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Abstract The aim of this paper is to analyze different regulation mechanisms
in spatial continuous stochastic development models. We describe the density
behavior for models with global mortality and local establishment rates. We
prove that the local self-regulation via a competition mechanism (density de-
pendent mortality) may suppress a unbounded growth of the averaged density
if the competition kernel is superstable.
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1 Introduction

We will discuss some classes on interacting particle systems (IPS) located in
the Euclidean space Rd. The phase space of such system is the configuration
space Γ = Γ (Rd) on Rd. By definition, each configuration γ ∈ Γ is a lo-
cally finite subset γ ⊂ Rd. So, due to the standard terminology, we will deal
with continuous systems. Random evolutions of IPS are given by Markov pro-
cesses on Γ . Between all such processes, one may distinguish a subclass of
so-called spatial birth-and-death Markov processes. In these processes points
of a randomly evolving configuration appear and disappear due to a Markov
rule (see (4) below). Particular types of spatial birth-and-death processes are
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motivated by several applications. For example, Glauber type dynamics for
classical continuous gases belongs to this class [1], [11]. Another very essential
source of such processes is given by individual based models in spatial ecol-
ogy or agent based models in socio-economic systems, see, e.g., [3] and the
references therein. In any case, a concrete form of birth and death rates in
the stochastic dynamics should reflect a microscopic structure of the system
under consideration.

To describe the problem we are going to analyze, let us start with the
simplest case of a pure birth stochastic Markov process. In this process, new
points appear in the configuration independently of existing points and loca-
tions of these new points are uniformly distributed in the space. A possible
interpretation of such random evolution is related to an independent creation
of identical economic units in the space without any influence of their spatial
locations. We will call this process the free stochastic development model. An-
other motivation to study such stochastic evolutions comes from applications
of the free development dynamics to generalized mutation-selection models in
mathematical genetics. In these models a configuration describes locations of
mutations inside of a genom and new mutations spontaneously appear and
are equally distributed in the genom, see [?], [13], [7]. Obviously, this process
is monotonically growing and it is easy to show that the density of particles
in such a system will linearly grows in time. We would like to answer the
following question: How may global regulations and local interactions change
the asymptotic behavior of the system? More precisely, we will consider three
particular cases of stochastic development models including:

(i) A global regulation via a mortality rate that prescribes to particles
(economic units) random life times (exponentially i.i.d. with a parameter m >
0). This case corresponds to the well-known Surgailis independent birth-and-
death Markov processes on Γ , see, e.g., [20], [21], [12]. In the framework of
mathematical physics, it is just Glauber dynamics for classical free gas.

(ii) An establishment effect. In this case, the distribution of the position of
a new particle depends on the local structure of the configuration. Newborn
units will appear with small intensity in densely occupied regions. We will see
that the establishment itself is not enough to prevent the growth of the density
in the system. In fact, the establishment effects slower (logarithmic) growth
contrary to the linear growth in the free model.

(iii) A self-regulation via competition. The competition is reflected in a
density dependent mortality. The latter means that the mortality rate for
each unit depends on the local structure of the configuration around this unit.
The mortality rate enters into the model as a relative energy of a particle in-
side the configuration corresponding to a competition potential. The described
competition mechanism provides only a local regulation of dense regions inside
a configuration. Nevertheless, Theorem 1 shows a global bound for the aver-
aged density of the stochastic development process. Note that for the proof
of this result we use an assumption of positive definiteness (and, as a conse-
quence, superstability) of the competition potential in the form stated in [17].
Therefore, the main result concerning the competition case may be read as fol-
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lows: a properly organized competition in the stochastic development systems
produces a self-regulation for the density of units.

