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Abstract. We discover death-immigration non-equilibrium stochastic dynam-

ics in the continuum also known as the Surgailis process. Explicit expression for

the correlation functions is presented. Dynamics of states and their generating
functionals are studied. Ergodic properties for the evolutions are considered.

1. Introduction

Complex systems theory is a growing interdisciplinary area with a very broad
spectrum of motivations and applications. One may characterize complex systems
by properties as diversity and individuality of components, localization of interac-
tions among components, and the outcomes of interactions used for replication or
enhancement of components. In the study of these systems, proper language and
techniques are delivered by the interacting particle models which form a rich and
powerful direction in modern stochastic and infinite dimensional analysis. Inter-
acting particle systems have a wide use as models in condensed matter physics,
chemical kinetics, population biology, ecology, sociology and economics.

Mathematical realizations of such models may be considered as a dynamics of
collections of points in proper spaces. The possible positions of points may be
fixed due to the structure of space, e.g. dynamics on graphs, or, in particular,
on lattices. Another area of models connects with free positions of points in the
continuum, say, in the Euclidean space Rd. However, as was shown in statistical
physics, many empirical effects, such as phase transitions, are impossible in systems
with a finite number of points. Due to this, one can consider infinite point systems as
a mathematical approximation for realistic systems with a high number of elements.
The connection with the reality, where infinite systems are absent, is given by the
restriction of the study to locally finite systems (configurations) which have only
finite number of elements in any finite volume.

Depending on applications, the points of such a system may be interpreted
as molecules in physics, plants in ecology, animals in biology, infected people in
medicine, companies in economics, market agents in finance, and so on. For study
stochastic dynamics of such systems we may consider different mechanisms of (ran-
dom) evolutions of their points. Existing points may disappear from the configura-
tion that is naturally called ‘death’. Each existing point may change own position
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due to some moving or hop; this mechanism traditionally is called ‘emigration’.
Each existing point may produce a new one, that is called ‘birth’. There exists
also another possibility for appearing a new element in the configuration coming
from outside; this is called ‘immigration’. Mathematically, the random evolution
of the system is described by a heuristic Markov generator which includes parts
corresponding to different mechanisms above.

Rigorous mathematical results concerning stochastic dynamics of configurations
in the continuum have not very reach history. One of the pioneering work in this
area was [10]. Special class of models introduced therein have been recently studied
in [8,9]. We mentioned also [20–22], and references therein. During the last decade
a functional approach for studying of the stochastic dynamics above was discovered.
It was considered the evolutional equations connected with considered stochastic
dynamics, namely, equations on states of systems and their correlation functions,
equations on generating functionals and so on. Studying this evolutional equations
yields not only existence (in different senses) of dynamics but their qualitative and
quantitative properties also. For general description of this approach see, e.g., [7,14],
and for particular models see, e.g., [3–6,15].

In the present paper we consider one of the simplest model, where only inde-
pendent (constant) death and immigration appear. The corresponding stochastic
process is the well-known Surgailis process [16, 25, 26]. For this model we find ex-
plicit expression for correlation functions that gives us a way to improve general
results as well as to obtain new ones. The structure of the paper is the following.
We describe the model and present necessary knowledge on configuration space
techniques in Section 2. Section 3 is devoted to the evolutions of correlation func-
tions and measures (states) of the system. The ergodic properties of the dynamics
as well as evolution of the generating functionals are presented in Section 4. Finally,
Section 5 deals with the so-called dynamics of quasi-observables.

We also note that the main results obtained in this work may be generalized to
death and immigration rates whose are independent of other points of a configura-
tion, however, they may depend on the position of each point and time. We will
consider this case of non-homogeneous non-stationary death-immigration process
in a forthcoming publication.

2. Description of model

The simplest economic model in the description of spatial dynamics is the model
of free development when particles (which we may interpret, for instance, as compa-
nies on the market) appears independently without any influence of existing ones.
On the other language, they migrate from the outside without any motivation due
to situation inside the system. Of course, companies on real market never have
infinite life time. We consider model with global regulation. This means that any
points of configuration has exponentially distributed (with some positive parameter
m) random life time. Hence, again a death (bankruptcy) appears due to “request”
from the outside.

The state space of this model is the space Γ = ΓRd of all locally finite subsets
(configurations) in Rd:

Γ :=
{
γ ⊂ Rd

∣∣ |γΛ| <∞, for all Λ ∈ Bc(Rd)
}
.
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Here γΛ = γ ∩ Λ, | · | means cardinality of a set, Bc(Rd) denote the system of
all bounded Borel sets in Rd. We consider the σ-algebra B(Γ) as the smallest σ-
algebra for which all the mappings NΛ : Γ → N0 := N ∪ {0}, NΛ(γ) := |γΛ| are
measurable for all Λ ∈ Bc(Rd). For every Λ ∈ Bc(Rd) one can define a projection
pΛ : Γ → ΓΛ := {γ ∈ Γ | γ ⊂ Λ}; pΛ(γ) := γΛ and w.r.t. this projections Γ is the
projective limit of the spaces {ΓΛ}Λ∈Bc(Rd). One can consider also the σ-algebra
BΛ(Γ) as the smallest σ-algebra for which all the mappings NΛ′ : Γ → N0 are
measurable for all Λ′ ∈ Bc(Rd), Λ′ ⊂ Λ.

On Γ we consider the set of a cylinder functions FL0(Γ), i.e. the set of all
measurable function F on

(
Γ,B(Γ)

)
which are measurable w.r.t. BΛ(Γ) for some

Λ ∈ Bc(Rd). These functions are characterized by the following relation: F (γ) =
F �ΓΛ (γΛ).

Let M1
fm(Γ) be the set of all probability measures µ on

(
Γ,B(Γ)

)
which have

finite local moments of all orders, i.e.
∫

Γ
|γΛ|nµ(dγ) < +∞ for all Λ ∈ Bc(Rd) and

n ∈ N0.
To describe a (pre-)generator of a dynamics above we consider for fixed m > 0,

σ ≥ 0 and for any F ∈ FL0(Γ) the following expression

(2.1) (LF ) (γ) = m
∑
x∈γ

[
F (γ \ x)− F (γ)

]
+ σ

∫
Rd

[F (γ ∪ x)− F (γ)] dx,

which is well-defined since, by the definition of FL0(Γ), there exists Λ ∈ Bb(Rd)
such that F (γ \ x) = F (γ) for any x ∈ γΛc and F (γ ∪ x) = F (γ) for any x ∈ Λc;
therefore, sum and integral in (2.1) are finite. Stress that L is the generator of the
(non-equilibrium) Surgailis process, see [16,25,26].

