LαC . The proof is identical to the one introduced in [5].

It is easily seen that T̂α(t)G = T̂ (t)G for any G ∈ LC . Indeed, from the
construction of the semigroup T̂ (t) (see [5]) and analogous construction for the
semigroup T̂α(t), it follows that there exists family of mappings P̂δ, δ > 0
independent of α and C, namely,(

P̂δG
)

(η) :=
∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)|ω|G (ξ ∪ ω) (3.15)

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y∈η\ξ

(
e−E

φ(y,ω) − 1
)
dλ (ω) , η ∈ Γ0.

such that P̂ [ tδ ]
δ for any t ≥ 0 strongly converges to T̂ (t) and T̂α(t) as δ → 0

in LC and LαC , correspondingly. Here and below [ · ] means the entire part of
a number. Then for any G ∈ LC ⊂ LαC we see that T̂ (t)G ∈ LC ⊂ LαC ,
T̂α(t)G ∈ LαC and

‖T̂ (t)G− T̂α(t)G‖αC ≤
∥∥∥T̂ (t)G− P̂ [ tδ ]

δ G
∥∥∥
αC

+
∥∥∥T̂α(t)G− P̂ [ tδ ]

δ G
∥∥∥
αC

≤
∥∥∥T̂ (t)G− P̂ [ tδ ]

δ G
∥∥∥
C

+
∥∥∥T̂α(t)G− P̂ [ tδ ]

δ G
∥∥∥
αC
→ 0,

as δ → 0. Therefore, T̂ (t)G = T̂α(t)G in LαC (recall that G ∈ LC) that yields
T̂ (t)G(η) = T̂α(t)G(η) for λ-a.a. η ∈ Γ0 and, hence, T̂ (t)G = T̂α(t)G in LC .
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Note that for any G ∈ LC ⊂ LαC and for any k ∈ KαC ⊂ KC we have
T̂α(t)G ∈ LαC and 〈〈

T̂α(t)G, k
〉〉

=
〈〈
G, T̂ ∗α(t)k

〉〉
,

where, by construction, T̂ ∗α(t)k ∈ KαC . But G ∈ LC , k ∈ KC implies〈〈
T̂α(t)G, k

〉〉
=
〈〈
T̂ (t)G, k

〉〉
=
〈〈
G, T̂ ∗(t)k

〉〉
.

Hence, T̂ ∗(t)k = T̂ ∗α(t)k ∈ KαC , k ∈ KαC that proves the statement.

We have thus proved the following result.

Theorem 3.4. Suppose that assumptions of Proposition 3.3 are satisfied. Then,
{T̂�(t), t ≥ 0} is a C0-semigroup on KαC . Hence, for every k0 ∈ KαC , the orbit
map

k : t 7→ kt := T̂�(t)k0

is the unique mild solution of the associated Cauchy problem in KαC :
∂

∂t
kt = L̂∗kt

kt
∣∣
t=0

= k0.
(3.16)

Remark 3.5. It is worth noting, that (3.5) implies that for any k0 ∈ D(L̂∗)
the Cauchy problem (3.16) in KC has a unique mild solution: kt = T̂ ∗(t)k0 =
T̂�(t)k0 ∈ D(L̂∗).

Remark 3.6. The Cauchy problem (3.16) is well-posed in K̊C = D(L̂∗), i.e., for
every k0 ∈ D(L̂�) there exists a unique solution kt ∈ K̊C of (3.16).

Let (3.5) and (3.12) be satisfied and let α0 be chosen as in the proof of
Proposition 3.3. Suppose that α ∈ (α0; 1). Then, Propositions 3.1 and 3.3
imply KαC ⊂ D(L̂∗) and the Banach subspace KαC is T̂ ∗(t)- and, hence, T̂�(t)-
invariant due to the continuity of these operators.

