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Abstract

We consider two types of convolutions (∗ and ?) of functions on spaces
of finite configurations (finite subsets of a phase space), and some their
properties are studied. A connection of the ∗-convolution with the convo-
lution of measures on spaces of finite configurations is shown. Properties of
multiplication and derivative operators with respect to the ∗-convolution
are discovered. We present also conditions when the ∗-convolution will be
positive definite with respect to the ?-convolution.
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1 Introduction

Spaces of configurations (discrete subsets of a phase space) have been became
a separate mathematical object of investigation starting from 1960’th. They
were studied in different branches of mathematics such as functional analysis,
mathematical physics, probability theory, topology. Finite and locally finite
subsets of a phase space are useful objects for describing of mathematical models
for different systems in applications: in physics, chemistry, biology, economics,
social sciences etc. The corresponding interpretations for elements of the subsets
are molecules, individuals, agents etc. In turn, the phase space may be a discrete
set, for instance, a lattice or, more generally, a graph in, say, an Euclidean space.
Lattice systems were intensively studied in literature, see e.g. [5, 9, 13, 14, 16].
In the case then the phase space is a continuum set, for instance, an Euclidean
space or, more generally, a topological space (say, a manifold), the systems
describing by the corresponding space of configurations are called continuous.

In number of problems of statistical physics a physical system may be mod-
eled by huge or even infinite set in a continuum phase space. Mathematical

∗Institute of Mathematics, National Academy of Sciences of Ukraine, 01601 Kiev-4,
Ukraine, e-mail:fdl@imath.kiev.ua

1



description of such systems was initiated in XIX century by L. Boltzmann and
his followers, see e.g. [4, 15]. In XX century this area was intensively studied,
started from the fundamental papers by J. W. Gibbs, see e.g. [8], what were
background for the modern theory of Gibbs measures on configuration spaces.
Started from 1940th mathematical models of continuous systems in statistical
physics were actively studied by N. N Bogolyubov, see e.g. [3], and his follow-
ers. In 1960th the necessity of a rigorous description for spaces of locally finite
configuration and states (probability measures) on such spaces became clear.
The corresponding investigations were started by R. L. Dobrushin, O. Lenford,
and D. Ruelle, see e.g. the review [6] and the references therein. Meanwhile,
the detailed analysis on spaces of configurations was initiated in paper [22] by
A. M. Vershik, I. M. Gelfand, M. I. Graev. The modern form of the analysis on
spaces of configurations was gained in papers by S. Albeverio, Yu. Kondratiev,
M. Röckner and their followers, see e.g. [1, 2, 12,17].

An actual bibliography for papers about configuration spaces over a contin-
uum phase space may become now a scientific paper itself. Even just list of au-
thors need to much journal’s space. Therefore, we restrict ourselves to enumer-
ate the main areas of this business that have a long history and are intensively
developed now. Namely, study of topological, metric, measurable, and algebraic
structures on spaces of configurations; measure theory, in particular, study of
Gibbs and Cox measures, determinantal and permanent measures; calculus, dif-
ferential geometry, and harmonic analysis on configuration spaces; deterministic
and stochastic dynamical systems, their ergodic and invariant measures; Markov
evolutions, equilibrium and non-equilibrium stochastic dynamics, in particular,
diffusion, birth-and-death, jump, Hamiltonian dynamics; different scalings of
the dynamics above, hydrodynamic and kinetic equations etc.

The present paper deals with different convolutions (between functions and
between measures) on spaces of configurations which were studied in literature.
These questions are important for the development of a rich analysis on con-
figuration spaces. On the other hand the convolutions are actively used for
further investigations, in particular, for study of stochastic dynamics on con-
figuration spaces. Due to the journal limitation the publication is divided on
two parts. This first part is devoted to the convolutions on the spaces of finite
configurations, that are discrete subsets of a continuum phase space which have
an arbitrary but a finite number of points. It is worth noting that spaces of
finite configurations are a object of infinite-dimensional analysis. Note also that
spaces of locally finite subsets (which are considered in the second paper) are
not a direct generalization of spaces of finite configurations. More exact descrip-
tion of their connection is an analogy with the correspondence between Hilbert
spaces and the sequence space l2 that may be considered as a space of Fourier co-
efficients. This approach to harmonic analysis on spaces of locally finite subsets
was initiated in [10] and was applied in dozens of recent publications.

The present paper is organized as follows. In Section 2 we describe the main
structures and their properties on spaces of finite configurations which will be
used in both papers. In Section 3 we study the so-called Ruelle ∗-calculus, de-
fined via the Ruelle convolution [18]. This ∗-convolution was used often in lit-
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erature, however, some its analytic properties were unknown before. In Section
4 we consider a multiplication operator with respect to the Ruelle convolution.
In Section 5 there are several subjects, namely: a convolution of measures on
spaces of finite configurations and its connection with the Ruelle convolution
of functions, properties of the generating functional (the so-called Bogolyubov
functional, see details in e.g. [11]), properties of the derivative operator with re-
spect to the Ruelle convolution, the connection between the ∗-convolution and
the ?-convolution introduces in [10] by Yu. Kondratiev and T. Kuna.

Author would like to thank Prof. Dr. Yuri Kondratiev for useful discussions.
The paper was partially supported by The Ukraine President Scholarship and
Grant for young scientists.

2 Spaces of finite configurations

LetX be a connected oriented non-compact Riemannian C∞-manifold, O(X) be
a class of all open subsets from X, B(X) be the corresponding Borel σ-algebra.
We denote classes of all open and Borel subsets from X which have compact
supports by Oc(X) and Bc(X), correspondingly. Let m be a non-atomic Radon
measure on X, i.e., m(Λ) < ∞, Λ ∈ Bc(X) and m({x}) = 0, x ∈ X. Suppose
also that there exists a sequence {Λn}n∈N ⊂ Bc(X) such that Λn ⊂ Λn+1, n ∈ N
and

⋃
n∈N Λn = X.

For any Y ∈ B(X) and n ∈ N0 := N ∪ {0}, the set

Γ
(n)
Y :=

{
η ⊂ Y

∣∣ |η| = n
}
, n ∈ N; Γ

(0)
Y := {∅}

is said to be a space of all n-point configurations on the set Y . Here and
subsequently, the symbol | · | means a number of points in a discrete set. For
any Λ ∈ Bc(X), Λ ⊂ Y , we denote ηΛ := η ∩ Λ and consider a mapping

NΛ : Γ
(n)
0,Y → N0, given by NΛ(η) := |ηΛ|. For n ∈ N, one set

Ỹ n =
{

(x1, . . . , xn) ∈ Y n
∣∣ xk 6= xl, if only k 6= l

}
.