We consider now the space of finite configurations on Rd. The space of n-point
configuration is

Γ(n) :=
{
η ⊂ Rd

∣∣ |η| = n
}
, n ∈ N0.

As a set, Γ(n) is equivalent to the symmetrization of

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n
∣∣ xk 6= xl if k 6= l

}
.

Hence, Γ
(n)
0 inherits the structure of an n · d-dimensional manifold. Applying this

we can define Borel σ-algebra B(Γ
(n)
0 ). Also one can consider a measure m(n) as

image of product m⊗n of Lebesgue measures dm(x) = dx on
(
Rd,B(Rd)

)
.

The space of finite configurations

Γ0 :=
⊔
n∈N0

Γ
(n)
0

has structure of disjoint union, therefore, one can define the Borel σ-algebra B(Γ0).
A set B ∈ B(Γ0) is called bounded if there exists a Λ ∈ Bc(Rd) and an N ∈ N such

that B ⊂
⊔N
n=0 Γ

(n)
Λ , where Γ

(n)
Λ :=

{
η ⊂ Λ

∣∣ |η| = n
}

.

We will use also the following two classes of functions on Γ0: L0
ls(Γ0) is the set of

all measurable functions on Γ0 which have a local support, i.e. G ∈ L0
ls(Γ0) if there

exists Λ ∈ Bc(Rd) such that G �Γ0\ΓΛ
= 0; Bbs(Γ0) is the set of bounded measurable

functions with bounded support: G �Γ0\B= 0 for some bounded B ∈ B(Γ0).

The Lebesgue—Poisson measure λz on
(
Γ0,B(Γ0)

)
is defined as

(2.2) λz :=

∞∑
n=0

zn

n!
m(n).
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Here z > 0 is the so called activity parameter. The restriction of λz to ΓΛ will be
also denoted by λz. Let λ be the Lebesgue-Poisson measure on Γ0 (and ΓΛ) with
activity parameter equal to 1.

The Poisson measure πz on
(
Γ,B(Γ)

)
is given as the projective limit of the

family of measures {πΛ
z }Λ∈Bc(Rd), where πΛ

z is the measure on ΓΛ defined by πΛ
z :=

e−zm(Λ)λz. Again, we will omit index in the case z = 1.
The following mapping between functions on Γ0, e.g. L0

ls(Γ0), and functions on
Γ, e.g. FL0(Γ), plays an important role in our further considerations:

(2.3) KG(γ) :=
∑
ηbγ

G(η), γ ∈ Γ,

where G ∈ L0
ls(Γ0), see, e.g., [12,18,19]. The summation in the latter expression is

extend over all finite subconfigurations of γ, in symbols η b γ. The mapping K is
linear, positivity preserving, and invertible, with

(2.4) K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

We consider now a mapping L̂G := K−1LKG which is well-defined on functions
G ∈ L0

ls(Γ0). By, e.g., [7], we have

(2.5)
(
L̂G
)

(η) = −m|η|G(η) + σ

∫
Rd
G (η ∪ x) dx.

Let now C > 1 be fixed. Applying results from [6] to the zero-potential case,
we obtain that (2.5) provides a linear operator on the Banach space of B(Γ0)-
measurable functions

(2.6) LC :=

{
G : Γ0 → R

∣∣∣∣ ‖G‖C :=

∫
Γ0

|G(η)|C |η|dλ(η) <∞
}

with dense domain L2C ⊂ LC . If additionally,

(2.7) C ≥ σ

m

then
(
L̂,L2C

)
is closable linear operator in LC and its closure

(
L̂,D(L̂)

)
generates

a strongly continuous contraction semigroup T̂ (t) on LC .

3. Correlation functions evolution

3.1. Notion of correlation functions. A measure ρ on
(
Γ0,B(Γ0)

)
is called

locally finite iff ρ(A) < ∞ for all bounded sets A from B(Γ0), the set of such
measures is denoted by Mlf(Γ0). One can define a transform K∗ : M1

fm(Γ) →
Mlf(Γ0), which is dual to the K-transform, i.e., for every µ ∈M1

fm(Γ), G ∈ Bbs(Γ0)
we have ∫

Γ

KG(γ)µ(dγ) =

∫
Γ0

G(η) (K∗µ)(dη).

ρµ := K∗µ we call the correlation measure corresponding to µ.
As shown in [12] for µ ∈M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series (2.3) is µ-a.s.
absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and

(3.1)

∫
Γ0

G(η) ρµ(dη) =

∫
Γ

(KG)(γ)µ(dγ).
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Among the elements in the domain of the K-transform are also the so-called
coherent states eλ(f). By definition, for any B(Rd)-measurable function f ,

eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0\{∅}, eλ(f, ∅) := 1.

Then, by (2.2), for f ∈ L1(Rd, dx) we obtain eλ(f) ∈ L1(Γ0, dλ) and

(3.2)

∫
Γ0

eλ(f, η)dλ(η) = exp{〈f〉},

here and below 〈f〉 =

∫
Rd
f(x)dx.

Note that

(3.3)
(
Keλ(f)

)
(γ) =

∏
x∈γ

(
1 + f(x)

)
, µ−a.a. γ ∈ Γ,

for all B(Rd)-measurable functions f such that eλ(f) ∈ L1(Γ0, ρµ), see, e.g., [12].

Let µ ∈M1
fm(Γ). If for all for all Λ ∈ BΛ(Rd) the projection µΛ := µ ◦ p−1

Λ is ab-
solutely continuous with respect to (w.r.t.) πΛ on ΓΛ then ρµ := K∗µ is absolutely
continuous w.r.t. λ on Γ0. The corresponding Radon–Nikodym derivative

kµ(η) :=
dρµ
dλ

(η), η ∈ Γ0

is called a correlation functional of a measure µ. The functions

(3.4) k(n)
µ : (Rd)n −→ R+,

given by

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n
0, otherwise

,

are well known correlation functions of statistical physics, see e.g [23,24].
Obviously, not any positive function on Γ0 is a correlation functional of a some

measure on Γ. To describe sufficient condition on this we will do in the following
manner. Given G1 and G2 two B(Γ0)-measurable functions, let us consider the
?-convolution between G1 and G2,

(3.5) (G1 ? G2)(η) :=
∑

ξ1tξ2tξ3=η

G1(η1 ∪ η2)G2(η2 ∪ η3),

where sign t denotes disjoint union (parts may be empty), see [12] for a details. It is
straightforward to verify that the space of all B(Γ0)-measurable functions endowed
with this product has the structure of a commutative algebra with unit element
eλ(0). Furthermore, for every G1, G2 ∈ Bbs(Γ0) we have G1 ? G2 ∈ Bbs(Γ0), and

(3.6) K (G1 ? G2) = (KG1) · (KG2)

cf. [12]. Note that

(3.7) eλ(f) ? eλ(g) = eλ(f + g + fg)

for all B(Rd)-measurable functions f and g.
The following theorem shows when we can reconstruct a measure µ ∈ M1

fm(Γ)
by the system of symmetric functions (3.4).
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Theorem 3.1 ( [12]). Let k : Γ0 → R+ be measurable function such that kdλ ∈
Mlf(Γ0), k(∅) = 1, there exists C > 0, ε > 0 such that k(η) ≤ C |η|

(
|η|!
)1−ε

, η ∈ Γ0

and the function k is positive definite in the sense that for any G ∈ Bbs(Γ0)

(3.8)

∫
Γ0

(G ? Ḡ)(η)k(η)dλ(η) ≥ 0.