Let T̂�α(t) be the restriction of the strongly continuous semigroup T̂�(t) to
the closed linear subspace KαC . It is immediate (see, e.g., [3]) that T̂�α(t) is
a strongly continuous semigroups on KαC with the generator L̂�α which is the
restriction of the operator L̂�. Namely,

D(L̂�α) =
{
k ∈ KαC

∣∣∣ L̂∗k ∈ KαC}, (3.17)

and
L̂�αk = L̂�k = L̂∗k, k ∈ D(L̂�α) (3.18)

Since T̂ (t) is a contraction semigroup on LC , it follows that T̂ ′(t) is also a
contraction semigroup on (LC)′. Hence, T̂ ∗(t) is a contraction semigroup on
KC , due to the fact that the isomorphism (3.6) is isometrical. As a result, its
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restriction T̂�α(t) is a contraction semigroup on KαC . It is worth noting that
according to (3.17),

DαC :=
{
k ∈ KαC

∣∣∣ L̂∗k ∈ KαC}
is a core for L̂�α in KαC .

By (3.15), for any k ∈ KαC and G ∈ Bbs(Γ0) we have∫
Γ0

(P̂δG) (η) k (η) dλ (η)

=
∫

Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)|ω|G (ξ ∪ ω)
∏
y∈ξ

e−E
φ(y,ω)

×
∏
y∈η\ξ

(
e−E

φ(y,ω) − 1
)
dλ (ω) k (η) dλ (η)

=
∫

Γ0

∫
Γ0

(1− δ)|ξ|
∫

Γ0

(zδ)|ω|G (ξ ∪ ω)
∏
y∈ξ

e−E
φ(y,ω)

×
∏
y∈η

(
e−E

φ(y,ω) − 1
)
dλ (ω) k (η ∪ ξ) dλ (ξ) dλ (η)

=
∫

Γ0

∫
Γ0

∑
ω⊂ξ

(1− δ)|ξ\ω| (zδ)|ω|G (ξ)
∏
y∈ξ\ω

e−E
φ(y,ω)

×
∏
y∈η

(
e−E

φ(y,ω) − 1
)
k (η ∪ ξ \ ω) dλ (ξ) dλ (η) .

Therefore,

(P̂ ∗δ k) (η) =
∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|
∏

y∈η\ω

e−E
φ(y,ω) (3.19)

×
∫

Γ0

∏
y∈ξ

(
e−E

φ(y,ω) − 1
)
k (ξ ∪ η \ ω) dλ (ξ) .

Proposition 3.7. Suppose that (3.5) and (3.12) are fulfilled. Then, for any
k ∈ DαC and α ∈ (α0, 1), where α0 is chosen as in the proof of Proposition 3.3,

lim
δ→0

∥∥∥∥1
δ

(P̂ ∗δ − 11)k − L̂�αk
∥∥∥∥
KC

= 0. (3.20)

Proof. According to the definition (3.10) we set

(P̂ ∗,(0)
δ k) (η) = (1− δ)|η|k(η);

(P̂ ∗,(1)
δ k) (η) = zδ

∑
x∈η

(1− δ)|η|−1
eλ

(
e−φ(x−·), η \ x

)
×
∫

Γ0

eλ

(
e−φ(x−·) − 1, ξ

)
k (ξ ∪ η \ x) dλ (ξ) ;

10



and P̂
∗,(≥2)
δ = P̂ ∗δ − P̂

∗,(0)
δ − P̂ ∗,(1)

δ .
We will use the following elementary inequality, which is valid for all n ∈

N ∪ {0} and any δ ∈ (0; 1)

0 ≤ n− 1− (1− δ)n

δ
≤ δ n(n− 1)

2
.

As a result, for any k ∈ KαC and λ-a.a. η ∈ Γ0, η 6= ∅

C−|η|
∣∣∣∣1δ (P̂ ∗,(0)

δ,ε − 11)k(η) + |η|k(η)
∣∣∣∣

≤‖k‖KαCα|η|
∣∣∣∣|η| − 1− (1− δ)|η|

δ

∣∣∣∣ ≤ δ

2
‖k‖KαCα|η||η|(|η| − 1). (3.21)

We note that the function αxx(x − 1) is bounded for x ≥ 1, α ∈ (0; 1). Now,
for any k ∈ KαC and λ-a.a. η ∈ Γ0, η 6= ∅

C−|η|
∣∣∣∣1δ P̂ ∗,(1)