Let us stress an essential point concerning the main aim of this paper.
At present, we have quite restrictive conditions for the existence of general
spatial birth-and-death processes, see e.g. [5]. In many applications we need
a weaker information. Namely, we are interesting in the existence of Markov
functions corresponding to given birth and death rates and a certain class of
initial distributions on Γ . These Markov functions and their one-dimensional
distributions are enough to describe the time evolution of initial states of
systems and to analyze asymptotic properties of stochastic dynamics (invariant
states, ergodicity etc.). In the case of infinite particle systems, the concept of
Markov functions is strictly weaker than that of Markov processes, and for
particular models considered below there exist constructive methods which
solve the existence problem, see [3], [5], [10] and [9]. But the main aim of our
analysis is to obtain an a priori information about the time-space behavior of
such important characteristics of these processes as correlations functions of
their one-dimensional distributions which are probability measures on Γ . In
particular, we are interested in the behavior of the particle density in course
of the stochastic evolution. A constructive possibility to obtain some a priori
bounds on characteristics of Markov dynamics may be also realized in other
interesting IPS. As an example, we can mention the Dieckmann–Law model
in spatial ecology where the existence problem remains open but conditions
for explosion and non-explosion are stated in terms of the parameters of the
model in [2]. Moreover, analogously to the well-known situation in the PDE
theory, a priori bounds may play a crucial role in the study of the existence
problem.

2 General facts and notations

Let B(Rd) be the family of all Borel sets in Rd and Bb(Rd) denotes the system
of all bounded sets from B(Rd).

We denote Γ (n) the space of all n-point subsets (configurations) from Rd,
n ∈ N0 := N∪ {0}. As a set Γ (n) is equivalent to the symmetrization of (Rd)n
without diagonals, Γ (0) := {∅}. Then one can introduce the corresponding
topology and Borel σ-algebra. Also one can define a measure m(n) as an image
of the product of Lebesgue measures dm(x) = dx on

(
Rd,B(Rd)

)
.

The space of finite configurations Γ0 :=
⊔
n∈N0

Γ (n) is equipped with the
topology which has structure of disjoint union. Therefore, one can define the
corresponding Borel σ-algebra B(Γ0). For Λ ∈ Bb(Rd) space ΓΛ is defined in
the same way with replacing Rd onto Λ. The Lebesgue—Poisson measure λ
on Γ0 is defined as λ :=

∑∞
n=0

1
n!m

(n). We preserve the same notation for the
restriction of λ onto ΓΛ.

The configuration space

Γ :=
{
γ ⊂ Rd

∣∣ |γΛ| <∞, for all Λ ∈ Bb(Rd)
}
, (1)
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is equipped with the vague topology. Here γΛ := γ∩Λ and |·|means cardinality
of a finite set. Γ is a Polish space (see, e.g., [8]) and the corresponding Borel
σ-algebra B(Γ ) appears the smallest σ-algebra for which all mappings Γ 3
γ → |γΛ| ∈ N0 are measurable.

LetBbs(Γ0) be the set of bounded measurable functions on Γ0 with bounded
support, i.e. G �Γ0\B= 0 for some bounded B ∈ B(Γ0). The latter means that
there exists Λ ∈ Bb(Rd) and N ∈ N such that B ⊂

⊔N
n=0 Γ

(n)
Λ .

On Γ we consider the set of cylinder functions FL0(Γ ) as the set of all
measurable functions F for which there exists Λ = ΛF ∈ Bb(Rd) such that
F (γ) = F �ΓΛ (γΛ). We define the following mapping between functions on
Γ0, e.g. Bbs(Γ0), and functions on Γ , e.g. FL0(Γ ):

KG(γ) :=
∑
ηbγ

G(η), γ ∈ Γ, (2)

see e.g. [6,15,16]. The summation in the latter expression is taken over all finite
subconfigurations of γ, which is denoted by the symbol η b γ. The mapping
K is linear, positivity preserving, and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (3)

Let M1
fm(Γ ) be the set of all probability measures µ on

(
Γ,B(Γ )

)
which

have finite local moments of all orders, i.e.
∫
Γ
|γΛ|nµ(dγ) < +∞ for all Λ ∈

Bb(Rd) and n ∈ N0. A measure ρ on
(
Γ0,B(Γ0)

)
is called locally finite iff

ρ(B) < ∞ for all bounded sets B from B(Γ0). The set of such measures is
denoted by Mlf(Γ0).