We consider also a mapping symY,n : Ỹ n → Γ
(n)
Y , symY,n

(
(x1, . . . , xn)

)
:=

{x1, . . . , xn}. Then, one can identify the space of all n-point configurations Γ
(n)
Y

with the quotient of Ỹ n with respect to the natural action of the permutation

group Sn on Ỹ n. Thus, one can define in the space Γ
(n)
Y the family of open sets

O
(
Γ

(n)
0,Y

)
:= sym−1

Y,n

(
O(Ỹ n)

)
. The base of topology is formed by the system of

sets
U1×̂ · · · ×̂Un :=

{
η ∈ Γ

(n)
0,Y

∣∣ NU1
(η) = 1, . . . , NUn(η) = 1

}
,

where U1, . . . , Un ∈ Oc(X), U1, . . . , Un ⊂ Y and Ui ∩ Uj = ∅ if only i 6= j. The

Borel σ-algebra B
(
Γ

(n)
Y

)
corresponding to O

(
Γ

(n)
0,Y

)
coincides with the σ-algebra

given by the family of mappings NΛ, Λ ∈ Bc(X), Λ ⊂ Y , see e.g. [1].
The space of finite configurations on a set Y ∈ B(X) is a disjoint union

Γ0,Y :=
⊔
n∈N0

Γ
(n)
Y . (2.1)
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The structure of a disjoint union allows to define a topology O(Γ0,Y ) on Γ0,Y .
The corresponding Borel σ-algebra we denote by B(Γ0,Y ). In the case then

Y = X we will omit a subscript, i.e., Γ(n) := Γ
(n)
X , Γ0 := Γ0,X .

A set B ∈ B(Γ0) is said to be bounded if there exist Λ ∈ Bc(X) and N ∈ N,

suh that B ⊂
⊔N
n=0 Γ

(n)
Λ . The class of all bounded sets from B(Γ0) we denote

by Bb(Γ0). A measure ρ on
(
Γ0,B(Γ0)

)
is said to be locally finite if ρ(B) <∞

for all B ∈ Bb(Γ0). Let Mlf(Γ0) denote the class of all locally finite measures
on
(
Γ0,B(Γ0)

)
. An important example of a locally finite measure on Γ0 is the

Lebesgue–Poisson measure that is defined as follows. The image on the space

B(Γ(n)) of the product-measure m⊗n on (̃X)n under the map symX,n we denote

by m(n). The latter measure is well-defined since m⊗n
(
(X)n \ (̃X)n

)
= 0. For

n = 0, we set m(0)({∅}) := 1. Let z > 0 be given. The Lebesgue–Poisson
measure λz on

(
Γ0,B(Γ0)

)
is defined correspondingly to the expansion (2.1) in

the following way:

λz :=

∞∑
n=0

zn

n!
m(n). (2.2)

For any Λ ∈ Bc(X), we preserve the same notation λz for the restriction of λz
onto Γ0,Λ. The positive number z is the intensity (the activity parameter) of
the measure λz. For the case z = 1, we will omit the subscript, namely, λ := λ1.
In [12], it was shown that, for any A ∈ B(X) with m(A) = 0,

λ
(
{η ∈ Γ0,Y | η ∩A 6= ∅}

)
= 0, Y ∈ B(X).

In particular, one can put Y = X. Therefore, for any ξ ∈ Γ0, x ∈ X,

λ
(
{η ∈ Γ0 | x ∈ η}

)
= λ

(
{η ∈ Γ0 | ξ ∩ η 6= ∅}

)
= 0. (2.3)

Let us consider some classes of real-valued functions on Γ0. In the sequel, a
measurable function on Γ0 will always mean a B(Γ0)/B(R)-measurable function.
Let L0(Γ0) denote the class of all measurable functions on Γ0. By the expansion
(2.1), any function G ∈ L0(Γ0) might be given by the system of its restrictions

G(n) := G �Γ(n) . For a symmetric function G(n) ◦ sym−1
X,n : (̃X)n → R we

stand the same notation G(n) if this does not lead to misunderstanding. A
function G ∈ L0(Γ0) is said to have a local support if there exists Λ ∈ Bc(X)
such that G �Γ0\Γ0,Λ

= 0. Let L0
ls(Γ0) denote the set of all measurable functions

on Γ0 with local supports. Similarly, a function G ∈ L0(Γ0) is said to have a
bounded support if there exists B ∈ Bb(Γ0) such that G �Γ0\B= 0. Let Bbs(Γ0)
denote the set of all bounded measurable functions on Γ0.

For any B(X)-measurable function f : X → R we define the Lebesgue–
Poisson exponent as the function on Γ0, given by:

eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0 \ {∅}, eλ(f, ∅) := 1. (2.4)
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3 ∗-calculus

Definition 3.1 (see e.g. [18]). For any G1, G2 ∈ L0(Γ0), we define the following
convolution rule on Γ0:

(G1 ∗G2)(η) :=
∑
ξ⊂η

G1(ξ)G2(η \ ξ). (3.1)

In particular, for any measurable f, g : X → R, one get

eλ(f) ∗ eλ(g) = eλ(f + g), (3.2)

taking into account (2.4) and (3.1).

Proposition 3.2 (see e.g. [12]). For any H,G1, G2 ∈ L0(Γ0), the following
identity holds true∫

Γ0

H(η)(G1 ∗G2)(η)dλ(η) =

∫
Γ0

∫
Γ0

H(η ∪ ξ)G1(η)G2(ξ)dλ(ξ)dλ(η), (3.3)

if at least one of integrals is well-defined.

Let C > 0 and δ ≥ 0. We consider a Banach space

KC, δ =
{
k : Γ0 → R

∣∣ |k(η)| ≤ const · C |η|(|η|!)δ for λ-a.a. η ∈ Γ0

}
with norm ‖k‖C, δ := ess supη∈Γ0

|k(η)|
C |η|(|η|!)δ

. Clearly, for any C ′ ≥ C, δ′ ≥ δ,

the following inclusion holds KC, δ ⊂ KC′, δ′ . For δ = 0, we will omit this
subscript, namely, KC := KC,0.

Proposition 3.3. Let C1, C2 > 0, δ1, δ2 ≥ 0, and ki ∈ KCi, δi , i = 1, 2.
Then the function k := k1 ∗ k2 belongs to the space KC, δ, where C = C1 + C2,
δ = max{δ1, δ2}. Moreover, the Young-type inequality holds

‖k1 ∗ k2‖C, δ ≤ ‖k1‖C1, δ1 · ‖k2‖C2, δ2 . (3.4)

If δ ≥ 1, C1 6= C2 then the function k1 ∗ k2 belongs to a more narrow space
KC̄, δ, where C̄ = max{C1, C2}, and the corresponding inequality holds

‖k1 ∗ k2‖C̄, δ ≤
C̄∣∣C1 − C2

∣∣‖k1‖C1, δ1 · ‖k2‖C2, δ2 . (3.5)

If δ ≥ 1, C1 = C2 then the function k1 ∗ k2 belongs to the space KC′, δ for any
C ′ > C1, moreover,

‖k1 ∗ k2‖C′, δ ≤
C ′

eC1 ln C′

C1

‖k1‖C1, δ1 · ‖k2‖C2, δ2 . (3.6)
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If k1 ∈ KC1,δ1 , C1 > 1, δ1 ≥ 1, and k2 ∈ L∞(Γ0) := L∞(Γ0, dλ), then k1 ∗ k2 ∈
KC1,δ1 and

‖k1 ∗ k2‖C1, δ1 ≤
C1

C1 − 1
‖k1‖C1, δ1 · ‖k2‖L∞(Γ0). (3.7)

Finally, if k1, k2 ∈ L∞(Γ0), then k1 ∗k2 ∈ KC,0 for all C ≥ 2 and k1 ∗k2 ∈ KC,δ
for all δ > 0, C > 0, in particular,

‖k1 ∗ k2‖C,0 ≤ ‖k1‖L∞(Γ0)‖k2‖L∞(Γ0), C ≥ 2. (3.8)

Proof. For λ-a.a. η ∈ Γ0, one has

C−|η|(|η|!)−δ|k(η)| ≤ C−|η|(|η|!)−δ
∑
ξ⊂η

|k1(ξ)||k2(η \ ξ)|

= C−|η|(|η|!)−δ
∑
ξ⊂η

C
|ξ|
1 (|ξ|!)δ1 |k1(ξ)|

C
|ξ|
1 (|ξ|!)δ1

|k2(ξ)|
C
|η\ξ|
2 (|η \ ξ|!)δ2

C
|η\ξ|
2 (|η \ ξ|!)δ2

≤ ‖k1‖C1, δ1‖k2‖C2, δ2C
−|η|

|η|∑
k=0

|η|!
k!(|η| − k)!