δ k(η)− z
∑
x∈η

∫
Γ0

eλ

(
e−φ(x−·), η \ x

)
× eλ

(
e−φ(x−·) − 1, ξ

)
k (ξ ∪ η \ x) dλ(ξ)

∣∣∣∣
≤‖k‖KαC

z

αC
α|η|

∑
x∈η

(
1− (1− δ)|η|−1) ∫

Γ0

eλ

(
αC
(
e−φ(x−·) − 1

)
, ξ
)
dλ (ξ)

≤‖k‖KαC
z

αC
α|η|

∑
x∈η

(
1− (1− δ)|η|−1) exp {αCCφ}

≤‖k‖KαC
z

αC
α|η|δ|η|(|η| − 1) exp {αCCφ}, (3.22)

which is small for small δ uniformly in |η|. Next, using inequality

1− e−E
φ(y,ω) = 1−

∏
x∈ω

e−φ(x−y) ≤
∑
x∈ω

(
1− e−φ(x−y)

)
,

we obtain

1
δ
C−|η|

∑
ω⊂η
|ω|≥2

(1− δ)|η\ω| (zδ)|ω| eλ
(
e−E

φ(·,ω), η \ ω
)

×
∫

Γ0

eλ

(∣∣∣e−Eφ(·,ω) − 1
∣∣∣, ξ) |k(ξ ∪ η \ ω)|dλ (ξ)

= ‖k‖KαCα|η|
1
δ

∑
ω⊂η
|ω|≥2

(1− δ)|η\ω|
(
zδ

αC
exp {αCCφ}

)|ω|
.
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Recall that α > α0, and consequently z exp{αCCφ} ≤ αC. Hence, the latter
expression can be estimated by

‖k‖KαCα|η|
1
δ

∑
ω⊂η
|ω|≥2

(1− δ)|η\ω| δ|ω|

= ‖k‖KαC δα|η|
|η|∑
k=2

|η|!
k! (|η| − k)!

(1− δ)|η|−k δk−2

= ‖k‖KαC δα|η|
|η|−2∑
k=0

|η|!
(k + 2)! (|η| − k − 2)!

(1− δ)|η|−k−2
δk

= ‖k‖KαC δα|η| |η| (|η| − 1)
|η|−2∑
k=0

(|η| − 2)!
(k + 2)! (|η| − k − 2)!

(1− δ)|η|−2−k
δk

≤‖k‖KαC δα|η| |η| (|η| − 1)
|η|−2∑
k=0

(|η| − 2)!
k! (|η| − k − 2)!

(1− δ)|η|−2−k
δk

= ‖k‖KαC δα|η| |η| (|η| − 1) . (3.23)

Combining inequalities (3.21)–(3.23) we obtain (3.20).

For the convenience of the reader we mention below the well-known approx-
imation result (cf., e.g., [4, Theorem 6.5]).

Lemma 3.8. Let L,Ln, n ∈ N be Banach spaces, and pn : L→ Ln be bounded
linear transformation, such that supn ‖pn‖ < ∞. For any n ∈ N, let Tn be
a linear contraction on Ln, let εn > 0 be such that limn→∞ εn = 0, and put
An = ε−1

n (Tn − 11). Let Tt be a strongly continuous contraction semigroup on L
with generator A and let D be a core for A. Then the following are equivalent:

1. For each f ∈ L, ||T [t/εn]
n pnf − pnTtf ||Ln → 0, n → ∞ for all t ≥ 0

uniformly on bounded intervals. Here and below [ · ] mean the entire part
of a real number.

2. For each f ∈ D, there exists fn ∈ Ln for each n ∈ N such that

||fn − pnf ||Ln → 0 and ||Anfn − pnAf ||Ln → 0, n→∞.

We are now in a position to claim the following result.

Theorem 3.9. Let α0 be chosen as in the proof of Proposition 3.3 and let
α ∈ (α0; 1), k ∈ KαC be arbitrary and fixed. Then

(P̂ ∗δ )[t/δ]k → T̂�α(t)k, δ → 0

in the space KαC with norm ‖·‖KC for all t ≥ 0 uniformly on bounded intervals.