One can define a transform K∗ :M1
fm(Γ )→Mlf(Γ0), which is dual to the

K-transform, i.e., for every µ ∈M1
fm(Γ ), G ∈ Bbs(Γ0) we have∫

Γ

KG(γ)µ(dγ) =
∫
Γ0

G(η) (K∗µ)(dη).

The measure ρµ := K∗µ is called the correlation measure of µ. By [6], for
µ ∈M1

fm(Γ ) and G ∈ L1(Γ0, ρµ) the series (2) is µ-a.s. absolutely convergent.
We define correlation functional kµ : Γ0 → (0; +∞) corresponding to

the measure µ as the density (provided it exists): kµ(η) := dρµ
dλ (η), η ∈ Γ0.

The correlation functional kµ may be considered as the system of correlation
functions k(n)

µ corresponding to the restrictions kµ �Γ (n) . These symmetric
functions are well known in statistical physics, see e.g. [18], [19]. In appli-
cations a specially important role play correlation functions of the first and
second orders: k(1)(x) and k(2)(x, y). These functions describe, respectively,
the density of particles and pair correlations.

A measure µ ∈ M1
fm(Γ ) is called translation invariant if it is invariant

with respect to shifts of configurations Γ 3 γ 7→ {x + a |x ∈ γ} ∈ Γ for any
a ∈ Rd. The first-order correlation function of such measure doesn’t depend on
the space coordinate: k(1)

µ (x) ≡ k(1)
µ ; and the second-order correlation function

depends on difference of coordinates: k(2)
µ (x, y) = k

(2)
µ (x− y).
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3 Stochastic development models

Spatial birth-and-death processes describe dynamics of configurations in Rd
when particles disappear (die) from configurations and, on the other hand,
some new particles appear (born) somewhere in the space. The generator of
spatial birth-and-death dynamics is heuristically given on measurable func-
tions F : Γ → R by

(LF )(γ) =
∑
x∈γ

d(x, γ \ x)
[
F (γ \ x)− F (γ)

]
+
∫

Rd
b(x, γ)

[
F (γ ∪ x)− F (γ)

]
dx, (4)

where d, b : Rd × Γ → [0, ∞] are measurable rates of death and birth respec-
tively. Of course, these rates should be finite for a.a. γ ∈ Γ with respect to a
proper measure. Suppose that, additionally, b(·, γ) ∈ L1

loc(Rd) for a.a. γ ∈ Γ .
Then this operator is well-defined at least on FL0(Γ ). Indeed, for F ∈ FL0(Γ )

F (γ \ x)− F (γ) = F (γ ∪ x)− F (γ) = 0, x ∈ Λc := Rd \ Λ

(where Λ, depending on F , is from definition of FL0(Γ )), and the both terms
of (4) are finite.

Note that if L is a generator of such process (even if we know that this
process exists) then for the study of properties of the corresponding stochastic
dynamics we need some information about the semigroup associated with L.
This semigroup determines a solution to the Kolmogorov equation which has
the following form:

dFt
dt

= LFt, Ft
∣∣
t=0

= F0. (5)

In various applications the evolution of the corresponding correlation functions
(or measures) helps already to understand the behavior of the process. The
evolution of the correlation functions of the process is related to the evolution
of states of the system. The latter evolution is given as a solution to the dual
Kolmogorov equation:

dµt
dt

= L∗µt, µt
∣∣
t=0

= µ0, (6)

where L∗ is the adjoint operator to L onM1
fm(Γ ), provided, of course, that it

exists.
Using explicit form of L̂ := K−1LK we derive the evolution equation for

quasi-observables (functions on Γ0) corresponding to the Kolmogorov equation
(5). It has the following form

dGt
dt

= L̂Gt, Gt
∣∣
t=0

= G0. (7)
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Then in the way analogous to those in which the equation (6) was determined
for (5), we get an evolution equation for the correlation functions correspond-
ing to the equation (7):

dkt
dt

= L̂∗kt, kt
∣∣
t=0

= k0. (8)