Ck1 (k!)δ1

(|η|!)δ
C
|η|−k
2 ((|η| − k)!)δ2

≤ ‖k1‖C1, δ1‖k2‖C2, δ2C
−|η|

|η|∑
k=0

(
|η|!

k!(|η| − k)!

)1−δ

Ck1C
|η|−k
2 (3.9)

≤ ‖k1‖C1, δ1‖k2‖C2, δ2C
−|η|

|η|∑
k=0

|η|!
k!(|η| − k)!

Ck1C
|η|−k
2

= ‖k1‖C1, δ1‖k2‖C2, δ2 ,

which completes the proof of the first statement.
Let now δ ≥ 1. Then, by (3.9), we derive

C̄−|η|(|η|!)−δ|k(η)| ≤ ‖k1‖C1, δ1‖k2‖C2, δ2C
−|η|

|η|∑
k=0

Ck1C
|η|−k
2

= ‖k1‖C1, δ1‖k2‖C2, δ2C̄
−|η|C

|η|+1
1 − C |η|+1

2

C1 − C2
.

For definiteness, consider C̄ = max{C1, C2} = C1. Then

ess sup
η∈Γ0

C−|η|
C
|η|+1
1 − C |η|+1

2

C1 − C2
= ess sup

η∈Γ0

C1 −
(
C2

C1

)|η|
C2

C1 − C2
=

C1

C1 − C2

and the second statement is fulfilled.
In the case when C1 = C2, we have

(C ′)−|η|(|η|!)−δ|k(η)| ≤ ‖k1‖C1, δ1‖k2‖C2, δ2(C ′)−|η|
|η|∑
k=0

C
|η|
1

= ‖k1‖C1, δ1‖k2‖C2, δ2

(C1

C ′

)|η|
|(η|+ 1),
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and the result is followed by properties of the elementary function:

max
x≥1

(x+ 1)ax = − 1

ae ln a
, a ∈ (0; 1).

Let now k2 ∈ L∞(Γ0). Then

C
−|η|
1 (|η|!)−δ1

∑
ξ⊂η

|k1(ξ)||k2(η \ ξ)| ≤ ‖k2‖L∞(Γ0)‖k1‖C1, δ1C
−|η|
1 (|η|!)−δ1

∑
ξ⊂η

C
|ξ|
1 (|ξ|!)δ1

= ‖k2‖L∞(Γ0)‖k1‖C1, δ1C
−|η|
1 (|η|!)−δ1

|η|∑
k=0

|η|!
k!(|η| − k)!

Ck1 (k!)δ1

≤ ‖k2‖L∞(Γ0)‖k1‖C1, δ1C
−|η|
1

|η|∑
k=0

Ck1 = ‖k2‖L∞(Γ0)‖k1‖C1, δ1

C1 − C−|η|1

C1 − 1
,

and for C1 > 1 one has:

ess sup
η∈Γ0

C1 − C−|η|1

C1 − 1
=

C1

C1 − 1
,

that proves (3.7).

The last statement is followed by the equalities
∑
ξ⊂η 1 = 2|η| and ess supη∈Γ0

(
2
C

)|η|
=

1 if only C ≥ 2.

Corollary 3.4. Let k ∈ KC,δ, C > 0, δ ≥ 0. Then, for δ ∈ [0; 1), k∗n ∈ KnC,δ,
n ∈ N and ‖k∗n‖nC,δ ≤ ‖k‖nC,δ. In the case when δ ≥ 1, we have, for any
C ′ > C, k∗n ∈ KC′,δ, n ≥ 2, and

‖k∗n‖C′,δ ≤
(

C ′

C ′ − C

)n−2
C ′

eC ln C′

C

‖k‖nC,δ, n ≥ 2.

Finally, if k ∈ L∞(Γ0) then k∗n ∈ KC,0 for all C ≥ 2, n ∈ N, and

‖k∗n‖C,0 ≤
(

C

C − 1

)n−2

‖k‖nL∞(Γ0), n ≥ 2.

The sequel results of this Section is somehow “folk art”. They either are
given in literature without proof like in [18] or they can be derived from some
informal general considerations like in [19–21]. Hence, for the convenience of
the reader, we present all these results with detailed proofs.

For an arbitrary c ∈ R, we consider the set Ic of all measurable functions
on Γ0, such that u(∅) = c. Since (u1 ∗u2)(∅) = u1(∅)u2(∅), the set I0 is an ideal
in the algebra L0(Γ0) with a product ∗. A unit in this algebra is the function

u∗0(η) := 1∗(η) := 0|η|.
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For any u ∈ L0(Γ0) and n ∈ N, one has

u∗n(η) = (u ∗ . . . ∗ u︸ ︷︷ ︸
n

)(η) =
∑

η1t...tηn=η

u(η1) . . . u(ηn), η ∈ Γ0,

therefore, for u ∈ I0, we get

u∗n(η) = 0, n > |η|.

Hence, for any smooth function f : R → R with a Taylor expansion in some
domain D ⊂ R, given by

f(t) =

∞∑
n=0

ant
n, t ∈ D,

one can define, for any u ∈ I0 with u(Γ0) ⊂ D, the following function on Γ0

(f∗u)(η) :=

∞∑
n=0

anu
∗n(η), η ∈ Γ0. (3.10)

The latter series is finite for all η ∈ Γ0. It is worth noting that, (f∗u)(∅) = a0.
In particular, taking f(t) = et, one can consider, for all u ∈ I0, the following

expression

exp∗ u(η) :=

∞∑
n=0

1

n!
u∗n(η) = 1∗(η) +

∑
⊔
i
ηi=η

∏
i

u(ηi), (3.11)

where the sum is taking over all partitions of η on nonempty sets. Clearly,
k := exp∗ u ∈ I1. The function u is said to be a cumulant of the function k.

For any k ∈ I1, one can consider the function k̄ = k − 1∗ ∈ I0. Then, if we
only know that f : R→ R has an expansion

f(1 + t) =

∞∑
n=0

ant
n, t ∈ D ⊂ R,

we may define

(f∗k)(η) :=

∞∑
n=0

ank̄
∗n(η), η ∈ Γ0.

It should be noted again, that, for any η ∈ Γ0, the latter series is just a finite
sum.

The following two examples of such function will be the mostly important
for us.