Proof. The statement will be proved once we verify the conditions of Lemma
3.8. For this purpose we apply Proposition 3.7 in the case Ln = L = LαC ,
pn = 11, fn = f = k, εn = δ → 0, n ∈ N.

12



4 Positive definiteness

Definition 4.1. A measurable function k : Γ0 → R is called a positive defined
function (cf. [16, 17]) if for any G ∈ Lls

C such that KG ≥ 0 the following
inequality holds ∫

Γ0

G (η) k (η) dλ (η) ≥ 0.

In [16, 17], it was shown that if k is a positive defined function and

|k(η)| ≤ C |η|(|η|!)2, η ∈ Γ0,

then there exists a unique measure µ ∈ M1
fm(Γ) such that k = kµ, i.e., k is a

correlation functional of µ in the sense of (2.8). Our aim is to show that the
evolution k 7→ T̂�t k preserves the property of the positive definiteness.

Theorem 4.2. Let (3.5) hold and let k ∈ D(L̂∗) ⊂ KC be a positive defined
function. Then, kt := T̂�t k ∈ D(L̂∗) ⊂ KC will be a positive defined function
for any t ≥ 0.

Proof. Let C > 1 be arbitrary and fixed. For any G ∈ Lls
C we have∫

Γ0

G (η) kt (η) dλ (η) =
∫

Γ0

(T̂tG) (η) k (η) dλ (η) . (4.1)

According to [5, Proposition 3.10] and condition (3.5), we have

lim
n→0

∫
ΓΛn

∣∣∣T [nt]
n 11ΓΛn

G (η)− 11ΓΛn
(η)(T̂tG) (η)

∣∣∣C |η|dλ (η) = 0,

where
Tn = P̂Λn

1
n

, for n ≥ 2

and Λn ↗ Rd. By the dominated convergence theorem,∫
Γ0

(T̂tG) (η) k (η) dλ (η) = lim
n→∞

∫
Γ0

11ΓΛn
(η) (T̂tG) (η) k (η) dλ (η)

= lim
n→∞

∫
ΓΛn

(T̂tG) (η) k (η) dλ (η) .

Next,∣∣∣∣∣
∫

ΓΛn

(T̂tG) (η) k (η) dλ (η)−
∫

ΓΛn

T [nt]
n 11ΓΛn

G (η) k (η) dλ (η)

∣∣∣∣∣
≤
∫

ΓΛn

∣∣∣T [nt]
n 11ΓΛn

G (η)− 11ΓΛn
(η)(T̂tG) (η)

∣∣∣ k (η) dλ (η)

≤‖k‖KC
∫

ΓΛn

∣∣∣T [nt]
n 11ΓΛn

G (η)− 11ΓΛn
(η)(T̂tG) (η)

∣∣∣C |η|dλ (η)→ 0, n→∞.
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Therefore,∫
Γ0

(T̂tG) (η) k (η) dλ (η) = lim
n→∞

∫
ΓΛn

T [nt]
n 11ΓΛn

G (η) k (η) dλ (η) . (4.2)

Our next goal is to show that for any G ∈ Lls
C the inequality KG ≥ 0 implies∫

Γ0

G (η) kt (η) dλ (η) ≥ 0.

By (4.1) and (4.2), it is enough to show that for any m ∈ N and for any G ∈ Lls
C

such that KG ≥ 0 the following inequality holds∫
Γ0

11ΓΛn
Tmn 11ΓΛn

G (η) k (η) dλ (η) ≥ 0, m ∈ N0. (4.3)

The inequality (4.3) is fulfilled if only

K11ΓΛn
Tmn Gn ≥ 0, (4.4)

where Gn := 11ΓΛn
G. We note that(

K11ΓΛn
Tmn Gn

)
(γ) =

∑
ηbγ

11ΓΛn
(η) (Tmn Gn) (η) (4.5)

=
∑
η⊂γΛn

(Tmn Gn) (η) = (KTmn Gn) (γΛn)

for any m ∈ N0. In particular,

(KGn) (γ) =
(
K11ΓΛn

G
)