The generator L̂∗ here is the dual to L̂ w.r.t. the duality given by the following
expression:

〈〈G, k〉〉 =
∫
Γ0

G · k dλ. (9)

Free development model A simplest model in considered framework is a model
of free development when particles are born independently without any influ-
ence of existing ones. An interpretation is that a ”decision” about appearing
of a new element is produced outside of the system and it is not motivated by
the situation inside of the system. Moreover, in this simplest model particles
(units) will not die.

The formal pre-generator of the Markov dynamics that describes such
model is the following:

(LσF ) (γ) = σ

∫
Rd

[F (γ ∪ x)− F (γ)] dx,

where σ > 0 is the intensity rate of new units creation.
The corresponding Markov process exists due to, e.g., [5]. Using results

from [4], we obtain

(
L̂σG

)
(η) = σ

∫
Rd
G (η ∪ x) dx. (10)(

L̂∗σk
)

(η) = σ
∑
x∈η

k (η \ x) . (11)

Immediately from (11) and (8) we conclude that the density of the free
development model has the form

k
(1)
t (x) = k

(1)
0 (x) + σt.

Therefore, the density has linear growth in time. To prevent this growth we
need to modify the generator introducing some regulation mechanisms in the
model.
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Development model with global regulation Below we consider a model with a
global regulation reflected in the death rate by an assumption about a finite life
time for units. More precisely, we assume that each point of the configuration
has exponentially distributed (with some positive parameter m) random life
time and these random times are independent. Hence, a death appears as a
random event equally distributed for all units independently of their space
locations.

A pre-generator describing such process has the following form:

(Lσ,mF ) (γ) = m
∑
x∈γ

[
F (γ \ x)− F (γ)

]
+ σ

∫
Rd

[F (γ ∪ x)− F (γ)] dx.

Note that the expression for Lσ,m coincides with the one for the generator of
so-called Surgailis process (see [20], [21], [12]). Again, using results from [4],
we obtain (

L̂σ,mG
)

(η) = −m|η|G(η) + σ

∫
Rd
G (η ∪ x) dx, (12)(

L̂∗σ,mk
)

(η) = −m|η|k(η) + σ
∑
x∈η

k (η \ x) . (13)

The considered stochastic dynamics has a unique invariant measure which
is the Poisson measure on Γ with constant intensity σ

m .
Using (13) one can obtain a precise expression for the density of the process:

k
(1)
t (y) = e−tmk

(1)
0 (y) +

σ

m

(
1− e−tm

)
.

Therefore, for an initial state with bounded density any positive global regu-
lation rate m gives time-space bounded density which converges uniformly in
space to the limiting Poisson density.

Establishment effects in the development model As we pointed out before,
in the free development model an appearing of a new unit and its location
are independent of the presented configuration of the system. A reasonable
generalization of this model is such that the newborn unit prefers to choose
a location with smaller density of already existing units. The latter may be
considered as higher probability to survive in less occupied regions. The cor-
responding term which decreases the birth rate of the generator in densely
populated areas is called the establishment term. We consider the special case
when this rate has exponential form, but our considerations may be extended
to more general establishment rates.