Then there exists a unique measure µ ∈M1
fm(Γ) such that k = kµ.

3.2. Evolution of correlation functions. The space (LC)′ =
(
L1(Γ0, dλC)

)′
=

L∞(Γ0, dλC) is the topologically dual space to the space LC . The space L∞(Γ0, dλC)
is isometrically isomorphic to the Banach space

KC :=
{
k : Γ0 → R

∣∣∣ k · C−|·| ∈ L∞(Γ0, λ)
}

with the norm ‖k‖KC := ‖C−|·|k(·)‖L∞(Γ0,λ), where the isomorphism is provided
by the isometry RC

(3.9) (LC)′ 3 k 7−→ RCk := k · C |·| ∈ KC .

In fact, we may say about a duality between Banach spaces LC and KC , which
is given by the following expression

(3.10) 〈〈G, k〉〉 :=

∫
Γ0

G · k dλ, G ∈ LC , k ∈ KC

with

(3.11) |〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC .

It is clear that for any k ∈ KC
(3.12) |k(η)| ≤ ‖k‖KC C |η| for λ-a.a. η ∈ Γ0.

Let
(
L̂′, D(L̂′)

)
be an operator in (LC)′ which is dual to the closed operator(

L̂,D(L̂)
)
. We consider also its image in KC under isometry RC , namely, let

L̂∗ = RCL̂
′RC−1 with a domain D(L̂∗) = RCD(L̂′). Then, for any G ∈ LC ,

k ∈ D(L̂∗)∫
Γ0

G · L̂∗kdλ =

∫
Γ0

G ·RCL̂′RC−1kdλ =

∫
Γ0

G · L̂′RC−1kdλC

=

∫
Γ0

L̂G ·RC−1kdλC =

∫
Γ0

L̂G · kdλ,

therefore, L̂∗ is the dual operator to L̂ w.r.t. duality (3.10).

By, e.g., [7], we have the precise form of L̂∗ on D(L̂∗):

(3.13)
(
L̂∗k

)
(η) = −m|η|k(η) + σ

∑
x∈η

k (η \ x) .

In the same way one can consider the adjoint contraction semigroup T̂ ′(t) in

(LC)′ and its image T̂ ∗(t) in KC . Now, we may apply general results about adjoint

semigroups (see, e.g., [1]) onto the contraction semigroup T̂ ∗(t). The last semigroup

will be weak*-continuous, moreover, weak*-differentiable at 0 and L̂∗ will be weak*-
generator of T̂ ∗(t). Here and below we mean “weak*-properties” w.r.t. duality

(3.10). Let K̊C =
{
k ∈ KC

∣∣ ∃ limt↓0
∥∥T̂ ∗(t)k − k∥∥KC = 0

}
. Then K̊C is closed,
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weak*-dense, T̂ ∗(t)-invariant linear subspace of KC . Moreover, K̊C = D(L̂∗) (the

closure is in the norm of KC). Let T̂�(t) denote the restriction of T̂ ∗(t) onto Banach

space K̊C . Then T̂�(t) is a contraction C0-semigroup on K̊C and its generator L̂�

will be part of L̂∗, namely, D(L̂�) =
{
k ∈ D(L̂∗)

∣∣ L̂∗k ∈ D(L̂∗)
}

and L̂∗k = L̂�k

for any k ∈ D(L̂�).
Using simple reccurent structure of the operator (3.13) we may find explicit

expression for the action of the contraction semigroup T̂ ∗(t) from the solution of
the Cauchy problem

(3.14)
∂

∂t
kt = L̂∗kt, kt

∣∣
t=0

= k0.

To do this let us define the following associative and commutative convolution
on measurable functions on Γ0

(3.15) (G1 ∗G2)(η) =
∑
ξ⊂η

G1(ξ)G2(η \ ξ), η ∈ Γ0.

One can consider an algebra of measurable functions on Γ0 with such a product
and the unit element 1∗(η) := 0|η|. Note that,

eλ(f) ∗ eλ(g) =eλ(f + g)(3.16)

eλ(f)
(
G1 ∗G2

)
=
(
eλ(f)G1

)
∗
(
eλ(f)G2

)
.(3.17)

Theorem 3.2. The function

kt (η) = e−tm|η|
(
eλ

( σ
m

(etm − 1)
)
∗ k0

)
(η)(3.18)

=

(
eλ

( σ
m

(1− e−tm)
)
∗
(
eλ(e−tm)k0

))
(η) .(3.19)

is a well-defined point-wise differentiable function which satisfied (3.14).

Proof. By (3.13), (3.14) implies

∂

∂t
k

(1)
t (x1) = −mk(1)

t (x1) + σ,

that yields

k
(1)
t (x1) = e−mtk

(1)
0 (x1) + σ

∫ t

0

e−m(t−s)ds = e−mt
(
k

(1)
0 (x1) +

σ

m
(emt − 1)

)
.