Proposition 3.5. Let k ∈ I1, then there exists the function

k∗−1(η) :=

∞∑
n=0

(−1)nk̄∗n(η), η ∈ Γ0, (3.12)

such that k∗−1 ∈ I1 and
k ∗ k∗−1 = 1∗.
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Proof. The inclusion k∗−1 ∈ I1 is followed from (3.12) directly. Next,

(
k ∗ k∗−1

)
(η) =

∑
ξtζ=η

k (ξ) k∗−1 (ζ) =
∑
ξtζ=η

k (ξ)

∞∑
n=0

(−1)
n
k̄∗n (ζ)

=
∑
ξtζ=η

1∗ (ξ)

∞∑
n=0

(−1)
n
k̄∗n (ζ) +

∑
ξtζ=η

k̄ (ξ)

∞∑
n=0

(−1)
n
k̄∗n (ζ)

=

∞∑
n=0

(−1)
n
k̄∗n (η) +

∞∑
n=0

(−1)
n
∑
ξtζ=η

k̄ (ξ) k̄∗n (ζ)

= k∗−1 (η) +

∞∑
n=0

(−1)
n
k̄∗ (n+1) (η)

= k∗−1 (η) +

∞∑
n=1

(−1)
n−1

k̄∗n (η) = k∗−1 (η)−
∞∑
n=1

(−1)
n
k̄∗n (η)

= k∗−1 (η)−

( ∞∑
m=0

(−1)
m
k̄∗m (η)− 1∗ (η)

)
= 1∗ (η) ,

which proves the statement.

For studying the second example, we consider for any x ∈ X the following
measurable mapping

(DxG)(η) := G(η ∪ x), G ∈ L0(Γ0). (3.13)

It is easy to check that this mapping is satisfied “the chain rule”, namely,

Dx(G1 ∗G2) = (DxG1) ∗G2 +G1 ∗ (DxG2), x ∈ X, (3.14)

for any G1, G2 ∈ L0(Γ0). Note that Dx1∗ = 0. Hence, (3.11) yields that

Dx exp∗ u = Dxu ∗ exp∗ u, u ∈ I0. (3.15)

Proposition 3.6. Let k ∈ I1. Then, there exists

(ln∗ k)(η) :=

∞∑
n=1

(−1)n−1

n
k̄∗n(η), η ∈ Γ0

such that ln∗ k ∈ I0, and, moreover,

ln∗ exp∗ u = u, u ∈ I0, exp∗ ln∗ k = k, k ∈ I1.

Proof. The inclusion ln∗ k ∈ I0 is obvious. Next, (3.14) and (3.12) yield that,
for all η ∈ Γ0, x ∈ X \ η,

Dx ln∗ k(η) = Dxk ∗ k∗−1.0
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Here we used that that Dxk̄ = Dxk. Therefore, using (3.15) we obtain

Dx ln∗ exp∗ u = Dx exp∗ u ∗ (exp∗ u)∗−1

= Dxu ∗ exp∗ u ∗ (exp∗ u)∗−1 = Dxu.

On the other hand, if we assume that, for any u1, u2 ∈ I0,

Dxu1(η) = u1(η ∪ x) = Dxu2(η) = u2(η ∪ x), η ∈ Γ0, x ∈ X \ η

then immediately u1 = u2. As a result, ln∗ exp∗ u = u.
Vise versa, let k ∈ I1. We set exp∗ ln∗ k = k0, then k0 ∈ I1 and, by the

previous considerations, one get

ln∗ k0 = ln∗ exp∗ ln∗ k = ln∗ k. (3.16)

Let us prove that this yields k = k0. First of all it should be noted that, for all
k1, k2 ∈ I1, one has k1 ∗ k2 ∈ I1 and, moreover,

(k1 ∗ k2)∗−1 = (k1)∗−1 ∗ (k1)∗−1,

since (k1)∗−1 ∗ (k1)∗−1 ∗ k1 ∗ k2 = 1∗ ∗ 1∗ = 1∗. Next, we have the following

Dx ln∗(k1 ∗ k2) = (k1 ∗ k2)∗−1 ∗ Dx(k1 ∗ k2)

= k∗−1
1 ∗ k∗−1

2 ∗ Dxk1 ∗ k2 + k∗−1
1 ∗ k∗−1

2 ∗ k1 ∗ Dxk2

= k∗−1
1 ∗ Dxk1 + k∗−1

2 ∗ Dxk2 = Dx ln∗ k1 +Dx ln∗ k2.

Therefore, ln∗(k1 ∗ k2) = ln∗ k1 + ln∗ k2. Hence,

0 = ln∗ 1∗ = ln∗(k2 ∗ k∗−1
2 ) = ln∗ k2 + ln∗ k∗−1

2 , ln∗ k∗−1
2 = − ln∗ k2,

that yields ln∗(k1 ∗ k∗−1
2 ) = ln∗ k1 − ln∗ k2. As a result, (3.16) implies

ln∗(k ∗ k∗−1
0 ) = 0. (3.17)

On the other hand, for any k3 ∈ I1, the condition ln∗ k3 = 0 yields

0 = Dx ln∗ k3 = k∗−1
3 ∗ Dxk3,

that gives 0 = Dxk3(η) = k3(η∪x), k3 = 1∗. Then, by (3.17), we get k ∗k∗−1
0 =

1∗, k0 = k which proves the assertion.

4 A multiplication operator with respect to ∗-
convolution

Let a ∈ KCa,δa for arbitrary Ca > 0, δa ≥ 0. Then, by Proposition 3.3, for any
C > Ca, δ ≥ δa, one can consider the mapping A : KC−Ca,δ → KC,δ given by
the equality

(Ak)(η) = (a ∗ k)(η), η ∈ Γ0. (4.1)
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Proposition 4.1. The operator A with domain KC−Ca,δ is closable in the Ba-
nach space KC,δ.

Remark 4.2. It is easily seen that the operator A is not densely defined in KC,δ.

Proof. Let {kn}n∈N ⊂ KC−Ca,δ and ‖kn‖C,δ → 0, n → ∞. Suppose that there
exists b ∈ KC,δ such that ‖a ∗ kn − b‖C,δ → 0. Then, by Proposition 3.3 and
inequalities between the norms in KC,δ and KC+Ca,δ ⊃ KC,δ 3 b, we obtain

‖b‖C+Ca,δ ≤ ‖a ∗ kn‖C+Ca,δ + ‖a ∗ kn − b‖C+Ca,δ

≤ ‖a‖Ca,δa · ‖kn‖C,δ + ‖a ∗ kn − b‖C,δ → 0, n→∞.

Therefore, b = 0 in KC+Ca,δ that yields b(η) = 0 for λ-a.a. η ∈ Γ0, hence, b = 0
in KC,δ too.

It is worth noting that if a ∈ L∞(Γ0), then, by Proposition (3.3), the opera-
tor (4.1) is well-defined on the whole space KC,δ, for any C > 1, δ ≥ 1, therefore,
it is bounded in this space.

We consider the evolution equation

∂

∂t
kt = Akt, k

∣∣
t=0

= k0. (4.2)

It is straightforward that the following function is an informal solution to (4.2)

kt =

∞∑
n=0

tn

n!
a∗n ∗ k0 = exp∗(ta) ∗ k0. (4.3)

If a ∈ I0 then exp∗(ta) is point-wise defined (see (3.11)) and, therefore, (4.3)
gives a point-wise solution to (4.2).

If a ∈ L∞(Γ0), then, by Corollary 3.4, a∗n ∈ KC,0 for any C ≥ 2, moreover,

‖ exp∗(ta)‖C,0 ≤ 1+t‖a‖L∞(Γ0)+
∑
n=2

tn

n!

(
C

C − 1

)n−2

‖a‖nL∞(Γ0) < exp

(
Ct

C − 1
‖a‖L∞(Γ0)

)
,

that yields exp∗(ta) ∈ KC,0, C ≥ 2. Then, directly by Proposition 3.3, the
equation (4.2) has a solution in the spaces KC,δ, δ ≥ 0.