Let 0 ≤ φ ∈ L1
(
Rd
)
, φ(−x) = φ(x), x ∈ Rd, and

(LφF ) (γ) =
∫

Rd
exp
{
−
∑
y∈γ

φ(x− y)
}

[F (γ ∪ x)− F (γ)] dx.
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We suppose that there exist the dynamics of measures µt and let kt will be
corresponding correlation functions. Actually, the existence of a Markov pro-
cess for considered case may be obtained from [5]. Using for any ϕ ∈ C0(Rd)
the equality

∂

∂t

∫
Rd
k

(1)
t (x)ϕ(x) dx =

∂

∂t

∫
Γ

〈ϕ, γ〉 dµt(γ) =
∫
Γ

Lφ 〈ϕ, γ〉 dµt(γ)

we obtain, by Jensen’s inequality,

∂

∂t
k

(1)
t (x) =

∫
Γ

exp
{
−
∑
y∈γ

φ(x− y)
}
dµt (γ)

≥ exp

(
−
∫
Γ

∑
y∈γ

φ(x− y)dµt (γ)

)
= exp

(
−
∫

Rd
φ (x− y) k(1)

t (y) dy
)
.

In the translation invariant case we obtain

d

dt
k

(1)
t ≥ exp

(
−〈φ〉 k(1)

t

)
,

where 〈φ〉 =
∫

Rd φ(x) dx. Hence, if gt is a positive solution of the equation

d

dt
gt = e−〈φ〉gt ,

then k
(1)
0 ≥ g0 implies k(1)

t ≥ gt. One has

gt =
1
〈φ〉

ln (〈φ〉 t+ C) , C > 1;

g0 =
1
〈φ〉

lnC.

Putting for any k(1)
0 the initial value g0 := k

(1)
0 we obtain that

k
(1)
t ≥ 1

〈φ〉
ln
(
〈φ〉 t+ exp

{
k

(1)
0 〈φ〉

})
. (14)

Therefore, the establishment term cannot prevent unboundedness of den-
sity. We may expect only essentially slower growth due to the establishment
effect.

Remark 1 Of course, if we consider two regulation mechanisms, namely, the
global regulation and the establishment together, then the first-order correla-
tion function will be also bounded. Moreover, in this case the operator

(LGF ) (γ) = m
∑
x∈γ

[
F (γ \ x)− F (γ)

]
+ σ

∫
Rd

[F (γ ∪ x)− F (γ)] exp
{
−
∑
y∈γ

φ(x− y)
}
dx
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is the generator of so-called Glauber dynamics for a classical gas model (see,
e.g., [11], [10]). If φ has some additional properties such that there exists Gibbs
measure with this potential, then such measure will be invariant (and even
symmetrizing one) for the generator LG. On the other hand, known properties
of the corresponding Markov dynamics imply that corresponding correlation
functions satisfied so-called generalized Ruelle bounds (see [10] for details).

4 Stochastic development models with competitions

In the previous section we considered, in particular, global (outward) regula-
tion in the model. As wee see, such regulation may prevent unbounded (linear)
growth (in time) of the density of our system. In this section we consider the
case of a local regulation which appear due to the competition between ele-
ments (units) of the system. A pre-generator which describes such model has
the following form:

(La,σF ) (γ) =
∑
x∈γ

( ∑
y∈γ\x

a (x− y)
)

[F (γ \ x)− F (γ)]

+ σ

∫
Rd

[F (γ ∪ x)− F (γ)] dx.

Here 0 ≤ a ∈ L1(Rd) is an even function such that

〈a〉 :=
∫

Rd
a (x) dx > 0.

The question about existence of a process with the generator La,σ we will
not discuss in this paper. We just assume that there exist the dynamics of
measures µt and let kt will be the corresponding correlation functional.

Using results from [4] we obtain that(
L̂a,σG

)
(η) = −2Ea (η)G (η)−

∑
x∈η

( ∑
y∈η\x

a (x− y)
)
G (η \ x)

+ σ

∫
Rd
G (η ∪ x) dx

and (
L̂∗a,σk

)
(η) = −2Ea (η) k (η)−

∫
Rd

∑
y∈η

a (x− y) k (η ∪ x) dx (15)

+ σ
∑
x∈γ

k (η \ x) ,

where we used the following notations for the energy functional corresponding
to the pair potential a(·):