Suppose that (3.18) holds for |η| = n− 1, namely,

k
(n−1)
t (x1, . . . , xn−1) = e−m(n−1)t

∑
ξ⊂{x1,...,xn−1}

k
(|ξ|)
0 (ξ)

( σ
m

(emt − 1)
)n−1−|ξ|

.
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Then, by (3.13) and (3.14) we obtain

k
(n)
t (x1, . . . , xn)

=e−mntk
(n)
0 (x1, . . . , xn) + σ

∫ t

0

e−mn(t−s)
n∑
i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn) ds

= e−mntk
(n)
0 (x1, . . . , xn)

+ σe−mnt
∫ t

0

emns
n∑
i=1

e−m(n−1)s
∑

ξ⊂{x1,...,x̌i,...,xn}

k
(|ξ|)
0 (ξ)

( σ
m

(emt − 1)
)n−1−|ξ|

ds

= e−mntk
(n)
0 (x1, . . . , xn)

+ e−mnt
∑

ξ({x1,...,xn}

(n− |ξ|) k(|ξ|)
0 (ξ)

( σ
m

)n−|ξ|
m

∫ t

0

(ems − 1)
n−1−|ξ|

emsds

= e−mntk
(n)
0 (x1, . . . , xn) + e−mnt

∑
ξ({x1,...,xn}

k
(|ξ|)
0 (ξ)

( σ
m

(emt − 1)
)n−|ξ|

= e−mnt
∑

ξ⊂{x1,...,xn}

k
(|ξ|)
0 (ξ)

( σ
m

(emt − 1)
)n−|ξ|

=
∑

ξ⊂{x1,...,xn}

e−m|ξ|tk
(|ξ|)
0 (ξ)

( σ
m

(1− e−mt)
)n−|ξ|

.

By a mathematical induction principle, the statement is proved. �

Remark 3.3. Note that, by (3.18), k0(∅) = 1 implies kt(∅) = 1 as well as k0 > 0
implies kt > 0.

Proposition 3.4. Let k0 ∈ KC and kt is the solution of (3.14). Then kt ∈ KC′ ,
where C ′ = max{C; σm}. More precisely,

∣∣kt(η)
∣∣ ≤ ‖k0‖KC

(
max

{
C;

σ

m

})|η|
, η ∈ Γ0.

Proof. By (3.18), (3.12), and (3.16), one get

|kt (η) | ≤ e−tm|η|
(
eλ

( σ
m

(emt − 1)
)
∗
(
‖k0‖KCeλ(C)

))
(η)

= ‖k0‖KCe−tm|η|eλ
(
C + σ

etm − 1

m
, η

)
= ‖k0‖KCeλ

(
Ce−tm + σ

1− e−tm

m
, η

)
≤ ‖k0‖KCeλ

(
max

{
C;

σ

m

}
, η

)
,

since

(3.20) Ce−tm + σ
1− e−tm

m
=
(
C − σ

m

)
e−tm +

σ

m
≤ max

{
C;

σ

m

}
.

Hence, this dynamics stays so-called sub-Poissonian (cf. Remark 3.5 below). �

Remark 3.5. Let us stress that if we start in (3.14) from the Poisson distribution
µ0 = πA with kµ0

(η) = k0(η) = A|η|, A > 0 then the distribution stays Poissonian
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during dynamics:

(3.21) kt(η) =

((
A− σ

m

)
e−tm +

σ

m

)|η|
.

Corollary 3.6. Let C ≥ σ

m
. Then for any k ∈ KC

(3.22)
(
T̂ ∗(t)k

)
(η) := e−tm|η|

(
eλ

( σ
m

(etm − 1)
)
∗ k
)

(η) , η ∈ Γ0, t > 0.

As was noted in [4], KαC ⊂ D(L̂∗) for any α ∈ (0; 1). Moreover, by Proposi-

tion 3.4, if k ∈ KαC then kt = T̂ ∗(t)k = T̂�(t)k ∈ KC′ , where C ′ = max{αC; σm}.
Therefore, the following improvement of the result from [4] holds.

Proposition 3.7. Let C >
σ

m
. Then for any α ∈

( σ

mC
; 1
)

the Banach subspace

KαC of the Banach space KC is T̂�(t)-invariant. Here closure is taken in the norm

of KC . The restriction T̂�α(t) of T̂�(t) onto KαC is a contraction C0-semigroup.

As a result, we have that for any C ≥ σ

m
the Cauchy problem (3.14) is solvable

on KC . Moreover, for C >
σ

m
and α ∈

( σ

mC
; 1
)

this problem is solvable on KαC .

At the end let us us find an expression for the resolvent R�z of the generator L̂�

of the semigroup T̂�(t).

Proposition 3.8. For any z with Re z > 0 there exists a bounded operator R�z =

(z − L̂�)−1 on the space K̊C such that for any k ∈ K̊C(
R�z k

)
(η) =

1

m

∑
ξ⊂η

( σ
m

)|ξ|
B
( z
m

+ |η| − |ξ| , |ξ|+ 1
)
k (η \ ξ) ,

where B(x, y) =
∫ 1

0
sx−1 (1− s)y−1

ds is the Euler beta function.

Proof. We have(
R�z k

)
(η) =

∫ ∞
0

e−zt e−tm|η|
(
eλ

( σ
m

(etm − 1)
)
∗ k
)

(η) dt

=
∑
ξ⊂η

k (η \ ξ)
∫ ∞

0

e−(z+m|η|)t
( σ
m

(etm − 1)
)|ξ|

dt

=
∑
ξ⊂η

k (η \ ξ)
( σ
m

)|ξ| ∫ ∞
0

e−(z+m|η\ξ|)t (1− e−tm)|ξ|dt .

Using substitution s = e−tm we obtain for Re z > 0∫ ∞
0

e−(z+m|η\ξ|)t (1− e−tm)|ξ| dt =
1

m

∫ 1

0

s
z
m+|η\ξ|−1 (1− s)|ξ| ds

=
1

m
B
( z
m

+ |η| − |ξ|, |ξ|+ 1
)
,(3.23)

that proves the assertion. �



10 D. FINKELSHTEIN

3.3. Evolution of measures. In [4], it was shown that dynamics T̂�(t) preserves

so-called Lenard-positivity property on the subspace D(L̂∗). We recall that a mea-
surable function k : Γ0 → R is to be called a positive defined function in the sense
of Lenard if for any G ∈ Bbs (Γ0) such that KG ≥ 0 the following inequality holds∫

Γ0
G (η) k (η) dλ (η) ≥ 0. By (3.6), any such a function will be positive defined in

the sense of (3.8) too.
We extend now this preservation of positive-definiteness (in the sense of (3.8))

on the whole space KC .
We start from the following lemma which is seems to be important itself.

Lemma 3.9. Let µ0 ∈M1
fm(Γ) and suppose that their correlation function k0 = kµ0

exists and belongs to KC . Let f ∈ L1(Rd, dx) and 0 ≤ f(x) ≤ 1, x ∈ Rd. Then
function k(η) = eλ(f, η)k0(η) is a positive definite in the sense of (3.8).

Proof. Using classical measure theory arguments it is enough to proof (3.8) for
function G : Γ0 → C of the form

(3.24) G(η) =

N∑
i=1

bieλ(gi, η), N ∈ N, bi ∈ C, gi ∈ C0(Rd → C),

where C0(Rd → C) is the space of all complex-valued continuous functions on Rd
with compact supports.