If one would like to consider solutions to (4.2) in wider spaces, for δ ≥ 1, then
one can allow a ∈ KCa,δa , δa ≥ 1. In this case, by Corollary 3.4, a∗n ∈ KC,δa
for any C > Ca, hence, the series in (4.3) converges in KC,δa . Then, again
by Corollary 3.3, one get that e.g. k0 ∈ KC0,δa , C0 < C yields kt ∈ KC,δa .

Let us consider the following Banach space LC,δ := L1
(
Γ0, C

|η|(|η|!)δ dλ(η)
)
,

C > 0, δ ≥ 0 with norm

‖G‖LC,δ :=

∫
Γ0

|G(η)|C |η|(|η|!)δ dλ(η) =

∞∑
n=0

Cn

(n!)1−δ

∫
Xn
|G(n)(x1, . . . , xn)|dm(x1) . . . dm(xn).

Clearly, Bbs(Γ0) ⊂ LC,δ for all C > 0, δ ≥ 0, and the inclusions are dense. Note
also that eλ(f) ∈ LC,δ for all C > 0, δ ∈ [0; 1), f ∈ L1(X, dm).
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The space KC,δ is a realization of a space which is topologically dual to LC,δ.
Therefore, one can consider a duality between this two spaces which is given by
the pairing

〈〈G, k〉〉 :=

∫
Γ0

G(η)k(η)dλ(η), G ∈ LC,δ, k ∈ KC,δ.

Let the operator A′ in LC,δ is given by

(A′G)(η) :=

∫
Γ0

G(η ∪ ξ)a(ξ) dλ(ξ), G ∈ D(A′),

and D(A′) consists of all G ∈ LC,δ, such that A′G ∈ LC,δ. Evidently, this
operator with a maximal domain is closed. By (3.3), we obtain∫

Γ0

|A′G(η)|C |η|(|η|!)δ dλ(η) ≤
∫

Γ0

∣∣G(η)
∣∣(|a| ∗ C |·|(| · |!)δ)(η) dλ(η).

Then, Proposition 3.3 yields that for all a ∈ KCa,δa , Ca > 0, δa ≥ 0 one has the
following inclusion Bbs(Γ0) ⊂ D(A′) as C > 0, δ ≥ 0. Therefore, A′ is densely
defined. Moreover, for any δa ≤ δ, one has the inclusion LC+Ca,δ ⊂ D(A′). On
the other hand, for max{1, δa} ≤ δ, Ca < C, one get D(A′) = LC,δ, hence, the
operator A′ is bounded in LC,δ.

By (3.3), for any G ∈ D(A′) ⊂ LC,δ, C > 0, δ ≥ 0 and any k ∈ KC,δ with
Ak ∈ KC,δ, one has

〈〈A′G, k〉〉 = 〈〈G,Ak〉〉.

The operator A′ is said to be pre-dual to A.

Proposition 4.3. Let a ∈ KCa,δa , Ca > 0, δa ≥ 0, C > Ca, δ ≥ max{δa, 1}.
Then there exists z0 > 0 such that for all z > z0 the resolvent of the operator
A′ in the space LC,δ has the form

(
Rz(A

′)G
)
(η) :=

(
(z11−A′)−1G

)
(η) =

∞∑
n=0

1

zn+1

∫
Γ0

G(η∪ξ)a∗n(ξ) dλ(ξ). (4.4)

Proof. We first show that (4.4) is a Neumann series. Indeed, (z11 − A′)−1 =

z−1
∑∞
n=0

(A′)n

zn and, using (3.3), (A′)nG(η) =
∫

Γ0
G(η ∪ ξ)a∗n(ξ) dλ(ξ). Since

A′ is a bounded operator in LC,δ, the assertion is proved.

Remark 4.4. Let a ∈ I0. Then, for any z ∈ R and k ∈ L0(Γ0), there exists

(z11−A)−1k =
1

z

(
1∗ − a

z

)∗−1

∗ k =

∞∑
n=0

1

zn+1
a∗n ∗ k,

and the series is point-wise defined.
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We will consider three simple but important examples of a multiplication
operator A, note that a ∈ L∞(Γ0) in all the cases. Let a(η) = 1, η ∈ Γ0. Then
Ak = K0k, where

(K0k)(η) =
∑
ξ⊂η

k(ξ), η ∈ Γ0

(the meaning of the notation K0 will be clear from the second part of the paper).
The pre-dual operator to K0 is the so-called Mayer operator

(DG)(η) := (K ′0G)(η) =

∫
Γ0

G(η ∪ ξ) dλ(ξ), η ∈ Γ0.

Since 1 = eλ(1), the equality (3.2) yields a∗n(η) = n|η|, η ∈ Γ0. Therefore, an
informal solution to the evolution equation (4.2) is

kt =

∞∑
n=0

n|·|tn

n!
∗ k0,

and, evidently, the series converges point-wise.
The second example is the case a(η) = −1, η ∈ Γ0. This defines, of course,

the inverse operator

(K−1
0 k)(η) =

∑
ξ⊂η

(−1)|η\ξ|k(ξ), η ∈ Γ0,

since
(
1 ∗ (−1)

)
(η) =

∑
ξ⊂η(−1)|η\ξ| = 0|η| = 1∗(η). In this case, the pre-dual

operator is

(D−1G)(η) := ((K−1
0 )′G)(η) =

∫
Γ0

(−1)|ξ|G(η ∪ ξ) dλ(ξ), η ∈ Γ0.

The solution to the equation (4.2) is given by analogy, because of (−1)∗n(η) =
(−1)nn|η|, η ∈ Γ0.

Finally, let, σ : X → R be a measurable function and

a(η) =

{
σ(x), η = {x},
0, |η| 6= 1,

η ∈ Γ0. Then

(Ak)(η) =
∑
x∈η

σ(x)k(η \ x), η ∈ Γ0.

From the definition of ∗-convolution we obtain by the induction principle that
a∗n(η) = n!11Γ(n)(η)

∏
x∈η σ(x), η ∈ Γ0, n ∈ N. Therefore,

exp∗(ta)(η) =

∞∑
n=0

11Γ(n)(η)tn
∏
x∈η

σ(x) = eλ(tσ, η), η ∈ Γ0.
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Hence, the point-wise solution to the evolution equation

∂

∂t
kt(η) =

∑
x∈η

σ(x)kt(η \ x), k
∣∣
t=0

= k0, η ∈ Γ0 (4.5)

is the function kt = eλ(tσ) ∗ k0. It is worth noting, that, by (3.2), k0 = eλ(C) ∈
KC,0, C > 0 yields kt(η) = eλ(C + tσ, η), η ∈ Γ0. Therefore, if e.g. σ ∈
L∞(X, dm), q = ‖σ‖L∞(X), then kt ∈ KC+tq,0, t ≥ 0. This means that for any
C ′ > C the solution to (4.5) belongs to the space KC′,0 on a finite time interval
only. On the other hand, it is easily seen that for all C ′ > 0, δ > 0, t ≥ 0 the
inclusion kt ∈ KC′,δ holds true. It can be shown by analogy that k0 ∈ KC,δ,
C > 0, δ > 0 implies kt ∈ KC,δ+ε for all ε > 0 and t ≥ 0.

