
SPECTRAL GAP INEQUALITIES ON CONFIGURATION SPACES

D. L. Finkelshtein

Abstract. In the first part we consider the Laplace operator with Neumann boundary conditions on
a configuration space with Poisson measure over a bounded domain. The spectrum of this operator is

considered and a structure of its vacuum space is studied. The corresponding spectral gap inequality
is proved. The differences between Poincaré and spectral gap inequalities are shown, and absence of

Poincaré inequality is presented. In the second part we study a second order differential operator with

grown coefficients on a whole configuration space. The main properties of this operator are considered
and Poncaré inequality is proved.

1. A spectral gap inequality on ΓΛ

Let Λ be a bounded domain in Rd which satisfies the following conditions:
(1) For any smooth vector field w on Λ̄ the Gauss formula holds:∫

Λ

(divw) (x) dx =
∫
∂Λ

(w (s) , νs) dS,

where ν is the outer normal to ∂Λ at the point s;
(2) For any smooth function f on Λ̄ the Poincaré inequality holds:∫

Λ

(
f (x)− 1

m (Λ)

∫
Λ

f (y) dy
)2

dx =
∫

Λ

f2 (x) dx− 1
m (Λ)

(∫
Λ

f (x) dx
)2

≤C
∫

Λ

|∇f |2 (x) dx,

where ∇ is a usual gradient on Rd;
(3) Let DN (Λ) be a set of functions on Λ̄ that satisfied Neumann boundary condition on boun-

dary ∂Λ of Λ, then an operator H =
(
−∆,DN (Λ)

)
is essentially self-adjoint in L2 (Λ, dx)

(∆ is a usual Laplace operator on Rd).
The simple example of such domain is a ball or a cube.

Since KerH = {c ∈ R}, then PrKerH f = 1
m(Λ)

∫
Λ
f(x)dx, and so, if f ∈ DN (Λ) then because of

equality
∫

Λ
|∇f |2 (x) dx =

∫
Λ
Hf(x) · f(x)dx the Poincaré inequality may be written in a form of

a ”spectral gap inequality”: for f ∈ DN (Λ)∫
Λ

(f (x)− PrKerH f(x))2
dx ≤ C

∫
Λ

Hf(x) · f(x)dx

= C

∫
Λ

H (f (x)− PrKerH f(x)) (x) · (f (x)− PrKerH f(x)) dx,

it means that on the set DN (Λ)

⋂
(KerH)⊥ the operator H is positive: H ≥ 1

C > 0.
Let us consider a space of configurations (finite subsets) of Λ: ΓΛ = {γ ⊂ Λ| |γ| <∞}. Any

configuration can be identified with a Radon measure on Rd: γ =
∑
x∈γ εx, which gives a possibility
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to endow the configuration space with the relative topology as the subset of the space D′ with
vague topology, i.e., the weakest topology such that all maps γ 7→ 〈ϕ, γ〉 =

∑
x∈γ ϕ (x) , ϕ ∈ D are

continuous
(
D = C∞0

(
Rd
))

.
Clearly, ΓΛ =

⊔∞
n=0 Γ(n)

Λ , where Γ(n)
Λ = {γ ⊂ Λ| |γ| = n} = Λ̃n/Sn (there Λ̃n is a set Λn without

diagonals, Sn is a permutation group).
We define the Poisson measure on ΓΛ via direct formula

πΛ = e−m(Λ)
∞∑
n=0

1
n!
m̂n,

where m̂n is an image on Γ(n)
Λ of the Lebesgue measure mn on Λn (so, m is a usual Lebesgue

measure on Rd).
In the Hilbert space L2 (ΓΛ) we consider a dense subset of cylindric functions:

FC∞b (ΓΛ,D) =
{
F (·) = gF (〈ϕ1, ·〉 , . . . , 〈ϕN , ·〉)

∣∣ϕk ∈ D; gF ∈ C∞b
(
RN
)}

.