Note that, by (3.12) and (3.2), for any g ∈ C0(Rd → C) ⊂ L1(Rd → C, dx)

(3.25)

∫
Γ0

|eλ(g, η)|k0(η)dλ(η) ≤ ‖k0‖KC
∫

Γ0

eλ(C|g|, η)dλ(η) <∞.

By (3.3) and (3.1), inequality (3.25) implies
∏
x∈γ(1 + |g(x)|) ∈ L1(Γ, dµ0) for any

g ∈ C0(Rd). Moreover,
∏
x∈γ(1 + |g(x)|) ∈ FL0(Γ), hence,∫

Γ

∏
x∈γ

(1 + g(x))dµ0(γ) =

∫
ΓΛ

∏
x∈γΛ

(1 + g(x))dµΛ
0 (γΛ),

where Λ is the support of g and the measure µΛ
0 is the projection of the measure

µ0 onto ΓΛ.
Let G has the form (3.24). Then, taking Λ equal to union of the supports of

functions gi, i = 1, . . . , n, we obtain∫
Γ0

(
G ? Ḡ

)
(η) eλ (f, η) k0 (η) dλ (η)

=

N∑
i,j=1

bib̄j

∫
Γ0

eλ (gi + ḡj + giḡj , η) eλ (f, η) k0 (η) dλ (η)

=

N∑
i,j=1

bib̄j

∫
Γ

K (eλ (fgi + fḡj + fgiḡj)) (γ) dµ0 (γ)

=

N∑
i,j=1

bib̄j

∫
Γ

∏
x∈γ

(
1− f (x) + f (x)

(
1 + gi (x)

)(
1 + ḡj (x)

))
dµ0 (γ)

=

N∑
i,j=1

bib̄j

∫
ΓΛ

∏
x∈γΛ

(
1− f (x) + f (x)

(
1 + gi (x)

)(
1 + ḡj (x)

))
dµΛ

0 (γΛ)
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=

N∑
i,j=1

bib̄j

∫
ΓΛ

∑
η⊂γΛ

eλ (1− f, η) eλ (f (1 + gi) (1 + ḡj) , γΛ \ η) dµΛ
0 (γΛ)

=

∫
ΓΛ

∑
η⊂γΛ

eλ (1− f, η)

N∑
i,j=1

bib̄jeλ (1 + gi, γΛ \ η)

× eλ (1 + ḡj , γΛ \ η) eλ (f, γΛ \ η) dµΛ
0 (γΛ)

=

∫
ΓΛ

∑
η⊂γΛ

eλ (1− f, η)

∣∣∣∣∣
N∑
i=1

bieλ (1 + gi, γΛ \ η)

∣∣∣∣∣
2

eλ (f, γΛ \ η) dµΛ
0 (γΛ)

≥ 0,

since 0 ≤ f(x) ≤ 1, x ∈ Rd. �

As we noted before not all elements of KC are correlation functions of some
measures. Next theorem shows that we really have correlation functions evolutions
and, as a result, evolution of states (measures) on

(
Γ,B(Γ)

)
.

Theorem 3.10. Let µ0 ∈M1
fm(Γ) and k0 = kµ0

∈ KC , C > 0 be the corresponding
correlation function on Γ0. Then for any t > 0 the solution kt of (3.14) is a
correlation function of a unique measure µt ∈M1

fm(Γ).

Proof. By (3.18), kt is positive measurable function and kt(∅) = 1. Proposition 3.4
implies sub-Poissonian bounds for kt. Hence, for apply Theorem 3.1 we should
check (3.8) only.

By Lemma 3.9, e−tm|·|k0 = eλ(e−tm)k0 is a positive defined function in the sense
of (3.8) (cf. [11, Corollary 3]). Clearly, this function belongs to KC . Therefore,
by Theorem 3.1, there exists a unique measure from M1

fm(Γ) whose correlation
function is eλ(e−tm)k0.

Next, eλ
(
σ
m (1− e−tm)

)
is the correlation function of the Poisson measure with

intensity σ
m (1− e−tm).

By [2], Ruelle convolution of correlation functions eλ
(
σ
m (1− e−tm)

)
and eλ(e−tm)k0

will be positive defined in the sense of (3.8) too. Hence, the assertion is followed
by Theorem 3.2. �

As it was shown in [2], the ∗-convolution of correlation functions kµ1 and kµ2

is the correlation function of the convolution of measures µ1 and µ2, where by
definition µ = µ1 ∗ µ2 is the probability measure on

(
Γ,B(Γ)

)
such that for any

measurable F with F̃ ∈ L1(Γ× Γ, dµ1 × dµ2), where

F̃ (γ1, γ2) = F (γ1 ∪ γ2), γ1,2 ∈ Γ,

the following equality holds∫
Γ

F (γ)dµ(γ) =

∫
Γ

∫
Γ

F (γ1 ∪ γ2) dµ1(γ1) dµ2(γ2).

Let now µ0 ∈M1
fm(Γ) and consider weak evolution equation for measures:

∂

∂t

∫
Γ

F (γ)dµt(γ) =

∫
Γ

(LF )(γ)dµt(γ)
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for any F ∈ FL0(Γ) provided both parts exist and, of course, µt
∣∣
t=0

= µ0. Let

νt ∈M1
fm(Γ) be solution of a corresponding pure death evolution equation

∂

∂t

∫
Γ

F (γ)dνt(γ) = m

∫
Γ

∑
x∈γ

(
F (γ \ x)− F (γ)

)
dνt(γ)

with the same initial condition νt
∣∣
t=0

= µ0. Then, by Theorem 3.2 for the case

σ = 0, we obtain kνt(η) = e−tm|η|k0(η). As a result,

(3.26) µt = πzt ∗ νt,

where

zt =
σ

m
(1− e−tm).

4. Ergodicity

4.1. Ergodic properties of correlation functions. We recall that a measure
µinv ∈M1

fm(Γ) is called invariant for the operator L if for any F ∈ FL0(Γ)∫
Γ

(LF )(γ)dµinv(γ) = 0.

If kinv is the corresponding correlation function then for any G ∈ L0
ls(Γ0)∫

Γ0

(L̂∗kinv)(η)G(η)dλ(η) =

∫
Γ0

(L̂G)(η)kinv(η)dλ(η) = 0,

and, therefore, (L̂∗kinv)(η) = 0, η ∈ Γ0. As a result, by (3.13),

m|η|kinv(η) = σ
∑
x∈η

kinv (η \ x) .

Iterating the last equation, we easily can see that it implies

(4.1) kinv(η) =
( σ
m

)|η|
= eλ

( σ
m
, η
)
.