(γ) = (KG) (γΛn) ≥ 0. (4.6)

Let us now consider any G̃ ∈ Lls
C (G̃ is not necessary equal to 0 outside of

ΓΛn) and suppose that
(
KG̃

)
(γ) ≥ 0 for any γ ∈ ΓΛn . Then(

KTnG̃
)

(γΛn) =
(
KP̂Λn

1
n

G̃
)

(γΛn) =
(
PΛn

1
n

KG̃
)

(γΛn) (4.7)

=
(

ΞΛn
1
n

(γΛn)
)−1 ∑

η⊂γΛn

(
1
n

)|η|(
1− 1

n

)|γ\η|

×
∫

ΓΛn

(
z

n

)|ω|∏
y∈ω

e−E
φ(y,γ)

(
KG̃

)(
(γΛn \ η) ∪ ω

)
dλ (ω) ≥ 0.

From (4.6) and (4.7), it follows that KTnGn ≥ 0 for G̃ = Gn ∈ Lls
C . Substituting

G̃ = TnGn ∈ Lls
C into (4.7) we get KT 2

nGn ≥ 0. By induction we have

(KTmn Gn) (γΛn) ≥ 0, m ∈ N0.

Thus, by (4.4) and (4.5), we get (4.3). This finishes the proof.

14



5 Ergodicity

Let k ∈ KαC be such that k(∅) = 0. Then, by (3.19), (P̂ ∗δ k) (∅) = 0. The class
of all such functions we denote by K0

α.

Proposition 5.1. Assume that there exists ν ∈ (0; 1) such that

z ≤ min
{
νCe−CCφ ; 2Ce−2CCφ

}
. (5.1)

Let, additionally, α ∈ (α0; 1), where α0 is chosen as in the proof of Proposi-
tion 3.3. Then, for any δ ∈ (0; 1) the following estimate holds∥∥∥P̂ ∗δ �K0

α

∥∥∥ ≤ 1− (1− ν)δ. (5.2)

Proof. It is easily seen that for any k ∈ K0
α the following inequality holds

|k (η)| ≤ 1|η|>0 ‖k‖KC C
|η|, λ−a.a. η ∈ Γ0.

Thus, using (3.19), we have

C−|η|
∣∣∣(P̂ ∗δ k) (η)

∣∣∣
≤C−|η|

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|
∫

Γ0

∏
y∈ξ

(
1− e−E

φ(y,ω)
)
|k (ξ ∪ η \ ω)| dλ (ξ)

≤‖k‖KC
∑
ω⊂η

(1− δ)|η\ω|
(
zδ

C

)|ω| ∫
Γ0

∏
y∈ξ

(
1− e−E

φ(y,ω)
)
C |ξ|11|ξ|+|η\ω|>0dλ (ξ)

= ‖k‖KC
∑
ω(η

(1− δ)|η\ω|
(
zδ

C

)|ω| ∫
Γ0

∏
y∈ξ

(
1− e−E

φ(y,ω)
)
C |ξ|dλ (ξ)

+ ‖k‖KC

(
zδ

C

)|η| ∫
Γ0

∏
y∈ξ

(
1− e−E

φ(y,ω)
)
C |ξ|11|ξ|>0dλ (ξ)

= ‖k‖KC
∑
ω(η

(1− δ)|η\ω|
(
zδ

C

)|ω| ∫
Γ0

∏
y∈ξ

(
1− e−E

φ(y,ω)
)
C |ξ|dλ (ξ)

+ ‖k‖KC

(
zδ

C

)|η| ∫
Γ0

∏
y∈ξ

(
1− e−E

φ(y,ω)
)
C |ξ|dλ (ξ)− ‖k‖KC

(
zδ

C

)|η|

= ‖k‖KC
∑
ω⊂η

(1− δ)|η\ω|
(
zδ

C

)|ω| ∫
Γ0

∏
y∈ξ

(
1− e−E

φ(y,ω)
)
C |ξ|dλ (ξ)