Remark 4.5. Let δ ∈ [0; 1). In the latter example the evolution KC,δ 3 k0 7→
kt ∈ KC,δ+ε with an arbitrary ε > 0 can be constructed only by using the explicit
expression for exp∗(ta). If we would like to obtain an estimate for exp∗(ta) with
an arbitrary a using the series, then we will need to consider ε ≥ 1. The problem
is that to include a∗n ∈ KCn,δ into the space KC,δ+ε with ε independent on n,
the norm of a∗n in KC,δ+ε will be increase in n depending on ε. Unfortunately, at

present, it is known only the upper bound by the expression ‖a‖nC,δ exp
{
εn

1
ε

}
,

that implies that the condition ε ≥ 1 is sufficient for the convergence of the
series

∑∞
n=0

tn

n!a
∗n in KC,δ+ε. The exact asymptotic of an inclusion operator

in n and ε is unknown.

Remark 4.6. Let D(Γ0) be a linear topological space of measurable functions
on Γ0, that is continuously embedded into LC,δ for some C > 0, δ ≥ 0. For any
k ∈ KC,δ, the mapping G 7→

∫
Γ0
Gk dλ defines a linear continuous functional

on LC,δ; therefore, this mapping defines a liner continuous functional on D(Γ0)
too. Therefore, k can be considered as a regular generalized function on D(Γ0).
In this case, the equality (3.3) can be considered as a way to define a convolution
for regular generalized functions, cf. e.g. [7, p. 103]. By associativity of ∗-
convolution the operator A has the following property: A(k1∗k2) = (Ak1)∗k2 =
k1 ∗ (Ak2). An arbitrary operator on generalized functions over (Rd)n has the
same property, see e.g. [7, p. 105]. However, A is not satisfied to the chain rule in
an algebra of function from L0(Γ0) with a product given by the ∗-convolution.
Derivation operators with respect to the ∗-convolution are considered in the
sequel.

5 Some additional constructions

5.1 Convolutions of measures on Γ0

In what follows we will need spaces of configurations of two different point
types, which we denote “+” and “−”. Namely, for any Y ± ∈ B(X), n± ∈ N we

consider Γ
±,(n±)
0,Y ± := Γ

(n±)
0,Y ± , Γ±0,Y ± := Γ0,Y ± , Γ±0 := Γ0 and we set Γ

2,(n+,n−)
0,Y +,Y − :=

Γ
+,(n+)
0,Y + × Γ

−,(n−)
0,Y − , Γ2

0,Y +,Y − := Γ+
0,Y + × Γ−0,Y − , Γ2

0 := Γ+
0 × Γ−0 . In the case
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Y + = Y − = Y ∈ B(X), n+ = n− = n ∈ N we will write just Γ
2,(n)
0,Y =

Γ
+,(n)
0,Y ×Γ

−,(n)
0,Y , Γ2

0,Y = Γ+
0,Y ×Γ−0,Y . On the all spaces above product-topologies

can be considered. These topologies will be well-correspond with expansions

like Γ2
0,Y =

⊔
n+,n−∈N0

Γ
+,(n+)
0,Y × Γ

−,(n−)
0,Y . Clearly, the corresponding Borel σ-

algebras will be minimal σ-algebras which are generated by Cartesian products
of Borel subsets of the configuration spaces of each type. As before, we will
omit the subscript 0 if only Y = Λ ∈ Bc(X).

Let us define also some notions by analogy with one-type configuration
spaces. A function G : Γ2

0 → R is said to have a local support if there ex-
ists Λ ∈ Bc(X)such that G �Γ2

0\(Γ
+
Λ×Γ−Λ )= 0. Let L0

ls(Γ
2
0) denote the class of

all measurable functions on Γ2
0 which have local supports. A set B ∈ B(Γ2

0)
is said to be bounded if there exist Λ ∈ Bc(X) and N ∈ N such that B ⊂(⊔N

n=0 Γ
+,(n)
Λ

)
×
(⊔N

n=0 Γ
−,(n)
Λ

)
. Let Bb(Γ2

0) denote the class of all bounded

subsets from B(Γ2
0). A function G : Γ2

0 → R is said to have a bounded support
if there exists B ∈ Bb(Γ2

0) such that G �Γ2
0\B̃

= 0. Let Bbs(Γ
2
0) denote the class

of all bounded functions on Γ2
0 which have bounded supports. A measure ρ on(

Γ2
0,B(Γ2

0)
)

is said to be a locally finite measure if ρ(B) <∞, for all B ∈ Bb(Γ2
0).

Let Mlf(Γ
2
0) denote the class of all such measures.

For an arbitrary measurable function G : Γ0 → R, we consider the measur-
able function G̃ : Γ2

0 → R given by

G̃(η+, η−) = G(η+ ∪ η−), (η+, η−) ∈ Γ2
0. (5.1)

For ρi ∈Mlf(Γ0), i = 1, 2, we define a ρ̂ on
(
Γ2

0,B(Γ2
0)
)

given by dρ̂(η+, η−) =
dρ1(η+) dρ2(η−). On the other words, ρ̂ = ρ1 ⊗ ρ2. Clearly, ρ̂ ∈Mlf(Γ

2
0).

Definition 5.1. Let ρi, i = 1, 2 be measures on
(
Γ0,B(Γ0)

)
. A measure ρ on(

Γ0,B(Γ0)
)

is said to be the convolution of these measures if, for any G : Γ0 → R
such that G̃ ∈ L1(Γ2

0, dρ̂), the following identity holds true∫
Γ0

G(η)dρ(η) =

∫
Γ2

0

G̃(η+, η−) dρ̂(η+, η−) =

∫
Γ+

0

∫
Γ−0

G(η+∪η−) dρ1(η+) dρ2(η−).

(5.2)
The notation is ρ = ρ1 ∗ ρ2.

Proposition 5.2. Let ρ1,2 ∈Mlf(Γ0), ρ = ρ1 ∗ ρ2. Then ρ ∈Mlf(Γ0).

Proof. Let B ∈ Bb(Γ0), hence, there exist Λ ∈ Bc(X) and N ∈ N such that

B ⊂ AN :=
N⋃
n=0

Γ
(n)
Λ . Then

ρ(B) =

∫
Γ

11B(η) dρ(η) =

∫
Γ+

0

∫
Γ−0

11B(η+ ∪ η−) dρ1(η+) dρ2(η−)

≤
∫

Γ+
0

∫
Γ−0

11AN (η+ ∪ η−) dρ1(η+) dρ2(η−)

≤
∫

Γ+
0

∫
Γ−0

11AN (η+)11AN (η−) dρ1(η+) dρ2(η−) = ρ1(AN )ρ2(AN ) <∞.
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The statement is proved.

The notation “∗” for the convolution of measures coincides with the notation
for the ∗-convolution of functions given by (3.1). This is motivated by the
following statement.

Proposition 5.3. Let ρi ∈ Mlf(Γ0), i = 1, 2. Suppose that there exist the fol-
lowing Radon–Nikodym derivatives with respect to the Lebesgue–Poisson mea-

sure: ki =
dρi
dλ

, i = 1, 2. Then, the convolution of measures, ρ = ρ1 ∗ ρ2, has

also a Radon–Nikodym derivative with respect to the Lebesgue–Poisson measure,

k =
dρ

dλ
, and, moreover, k = k1 ∗ k2.

Proof. Let G ∈ Bbs(Γ0). By (5.2), one has∫
Γ0

G(η) dρ(η) =

∫
Γ+

0

∫
Γ−0

G(η+ ∪ η−) dρ1(η+) dρ2(η−)

=

∫
Γ+

0

∫
Γ−0

G(η+ ∪ η−)k1(η+)k2(η−) dλ(η+) dλ(η−)

=

∫
Γ0

G(η)(k1 ∗ k2)(η) dλ(η),

where we used (3.3). The statement is proved.