As result, Poisson measure π σ
m

is a unique invariant measure of our evolution.
Note also that the condition k0(∅) = 1 implies that point-wisely we obtain

kt(η) =

(
σ

m

(
1− e−mt

))|η|
+
∑
ξ(η

k0(η \ ξ)e−mt|η\ξ|
( σ
m

(
1− e−mt

))|ξ|
→
( σ
m

)|η|
as t→∞. Taking into account (4.1) and Proposition 3.4, we may expect that our
non-equilibrium dynamics are ergodic in the space KC for big enough C. In the
next theorem we explain more exact conditions for this ergodicity.

Theorem 4.1. Let C >
σ

m
, k0 ∈ KC and k0(∅) = 1. Then

(4.2)
∥∥kt − kinv

∥∥
KC

< ‖k0 − kinv‖KC
e−mt

1− σ

Cm

, t > 0.

Proof. First of all note that, by (4.1) and Corollary 3.4, for any C >
σ

m

{kt, t > 0; kinv} ⊂ KC .
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Next, by (3.16),

kinv = eλ

( σ
m

)
= eλ

( σ
m

(1− e−mt)
)
∗ eλ

( σ
m
e−mt

)
.

Therefore,

kt(η)− kinv(η) =
∑
ξ(η

(
k0(η \ ξ)−

( σ
m

)|η\ξ|)
e−mt|η\ξ|

( σ
m

(
1− e−mt

))|ξ|
and one can estimate

C−|η|
∣∣∣kt(η)− kinv(η)

∣∣∣(4.3)

≤C−|η|
∑
ξ(η

∣∣∣∣k0(η \ ξ)−
( σ
m

)|η\ξ|∣∣∣∣ e−mt|η\ξ| ( σm(1− e−mt))|ξ|
≤‖k0 − kinv‖KCC−|η|

∑
ξ(η

C |η\ξ|e−mt|η\ξ|
( σ
m

(
1− e−mt

))|ξ|
= ‖k0 − kinv‖KC

[(
e−mt +

σ

Cm

(
1− e−mt

))|η|
−
( σ

Cm

(
1− e−mt

))|η|]
.

Let us recall, that e−mt + σ
Cm

(
1− e−mt

)
< 1, t > 0.

To find uniform, by |η|, estimate for the r.h.s. of (4.3) let us consider for any
fixed 0 < a < b < 1, n ∈ N the difference

bn − an =(b− a)

n−1∑
j=0

ajbn−1−j < (b− a)

n−1∑
j=0

aj

=(b− a)
1− an

1− a
<
b− a
1− a

.

As result, using (4.3), obvious estimate
σ

Cm

(
1 − e−mt

)
<

σ

Cm
, t > 0, and the

fact that
1

1− a
is a strictly increasing function of a ∈ (0; 1) we obtain (4.2). �

Remark 4.2. Note that if we consider corresponding general result from [4] in the
zero-potential case and for m = 1 we obtain more weaker inequality

‖kt − kinv‖KC ≤ e−(1−ν)t‖k0 − kinv‖KC , 1 > ν >
σ

C
.

Let Λ ∈ Bc(Rd) and denote the projection of the measure µt, t ≥ 0 on ΓΛ by µΛ
t .

Then, in the same notations, µΛ
inv = πΛ

σ/m.

Corollary 4.3. Let C >
σ

m
and A =

(
1− σ

mC

)−1

. Then for any t > 0

(4.4)

∥∥∥∥dµΛ
t

dλ
− dµΛ

inv

dλ

∥∥∥∥
KC
≤ Ae−tm exp {C |Λ|} .

Proof. Since, clearly,
∫

ΓΛ
2|η|kt(η)dλ(η) < +∞, t ≥ 0 then (see, e.g., [12])

(4.5)
dµΛ

t

dλ
(η) =

∫
ΓΛ

(−1)
|ξ|
kt (η ∪ ξ) dλ (ξ) , η ∈ ΓΛ.



14 D. FINKELSHTEIN

Hence, by Theorem 4.1, for C > σ
m , t > 0, we have∣∣∣∣dµΛ

t

dλ
(η)− dµΛ

inv

dλ
(η)

∣∣∣∣
≤
∫

ΓΛ

|kt (η ∪ ξ)− kinv (η ∪ ξ)| dλ (ξ)

=

∫
ΓΛ

|kt (η ∪ ξ)− kinv (η ∪ ξ)|
C |η∪ξ|

C |η∪ξ|dλ (ξ)

≤‖kt − kinv‖KC C
|η| exp {C |Λ|}

≤AC |η|e−tm exp {C |Λ|} ,

that proves the assertion. �

For any η ∈ Γ0, y ∈ Rd, t ≥ 0 we define

(4.6) vt(η, y) := kt(η ∪ y)− kt(η)kt(y).

Clearly, Remark 3.5 implies that if k0(η) = A|η|, A > 0 then vt(η, y) ≡ 0.
Our dynamics at moment t is said to be satisfied the decay of correlation principle

if

(4.7) lim
|y|→∞

vt(η, y) = 0, η ∈ Γ0.

Next theorem shows preserving the decay of correlation principle during our
dynamics.

Theorem 4.4. Let C >
σ

m
, k0(∅) = 1 and let

a(y) :=
∥∥v0(·, y)

∥∥
KC
∈ [0; ∞), y ∈ Rd.

Then ∥∥vt(·, y)
∥∥
KC
≤ a(y)e−tm, y ∈ Rd.

Proof. Let y ∈ Rd be fixed. Consider the mapping

(4.8) (DyG)(η) := G(η ∪ {y}).

By direct computations, we obtain from (3.15) that Dy is satisfied chain rule:

(4.9) Dy(G1 ∗G2) = (DyG1) ∗G2 +G1 ∗ (DyG2).

Therefore,

Dy

(
eλ

( σ
m

(
etm − 1

))
∗ k0

)
=
σ

m

(
etm − 1

) (
eλ

( σ
m

(
etm − 1

))
∗ k0

)
+
(
eλ

( σ
m

(
etm − 1

))
∗ k0(· ∪ y)

)
.