Ea(η) =
∑
{x,y}⊂η

a(x− y), η ∈ Γ0.
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It is easy to see that the Cauchy problems (7) and (8) for quasi-observables
and correlation functions respectively have a form of hierarchical chains and,
therefore, can not be solved explicitly. The latter is a common problem in
the study of stochastic dynamics of IPS. In several particular models such as
Glauber type dynamics in continuum [9], [10] or some spatial ecological models
[3] this difficulty may be overcame via a proper perturbation theory techniques.
As a result, in the mentioned works we have existence results for corresponding
evolutional equations together with certain a-priori bound for the solutions.
Note that the perturbation techniques needs, in any case, a presence in the
system a small parameter. In the considered model such parameter is clearly
absent. Nevertheless, one can try to find estimate for the correlation functions.
Actually, in the presented below approach we will use the explicit form of the
Markov generator to obtain an a-priori bound on the density of the system.

We will say that a sequence {Λk, k ∈ N} of open bounded subsets of Rd
is of F-type if

⋃
k∈N Λk = Rd, Λk ⊂ Λk+1, k ∈ N and there exists F > 0 such

that for any h ∈ (0; 1) and for any k ∈ N

s(Λk, h) :=
|Λk(h) \ Λk|
|Λk|

≤ F,

where

Λk(h) :=
{
x : inf

y∈Λk
|x− y| < h

}
.

Here and below |Λ| means Lebesgue measure of Λ ∈ Bb(Rd).
A simple example of F-type sequence is the sequence of balls Λk = B(0, k)

with center at origin and radius k ∈ N. Indeed, for any h < 1

s (Λk, h) =
|Λk(h) \ Λk|
|Λk|

− 1 =
(k + h)d

kd
− 1 =

(
1 +

h

k

)d
− 1 < 2d − 1.

For any Λ ∈ Bb(Rd) we will call the average density of the our system the
following object

ρΛt :=
1
|Λ|

∫
Λ

k
(1)
t (x)dx,

where k(1)
t is the first-order correlation functions (density) at moment t ≥ 0.

Lemma 1 Suppose that the function a is continuous and positive definite and
the sequence {Λk, k ∈ N} is F-type. Then there exists c > 0 such that for any
open Λ ∈ {Λk, k ∈ N}

2Ea(η) ≥ c |η|
2

|Λ|
, η ∈ ΓΛ.

Proof In [17], it was shown that for any continuous positive definite function
a the energy Ea is superstable, namely, for any open Λ ⊂ Rd and for any
η := {xi}ni=1 ⊂ Λ the following inequality holds

2Ea (η) ≥ n2

|Λ|
[〈a〉 − δ (h)]2

[〈a〉+ δ (h) + s (Λ, h) 〈a〉]
,
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where
δ (h) = 2

∫
|x|>h

a (x) dx ≥ 0.

Therefore, for any Λ ∈ {Λk, k ∈ N}

2Ea (η) ≥ n2

|Λ|
[〈a〉 − δ (h)]2[

δ (h) + (F + 1) 〈a〉
] =:

n2

|Λ|
c.

Let h ∈ (0; 1) be such that

〈a〉 − δ (h) =
∫
|x|≤h

a (x) dx−
∫
|x|>h

a (x) dx 6= 0

(we may always choose such h since the first integral is an increasing function
of h and the second one is a decreasing function). Stress that c > 0 and doesn’t
depend on Λ.

Theorem 1 Suppose that the function a is continuous and positive definite
and the sequence {Λk, k ∈ N} is F-type; let c be as in Lemma 1. Suppose also

that there exists D >

√
σ

c
such that ρΛk0 ≤ D, k ∈ N. Then for any t > 0,

k ∈ N
ρΛkt ≤ D.

Proof Note that for F (γ) = 〈ϕ, γ〉, γ ∈ Γ , ϕ ∈ C0(Rd) we have

(La,σF ) (γ) = −
∑
x∈γ

 ∑
y∈γ\x

a (x− y)

ϕ (x) + σ

∫
Rd
ϕ (x) dx.