5.2 Generating functionals

Generating functionals, a.k.a. Bogolyubov functionals, were introduced in 1946,
see [3], the more recent results see e.g. in [11]. Properties of generating func-
tionals are closely connected to properties of probability measures on spaces
of locally finite configurations. In spite of this, in the first part of our work
we restrict our attention to the properties of the generating functionals in the
framework of spaces of finite configuration only.

Let k ∈ KC,δ, C > 0, δ ∈ [0; 1). Then the functional (cf. [11, expr. (9)])

Bk(f) :=

∫
Γ0

eλ(f, η)k(η) dλ(η), f ∈ L1 := L1(X, dm)

is well-defined since

∣∣Bk(f)
∣∣ ≤ ∞∑

n=0

1

(n!)1−δ

(
C‖f‖L1

)n
<∞.

By (3.3) and Proposition 3.3, one get that ki ∈ KCi,δi , Ci > 0, δi ∈ [0; 1),
i = 1, 2 yield k1 ∗ k2 ∈ KC,δ, where C = C1 + C2, δ = max{δ1, δ2} and

Bk1∗k2
(f) = Bk1

(f)Bk2
(f), f ∈ L1.
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Remark 5.4. This procedure might be easily generalized to the case of measures
on Γ0. Namely, let ρ ∈Mlf(Γ0) be such that eλ(f) ∈ L1(Γ0, dρ) for all f ∈ L1.
Then, one can define the functional

B̃ρ(f) :=

∫
Γ0

eλ(f, η) dρ(η), f ∈ L1.

By (5.2), we get B̃ρ1∗ρ2
(f) = B̃ρ1

(f)B̃ρ2
(f), f ∈ L1. Clearly, if only k =

dρ

dλ
≥ 0

exists then Bk = B̃ρ.

Proposition 5.5. Let u ∈ I0 and suppose that there exist C,C ′ > 0, δ, δ′ ∈
[0; 1) such that u ∈ KC,δ, exp∗ |u| ∈ KC′,δ′ . Then Bk(f) > 0 for k = exp∗ u and
for all f ∈ L1.

Proof. Suppose that u ∈ KC,δ, then |Bu(f)| ≤ B|u|(|f |) < ∞. Therefore, by
(3.3), we obtain ∫

Γ0

eλ(|f |)|u|∗n dλ =
(
B|u|(|f |)

)n
<∞.

Hence, ∣∣∣∣∣
∞∑
n=0

1

n!

∫
Γ0

eλ(f)u∗n dλ

∣∣∣∣∣ ≤ exp
(
B|u|(|f |)

)
<∞. (5.3)

Set gN :=
∑N
n=0

1
n!

∫
Γ0
eλ(f)u∗n dλ ∈ R. By (5.3), we get that there exists

a finite limit limN→∞ gN . Next, the sequence UN :=
∑N
n=0

1
n!eλ(f)u∗n has

an integrable dominated function eλ(|f |) exp∗ |u| in the space L1(Γ0, dλ), since
exp∗ |u| ∈ KC′,δ′ . As a result, by the dominated convergence theorem, one has

Bk(f) =

∫
Γ0

eλ (f, η) k (η) dλ (η) =

∫
Γ0

eλ (f, η)

∞∑
n=0

1

n!
u∗ndλ (η)

=

∞∑
n=0

1

n!

∫
Γ0

eλ (f, η)u∗n (η) dλ (η) = exp

{∫
Γ0

eλ (f, η)u (η) dλ (η)

}
> 0,

that proves the assertion.

Remark 5.6. It is worth noting that for any k ∈ I1 there always exists u ∈ I0

such that k = exp∗ u. Therefore, Bk is always a positive functional if only the
sufficient conditions on the growth of |u| and exp∗ |u| hold.

5.3 Derivation operator with respect to the ∗-convolution

As was noted before, the operator Dx, given by (3.13), is satisfied the chain
rule with respect to the ∗-convolution, see (3.14). Let us consider an another
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operator with such a property. Let (Nk)(η) = |η|k(η), k ∈ L0(Γ0), η ∈ Γ0.
Then(
N(k1 ∗ k2)

)
(η) = |η|

∑
ξ⊂η

k1(ξ)k2(η \ ξ) =
∑
ξ⊂η

|ξ|k1(ξ)k2(η \ ξ) +
∑
ξ⊂η

k1(ξ)|η \ ξ|k2(η \ ξ)

=
(
(Nk1) ∗ k2

)
(η) +

(
k1 ∗ (Nk2)

)
(η)

for all k1, k2 ∈ L0(Γ0), η ∈ Γ0.

Definition 5.7. An operator B on L0(Γ0) is said to be a derivation operator if
B1∗ = 0 and (

B(k1 ∗ k2)
)
(η) =

(
(Bk1) ∗ k2

)
(η) +

(
k1 ∗ (Bk2)

)
(η) (5.4)

for λ-a.a. η ∈ Γ0.

Note that as yet we consider these operators point-wise defined only, without
any relation to some Banach spaces.

Therefore, operators Dx and N are derivation operators (since equalities
Dx1∗ = N1∗ = 0 are followed by definitions of these operators). A number of
other examples of such operators we consider in the second part of this work.

By an induction principle, Bu∗n = n(Bu) ∗ u∗(n−1), n ∈ N, u ∈ L0(Γ0).
Then, for any u ∈ I0 the following (point-wise) equality holds, cf. (3.15),

B exp∗ u = B

(
1∗+

∞∑
n=1

1

n!
u∗n
)

=

∞∑
n=1

1

n!
n(Bu)∗u∗(n−1) = (Bu)∗exp∗ u. (5.5)

The equality (5.5) has an important corollary. Let B be an derivation operator
and consider the evolution equation

∂

∂t
kt = Bkt, k

∣∣
t=0

= k0.

Suppose that kt(∅) = 1, t ≥ 0, this yields kt ∈ I1. Then, by Proposition 3.6, for
any t ≥ 0, there exists ut ∈ I0 such that kt = exp∗ ut. By (5.5), we obtain

∂

∂t
kt = B exp∗ ut = (But) ∗ kt. (5.6)

On the other hand, (3.11) directly implies that, by analogy to (5.5),

∂

∂t
kt =

∂

∂t
exp∗ ut =

∂

∂t
ut ∗ exp∗ ut =

∂

∂t
ut ∗ kt. (5.7)

By our assumption kt ∈ I1, then Proposition 3.5 yields that there exist k∗−1
t ∈

I1. If we compare now the right hand sides of (5.6) and (5.7), and multiply
them (in the sense of the ∗-convolution) on k∗−1

t , we obtain

∂

∂t
ut = But.

As a result, the equation for cumulants ut coincides with the equation for func-
tions kt.
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Proposition 5.8. Let (B,D(B)) be an operator in KC,δ, C > 0, δ ≥ 0 with the
maximal domain. Let

(
B′, D(B′)

)
be a closed densely defined operator in LC,δ

such that 〈〈B′G, k〉〉 = 〈〈G,Bk〉〉 for all G ∈ D(B′), k ∈ D(B). Suppose also that
G(· ∪ η) ∈ D(B′) for λ-a.a. η ∈ Γ0 and for all G ∈ D(B′), and that, for λ-a.a.
η, ξ ∈ Γ0,

(B′G)(η ∪ ξ) =
(
(B′G)(· ∪ ξ)

)
(η) +

(
(B′G)(· ∪ η)

)
(ξ). (5.8)

Then, for all k1, k2 ∈ D(B) with k1 ∗ k2 ∈ D(B), k1 ∗ (Ak2), (Ak1) ∗ k2 ∈ KC,δ,
the equality (5.4) holds.