Hence, using equality

(4.10) kt(y) = e−tm
(
k0 (y) +

σ

m

(
etm − 1

))
,
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we obtain

vt (η, y) = e−tm(|η|+1)Dy

(
eλ

( σ
m

(
etm − 1

))
∗ k0

)
(η)

− e−tm|η|
(
eλ

( σ
m

(
etm − 1

))
∗ k0

)
(η) kt (y)

= e−tm(|η|+1) σ

m

(
etm − 1

) (
eλ

( σ
m

(
etm − 1

))
∗ k0

)
(η)

+ e−tm(|η|+1)
(
eλ

( σ
m

(
etm − 1

))
∗ k0 (· ∪ y)

)
(η)

− e−tm(|η|+1)
(
eλ

( σ
m

(
etm − 1

))
∗ k0

)
(η)
[
k0 (y) +

σ

m

(
etm − 1

)]
= e−tm(|η|+1)

(
eλ

( σ
m

(
etm − 1

))
∗ k0 (· ∪ y)

)
(η)

− e−tm(|η|+1)k0 (y)
(
eλ

( σ
m

(
etm − 1

))
∗ k0

)
(η)

= e−tm(|η|+1)
∑
ξ⊂η

( σ
m

(
etm − 1

))|η\ξ|
v0(ξ, y).

Therefore, for any η ∈ Γ0 one has

C−|η|
∣∣vt(η, y)

∣∣ ≤C−|η|e−tm(|η|+1)
∑
ξ⊂η

( σ
m

(
etm − 1

))|η\ξ|
C |ξ|C−|ξ|

∣∣v0(ξ, y)
∣∣

≤ a(y)C−|η|e−tm(|η|+1)
∑
ξ⊂η

( σ
m

(
etm − 1

))|η\ξ|
C |ξ|

= a(y)C−|η|e−tm(|η|+1)
(
C +

σ

m

(
etm − 1

))|η|
= a (y) e−tm

(
e−tm +

σ

Cm

(
1− e−tm

))|η|
≤ a (y) e−tm.

The statement is proved. �

Remark 4.5. From the proof of the Theorem 4.4 one can see that if (4.7) holds
for t = 0 then it holds for any t > 0 as well.

Remark 4.6. More traditional object for studying decay of correlation principle is
the so-called Ursell functions (or truncated correlation functions). We recall (see [2]
and references therein) that the function ut : Γ0 → R is called Ursell function for
kt if

kt = exp∗ ut :=

∞∑
n=0

1

n!
u∗nt , u∗0 := 1∗.

The condition kt(∅) = 1 guarantees existence of ut with ut(∅) = 0 (see e.g. [2] for
details). Then, by (3.19) and [2], we obtain that ut is equal to sum of Ursell func-
tions, corresponding to correlation functions of measures πzt and νt from (3.26).
It’s easy to see that the Ursell function corresponding to the Poisson measure πzt
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is equal to χ{|η|=1}
σ

m
(1− e−tm). Next,

e−tm|η|k0(η) = e−tm|η|
∞∑
n=1

1

n!
u∗0(η)

= e−tm|η|
∞∑
n=1

1

n!

∑
η1t...tηn=η
ηi 6=∅, 1≤i≤n

u(η1) . . . u(ηn)

=

∞∑
n=1

1

n!

∑
η1t...tηn=η
ηi 6=∅, 1≤i≤n

e−tm|η1|u(η1) . . . e−tm|ηn|u(ηn)

= exp∗
(
e−tm|·|u0

)
(η).

Therefore,

ut(η) = e−tm|η|u0(η) + χ{|η|=1}
σ

m
(1− e−tm).

In particular, if for any n ≥ 2 the symmetric function u
(n)
0 is integrable by j vari-

ables (1 ≤ j ≤ n− 1) then u
(n)
t has this property too.

4.2. Evolution of Bogolyubov functional. Let µ ∈ M1
fm(Γ) such that for any

θ ∈ L1(Rd, dx) the following so-called Bogolyubov functional there exists:

(4.11) Bµ(θ) :=

∫
Γ

∏
x∈γ

(
1 + θ(x)

)
dµ(γ).

By (3.1) and (3.3), we have an another representation

(4.12) Bµ(θ) =

∫
Γ0

eλ(θ, η)kµ(η)dλ(η).

In particular, if there exists C > 0 such that kµ(η) ≤ const · C |η|, η ∈ Γ0 then, by
(3.2) and (3.3), the r.h.s. of (4.12) as well as (4.11) are finite.

Proposition 4.7. Let C >
σ

m
, k0 ∈ KC and k0(∅) = 1. Let Bt(θ) := Bµt(θ),

Binv(θ) := Bµinv
(θ). Then∣∣Bt(θ)−Binv(θ)

∣∣ ≤ e−mt‖k0 − kinv‖KC
exp
{
C‖θ‖L1

}
1− σ

Cm

.

Proof. First of all let us note that, by Proposition 3.4, Bt exists. Then, by Theo-
rem 4.1, we have∣∣Bt(θ)−Binv(θ)

∣∣ =

∣∣∣∣∣
∫

Γ0

eλ(θ, η)kt(η)dλ(η)−
∫

Γ0

eλ(θ, η)kinv(η)dλ(η)

∣∣∣∣∣
≤
∫

Γ0

eλ(|θ|, η)
∣∣kt(η)− kinv(η)

∣∣dλ(η)

≤‖kt − kinv‖KC
∫

Γ0

eλ(|θ|, η)C |η|dλ(η)

≤‖k0 − kinv‖KC
e−mt

1− σ

Cm

exp
{
C‖θ‖L1

}
. �
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Remark 4.8. Note that, by (3.18), we have

Bt (θ) =

∫
Γ0

eλ (θ, η) kt (η) dλ (η)

=

∫
Γ0

eλ (θ, η) e−tm|η|
∫

Γ0

eλ (θ, ξ) eλ

( σ
m

(
1− e−tm

)
, ξ
)
dλ (ξ) k0 (η) dλ (η)

=

∫
Γ0

eλ (θ, ξ) eλ

( σ
m

(
1− e−tm

)
, ξ
)
dλ (ξ)

∫
Γ0

e−tm|η|eλ (θ, η) k0 (η) dλ (η)

= exp
{ σ
m

(
1− e−tm

)
〈θ〉
}
B0

(
e−tmθ

)
,(4.13)

that corresponds to (3.26).

Since, by (4.12) and (3.2), Binv(θ) = exp
{ σ
m
〈θ〉
}

, we obtain from (4.13)

Bt(θ)−Binv(θ)

= exp
{ σ
m

(
1− e−tm

)
〈θ〉
}(

B0

(
e−tmθ

)
− exp

{ σ
m
e−tm 〈θ〉

})
= exp

{ σ
m

(
1− e−tm

)
〈θ〉
}∫

Γ0

e−tm|η|eλ (θ, η)
(
k0 (η)− kinv(η)

)
dλ (η) .(4.14)

As a result, if, e.g., k0(η) ≤
( σ
m

)|η|
= kinv(η), η ∈ Γ0 and k0(∅) = 1, then for any

0 ≤ θ ∈ L1(Rd, dx) one has

0 ≤ Binv(θ)−Bt(θ) ≤ e−tm exp
{ σ
m

(
1− e−tm

)
〈θ〉
}(
Binv(θ)−B0(θ)

)
.