Let ϕ (x) = 11Λ (x), Λ ∈ {Λk, k ∈ N}. Then F (γ) = |γΛ| and

(La,σF ) (γ) = −
∑
x∈γ

 ∑
y∈γ\x

a (x− y)

 11Λ (x) + σ |Λ|

= −
∑
x∈γΛ

 ∑
y∈γ\x

a (x− y)

+ σ |Λ|

≤ −
∑
x∈γΛ

 ∑
y∈γΛ\x

a (x− y)

+ σ |Λ|

= −2Ea (γΛ) + σ |Λ| ≤ − c

|Λ|
|γΛ|2 + σ |Λ| .

Let us set

nΛt :=
∫
Γ

|γΛ| dµt(γ) =
∫
Γ

〈11Λ, γ〉 dµt(γ)

=
∫

Rd
11Λ(x)k(1)

t (x)dx =
∫
Λ

k
(1)
t (x)dx = |Λ|ρΛt .
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Then using Holder inequality

d

dt
nΛt =

∫
Γ

La,σ |γΛ| dµt (γ) ≤
∫
Γ

(
σ |Λ| − c

|Λ|
|γΛ|2

)
dµt (γ)

= σ |Λ| − c

|Λ|

∫
Γ

|γΛ|2 dµt (γ) ≤ σ |Λ| − c

|Λ|

(∫
Γ

|γΛ| dµt (γ)
)2

= σ |Λ| − c

|Λ|
(
nΛt
)2
.

As a result,
d

dt
ρΛt ≤ σ − c

(
ρΛt
)2
.

Therefore, if we consider the positive solutions of the Cauchy problem
d

dt
g (t) = σ − cg2 (t)

g (0) = g0

(16)

with proper g0 > 0 and if ρΛ0 ≤ g0 then ρΛt ≤ g (t), t > 0. Solving (16) we
obtain

ln
|
√
cg (t) +

√
σ|

|
√
cg (t)−

√
σ|
− ln C̃ = 2

√
cσt, C̃ > 0;

g (t) =
Ce2

√
cσt
√
σ +
√
σ

Ce2
√
cσt
√
c−
√
c

=
√
σ

c

(
1 +

2
Ce2

√
cσt − 1

)
, C ∈ R.

Then

g (0) =
√
σ

c

(
1 +

2
C − 1

)
, C ∈ R.

Let g0 = D ≥ ρΛ0 . Then since D >

√
σ

c
we have

C =
2

D

√
c

σ
− 1

+ 1 > 1

and
Ce2

√
cσt − 1 ≥ C − 1 > 0.

As a result,

ρΛt ≤ g(t) ≤
√
σ

c

(
1 +

2
C − 1

)
= D

for any t > 0 and for any Λ ∈ {Λk, k ∈ N}. The statement is proved.

Corollary 1 Under conditions of Theorem 1 in the translation invariant case
we have that k(1)

0 ≤ D implies k(1)
t ≤ D.
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At the end we consider a simple estimate for the second-order correlation
function. Let us suppose that

a (u) > 0, u ∈ Rd.

Then in the translation invariant case the following estimate holds

k
(2)
t (u) ≤ e−2a(u)tk

(2)
0 (u) + 2σ

∫ t

0

e−2a(u)(t−τ)k(1)
τ dτ

≤ e−2a(u)tk
(2)
0 (u) + 2σD

∫ t

0

e−2a(u)(t−τ)dτ

= e−2a(u)tk
(2)
0 (u) +

σD

a (u)

(
1− e−2a(u)t

)
We have two possible estimates

k
(2)
t (x− y) ≤ e−2a(x−y)tk

(2)
0 (x− y) +

σD

a (x− y)
(17)

and

k
(2)
t (x− y) ≤ e−2a(x−y)tk

(2)
0 (x− y) + CσDt. (18)

First of them may be useful for estimating of the second-order correlation
function k

(2)
t (x − y) on small distances between x and y uniformly by time.

And the second one is such for estimating on big distances (however, non-
uniformly by time).
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