− ‖k‖KC

(
zδ

C

)|η|
= ‖k‖KC

∑
ω⊂η

(1− δ)|η\ω|
(
zδ

C

)|ω|
exp

{
C

∫
Rd

(
1− e−E

φ(y,ω)
)
dy

}
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− ‖k‖KC

(
zδ

C

)|η|
≤‖k‖KC

∑
ω⊂η

(1− δ)|η\ω|
(
zδ

C

)|ω|
exp {CCβ |ω|} − ‖k‖KC

(
zδ

C

)|η|

≤‖k‖KC
∑
ω⊂η

(1− δ)|η\ω| (νδ)|ω| − ‖k‖KC

(
zδ

C

)|η|

= ‖k‖KC

(
(1− (1− ν) δ)|η| −

(
zδ

C

)|η|)

= ‖k‖KC

(
1− (1− ν) δ − zδ

C

) |η|−1∑
j=0

(1− (1− ν) δ)|η|−1−|j|
(
zδ

C

)j

≤‖k‖KC

(
1− (1− ν) δ − zδ

C

) |η|−1∑
j=0

(
zδ

C

)j

= ‖k‖KC

(
1− (1− ν) δ − zδ

C

)
1−

(
zδ
C

)|η|
1− zδ

C

≤‖k‖KC

(
1− (1− ν) δ − zδ

C

)
1

1− zδ
C

= ‖k‖KC

(
1− (1− ν) δ

1− zδ
C

)
≤ ‖k‖KC

(
1− (1− ν) δ

)
,

where we have used the trivial bound

z < νC < C.

This completes the proof.

Remark 5.2. Condition (5.1) is equivalent to (3.5) and (3.12).
Suppose that (cf. (3.13))

zCφ < (2e)−1. (5.3)

Then (see, e.g., [6]) there exists a Gibbs measure µ on
(
Γ,B(Γ)

)
corresponding to

the potential φ ≥ 0 and the activity parameter z. We denote the corresponding
correlation function by kµ. The measure µ is reversible (symmetrizing) for the
operator defined by (3.3) (see, e.g., [6], [13]). Hence, for any F ∈ KBbs(Γ0)∫

Γ

LF (γ)dµ(γ) = 0. (5.4)

Theorem 5.3. Let (5.3) and (5.1) hold and let α ∈ (α0; 1), where α0 is chosen
as in the proof of Proposition 3.3. Let k0 ∈ KαC and kt = T̂�α(t)k0. Then, for
any t ≥ 0

‖kt − kµ‖KC ≤ e−(1−ν)t‖k0 − kµ‖KC . (5.5)
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Proof. First, note that for any α ∈ (α0; 1) the inequality (3.14) implies z ≤
αC exp{−αCCφ}. Hence, kµ(η) ≤ (αC)|η|, η ∈ Γ0. Thus, kµ ∈ KαC ⊂ KαC ∩
D(L̂∗). By (5.4), for any G ∈ Bbs(Γ0) we have 〈〈L̂G, kµ〉〉 = 0. It means
that L̂∗kµ = 0. Therefore, L̂�αkµ = 0. As a result, T̂�α(t)kµ = kµ. Let
r0 = k0 − kµ ∈ KαC . Then r0 ∈ K0

a and

‖kt − kµ‖KC =
∥∥T̂�α(t)r0

∥∥
KC

≤
∥∥∥(P̂ ∗δ )[ tδ ]r0

∥∥∥
KC

+
∥∥∥T̂�α(t)r0 −

(
P̂ ∗δ
)[ tδ ]r0

∥∥∥
KC

≤
∥∥∥P̂ ∗δ �K0

α

∥∥∥[ tδ ] · ‖r0‖KC +
∥∥∥T̂�α(t)r0 −

(
P̂ ∗δ
)[ tδ ]r0

∥∥∥
KC

≤
(
1− (1− ν)δ

) t
δ−1‖r0‖KC +

∥∥∥T̂�α(t)r0 −
(
P̂ ∗δ
)[ tδ ]r0

∥∥∥
KC
,

since 0 < 1 − (1 − ν)δ < 1 and t
δ <

[
t
δ

]
+ 1. Taking the limit as δ ↓ 0 in the

right hand side of this inequality we obtain (5.5).
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