One can consider now the state space where the evolution B0(θ) 7→ Bt(θ) lives.
Let E = L1(Rd, dx). We recall (see, e.g., [13] and references therein) that a func-
tional A : E → C is called entire on E whenever A is locally bounded and for all
θ0, θ ∈ E the mapping C 3 z 7→ A(θ0 +zθ) ∈ C is entire. For any α > 0 we consider
a Banach space E(α) of entire functionals on E with norm

‖A‖α := sup
θ∈E

(
|A(θ)|e−α‖θ‖E

)
<∞.

Then for any α ≥ σ

m
we have

‖Bt(θ)‖α = sup
θ∈E

(
exp

{ σ
m

(1− e−tm)〈θ〉
}
|B0(e−tmθ)| exp{−α‖θ‖E}

)
≤‖B0(θ)‖α sup

θ∈E

(
exp

{ σ
m

(1− e−tm)‖θ‖E
}

exp
{
α(e−tm − 1)‖θ‖E

})
=‖B0(θ)‖α sup

θ∈E

(
exp

{( σ
m
− α

)
(1− e−tm)‖θ‖E

})
≤ ‖B0(θ)‖α.

Therefore, the evolution B0(θ) 7→ Bt(θ) preserves balls in E(α).

5. Evolution on LC
We recall now without a proof the partial case of the well-known lemma (cf., [17]).

Lemma 5.1. For any measurable function H : Γ0 × Γ0 × Γ0 → R

(5.1)

∫
Γ0

∑
ξ⊂η

H (ξ, η \ ξ, η) dλ (η) =

∫
Γ0

∫
Γ0

H (ξ, η, η ∪ ξ) dλ (ξ) dλ (η)



18 D. FINKELSHTEIN

if only both sides of the equality make sense.

Next statements present explicit form for the semigroup on LC and resolvent of
its generator and show mean-ergodic properties of this semigroup (see, e.g., [1] for
a terminology).

Proposition 5.2. Let C ≥ σ

m
. Then for any G ∈ LC

(5.2)
(
T̂ (t)G

)
(η) = e−tm|η|

∫
Γ0

G (η ∪ ξ) eλ
( σ
m

(
1− e−tm

)
, ξ
)
dλ (ξ) .

Moreover, for any z ∈ C with Re z > 0 there exist bounded resolvent operator
Rz = (L̂− z)−1 and for any G ∈ LC

(5.3) (RzG) (η) =
1

m

∫
Γ0

G (η ∪ ξ)
( σ
m

)|ξ|
B
( z
m

+ |η| , |ξ|+ 1
)
dλ (ξ) ,

where B(x, y) =
∫ 1

0
sx−1 (1− s)y−1

ds is the Euler beta function.

Proof. Let C ≥ σ

m
and G ∈ LC . Then, T̂ (t)G ∈ LC and for any k ∈ KC , by

Corollary 3.6 and Lemma 5.1, one has∫
Γ0

(
T̂ (t)G

)
(η) k (η) dλ (η) =

∫
Γ0

G(η)
(
T̂ ∗(t)k

)
(η) dλ(η)

=

∫
Γ0

G (η) e−tm|η|
(
eλ

( σ
m

(
etm − 1

))
∗ k
)

(η) dλ (η)

=

∫
Γ0

∫
Γ0

G (η ∪ ξ) e−tm|η|e−tm|ξ|eλ
( σ
m

(
etm − 1

)
, ξ
)
k (η) dλ (ξ) dλ (η) ,

that implies (5.2).

Since T̂ (t) is a C0-semigroup with generator
(
L̂,D(L̂)

)
then for any z ∈ C with

Re z > 0

Rz =

∫ ∞
0

e−ztU (t) dt.

Then, by direct computation,

(RzG) (η) =

∫ ∞
0

e−zte−tm|η|
∫

Γ0

G (η ∪ ξ) eλ
( σ
m

(
1− e−tm

)
, ξ
)
dλ (ξ) dt

=

∫
Γ0

G (η ∪ ξ)
( σ
m

)|ξ| ∫ ∞
0

e−(z+m|η|)t (1− e−tm)|ξ| dtdλ (ξ) ,

and the assertion follows from (3.23). �

Theorem 5.3. Let C ≥ max
( σ
m

; 1
)

and G ∈ L2C then

1

t

∫ t

0

T̂ (s)Gds→ χΓ(0) ·
∫

Γ0

G (ξ) kinv (ξ) dλ (ξ)

as t→∞ in LC .

Proof. Using equality

1Γ(0)(η) ·
∫

Γ0

G (ξ) kinv (ξ) dλ (ξ) =

∫
Γ0

G (ξ ∪ η)
( σ
m

)|ξ|
0|η|dλ (ξ)
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we have∥∥∥∥1

t

∫ t

0

T̂ (s)Gds− χΓ(0) ·
∫

Γ0

G (ξ)
( σ
m

)|ξ|
dλ (ξ)

∥∥∥∥
LC

≤
∫

Γ0

∫
Γ0

|G (η ∪ ξ)|
( σ
m

)|ξ| ∣∣∣∣1t
∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds− 0|η|

∣∣∣∣C |η|dλ (ξ) dλ (η) .

We have

1

t

∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds

=

|ξ|∑
j=0

(
|ξ|
j

)
(−1)

j 1

t

∫ t

0

e−sm(|η|+j)ds

=



|ξ|∑
j=0

(
|ξ|
j

)
(−1)

j 1

t

1− e−tm(|η|+j)

m (|η|+ j)
, |η| 6= 0

1 +

|ξ|∑
j=1

(
|ξ|
j

)
(−1)

j 1

t

1− e−tmj

mj
, |η| = 0

Therefore, for any ξ, η ∈ Γ0

1

t

∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds→ 0|η|, t→∞.

Using trivial estimate

∣∣∣∣1t
∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds− 0|η|

∣∣∣∣ ≤ 1 we obtain the

assertion by the dominated convergence theorem since∫
Γ0

∫
Γ0

|G (η ∪ ξ)|
( σ
m

)|ξ|
C |η|dλ (ξ) dλ (η)

=

∫
Γ0

|G (η)|
(

1 +
σ

Cm

)|η|
C |η|dλ (η)

≤
∫

Γ0

|G (η)| 2|η|C |η|dλ (η) = ‖G‖2C < +∞.

The statement is proved. �
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