Proof. By (3.3) and (5.8), for all G, k1, k2 as above, one has∫
Γ0

G(η)
(
B(k1 ∗ k2)

)
(η)dλ(η) =

∫
Γ0

(B′G)(η)(k1 ∗ k2)(η)dλ(η)

=

∫
Γ0

∫
Γ0

(B′G)(η ∪ ξ)k1(η)k2(ξ)dλ(η)dλ(ξ)

=

∫
Γ0

∫
Γ0

(
B′G(· ∪ ξ)

)
(η)k1(η)k2(ξ)dλ(η)dλ(ξ)

+

∫
Γ0

∫
Γ0

(
B′G(· ∪ η)

)
(ξ)k1(η)k2(ξ)dλ(η)dλ(ξ)

=

∫
Γ0

∫
Γ0

G(η ∪ ξ)(Bk1)(η)k2(ξ)dλ(η)dλ(ξ)

+

∫
Γ0

∫
Γ0

G(η ∪ ξ)k1(η)(Bk2)(ξ)dλ(η)dλ(ξ)

=

∫
Γ0

G(η)
(
(Bk1) ∗ k2

)
(η)dλ(η) +

∫
Γ0

G(η)
(
k1 ∗ (Bk2)

)
(η)dλ(η),

which proves the assertion.

5.4 ?-convolution of functions on Γ0

The following convolution between functions on Γ0 was introduced in [10].

Definition 5.9. Set, for arbitrary measurable functions G1 and G2 on Γ0,

(G1 ? G2)(η) :=
∑

ξ1tξ2tξ3=η

G1(ξ1 ∪ ξ2)G2(ξ2 ∪ ξ3), η ∈ Γ0, (5.9)

where the symbol t means a disjoint union of sets.

Remark 5.10. The function G1 ? G2, given by (5.9), is also measurable. More-
over, the classes of functions L0

ls(Γ0) and Bbs(Γ0) are closed with respect to
?-convolution, see [10, Remarks 3.10, 3.12].

Remark 5.11. The equality (5.9) may be rewritten in the following form

(G1 ? G2)(η) :=
∑

ξ1∪ξ2=η

G1(ξ1)G2(ξ2). (5.10)
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In turn, the convolution (3.1) may be rewritten in the form similar to (5.10),
namely,

(G1 ∗G2)(η) =
∑

ξ1tξ2=η

G1(ξ1)G2(ξ2). (5.11)

Comparing the right hand sides of (5.11) and (5.11), it is easily seen that the
sum in the definition of the ∗-convolution is a part of the sum in the definition
of the ?-convolution.

A function k ∈ L0(Γ0) is said to be a positive definite in the sense of the
?-convolution, if ∫

Γ0

(G ? G)(η)k(η) dλ(η) ≥ 0 (5.12)

for all B ∈ Bbs(Γ0). We would like to check now either the set of all positive
definite functions in the sense of the ?-convolutions be a closed set with respect
to the ∗-convolution.

We start with the following convolution between measurable functions G1

and G2 on Γ2
0:

(G1 ?©G2)(η+, η−) :=
∑

ξ+
1 tξ

+
2 tξ

+
3 =η+

ξ−1 tξ
−
2 tξ

−
3 =η−

G1(ξ+
1 ∪ ξ

+
2 , ξ

−
1 ∪ ξ

−
2 )G2(ξ+

2 ∪ ξ
+
3 , ξ

−
2 ∪ ξ

−
3 ).

(5.13)
A measurable function k : Γ2

0 → R is said to be a positive definite in the sense
of the ?©-convolution if for all G ∈ Bbs(Γ

2
0)∫

Γ2
0

(G ?©G)(η+, η−)k(η+, η−)dλ(η+)dλ(η−) ≥ 0. (5.14)

Proposition 5.12. Let functions ki : Γ0 → R, i = 1, 2 be measurable. Then the
function k(η) = (k1 ∗ k2)(η) is positive definite in the sense of the ?-convolution

on Γ0, if only the function k̂(η+, η−) := k1(η+)k2(η−) is positive definite in the
sense of the ?©-convolution on Γ2

0.

Proof. Let Gi ∈ Bbs(Γ0) and functions G̃i ∈ Bbs(Γ
2
0), i = 1, 2 are defined by

analogy to (5.1). Then for all (η+, η−) ∈ Γ2
0, such that η+ ∩ η− = ∅, one has

(G1 ? G2)(η+ ∪ η−) =
∑

ξ1tξ2tξ3=η+∪η−
G1(ξ1 ∪ ξ2)G2(ξ2 ∪ ξ3)

=
∑

η+
1 tη

+
2 tη

+
3 =η+

∑
η−1 tη

−
2 tη

−
3 =η−

G1(η+
1 ∪ η

+
2 ∪ η

−
1 ∪ η

−
2 )G2(η+

2 ∪ η
+
3 ∪ η

−
2 ∪ η

−
3 )

= (G̃1 ?© G̃2)(η+, η−). (5.15)

We proceed to show now that, for an arbitrary z > 0,

(λz ⊗ λz)
({

(η+, η−) ∈ Γ2
0

∣∣ η+ ∩ η− 6= ∅
})

= 0. (5.16)
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Indeed, for any η+ ∈ Γ+
0 , one can define Aη+ :=

{
η− ∈ Γ−0

∣∣ η+ ∩ η− 6= ∅
}

.
Then we have an estimate

λz(Aη+) ≤
∑
x∈η+

λz

({
η− ∈ Γ−0

∣∣ x ∈ η−}) = 0, (5.17)

where we used (2.3). Next, using

(λz ⊗ λz)
({

(η+, η−) ∈ Γ2
0

∣∣ η+ ∩ η− 6= ∅
})

=

∫
Γ+

0

λz
(
Aη+

)
dλz(η

+),

one has that (5.17) implies (5.16).

Then, for any G ∈ Bbs(Γ0) and G̃ ∈ Bbs(Γ
2
0), given by (5.1), we derive from

(3.3) that ∫
Γ0

(G ? G)(η)k(η)dλ(η) =

∫
Γ0

(G ? G)(η)(k1 ∗ k2)(η)dλ(η)

=

∫
Γ2

0

(G ? G)(η+ ∪ η−)k1(η+)k2(η−)dλ(η+)dλ(η−)

=

∫
Γ2

0

(G̃ ?© G̃)(η+, η−)k1(η+)k2(η−)dλ(η+)dλ(η−), (5.18)

where we used (5.15) and (5.16).
The equality (5.18) implies immediately that the positive definiteness of

k̂ = k1 ⊗ k2 in the sense of the ?©-convolution yields the positive definiteness of
k = k1 ∗ k2 in the sense of the ?-convolution. The statement is proved.

Remark 5.13. One can change in (5.12) the measure k dλ onto any measure
ρ ∈ Mlf(Γ0) and define by an analogy the notion of a measure on Γ0 which
is positive definite with respect to the ?-convolution. Then the results of
Proposition 5.12 may be reformulated for measures ρ1, ρ2, if we only know that
(ρ1 ⊗ ρ2)

({
(η+, η−) ∈ Γ2

0

∣∣ η+ ∩ η− 6= ∅
})

= 0.
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