In [1] the differential geometry on configuration space was constructed. Note that the gradient
of a function F is defined as the element of a tangent space (the space of vector fields indexed by
points of a configuration), such that

∇ΓF (γ) =
(
∇xF (γ)

)
x∈γ
∈ Tγ (ΓΛ) .

A Laplace operator is defined as following:

∆ΓF (γ) =
∑
x∈γ

∆xF (γ) .

It is not symmetric on all (smooth) cylindric functions. In [5] the necessary and sufficient conditions
of its symmetry on smaller sets of functions were founded. In particular, if we consider a class of
functions which satisfies ”the Neumann boundary condition”

F ∈ FC∞b
(
ΓΛ,DN (Λ)

)
⇔ ϕk ∈ DN (Λ),

then an operator
HΓΛ := −∆Γ �FC∞b (ΓΛ,DN(Λ))

will be the image of the second quantization of the one-particle operator
(
−∆,DN (Λ)

)
under the

canonical isomorphism between the space L2 (ΓΛ, πΛ) and the Fock space Exp
(
L2 (Λ, dx)

)
; so, it

is essentially self-adjoint in L2 (ΓΛ, πΛ) . Moreover, since the operator
(
−∆,DN (Λ)

)
has pure point

spectrum only
0 = µ1 < µ2 ≤ µ3 ≤ . . . ,

then the operator HΓΛ have this property too.
A new result is that the own subspace of the HΓΛ , which correspond to zero eigenvalue, be

infinite-dimensional. More precisely, the following statement is true.

Proposition 1.1. Let KerHΓΛ be a kernel of the HΓΛ in the L2 (ΓΛ, πΛ) , χ
Γ

(n)
Λ

be a indicator of

the space Γ(n)
Λ . Then

KerHΓΛ =

{
F =

∞∑
n=0

cnχΓ
(n)
Λ

∣∣∣∣∣F ∈ FC∞b (ΓΛ,DN (Λ)

)}
.

Sketch of the proof. Note that we consider a non-closed operator, its kernel is a not-closed set. For
its closure we use the same notation. Clearly, the condition

∑∞
n=0 cnχΓ

(n)
Λ
∈ L2 (ΓΛ, πΛ) means the

following
∞∑
n=0

c2n (m (Λ))n

n!
< +∞.
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The main idea of the proof of Proposition 1.1 is the following. If F (·) = gF (〈ϕ1, ·〉 , . . . , 〈ϕN , ·〉) ∈
FC∞b

(
ΓΛ,DN (Λ)

)
, then if we consider for any n ≥ 1 a function

f (n) (x1, . . . , xn) := gF

(
n∑
k=1

ϕ1 (xk) , . . . ,
n∑
k=1

ϕN (xk)

)
= F ({x1, . . . , xn}) ,

we obtain that it satisfies the usual Neumann boundary condition as a function of nd variables
over domain Λn ⊂ Rdn. �

Note that KerHΓΛ is non-empty. For example, the function F (γ) = e−|γ| = e〈−1,γ〉 ∈
FC∞b

(
ΓΛ,DN (Λ)

)
is in this kernel.

Moreover, the following statement holds:

Corollary 1.2. KerHΓΛ = {c (|·|) |c ∈ C∞b (R)} .

It is a direct consequence of the Proposition 1.1. Note that this corollary is true for a non-closed
operator HΓΛ only.

Clearly, for any F ∈ KerHΓΛ one has ∇ΓF (γ) = 0, so, in general, the Poincaré inequality∫
ΓΛ

(
F (γ)−

∫
ΓΛ

F (γ) dπΛ (γ)
)2

dπΛ (γ) ≤ const.
∫

ΓΛ

∣∣∇ΓF (γ)
∣∣2
Tγ(Γ)

dπΛ (γ) ,

can not be true on the space ΓΛ, since if F ∈ KerHΓΛ , then the right hand side is equal to 0, but
F is not a constant on the whole space.

Using Proposition 1.1 it is easy to compute a projection of F on the KerHΓΛ .

Proposition 1.3. Let F ∈ FC∞b (ΓΛ,D), then

PrKerHΓΛ F (γ) =
∞∑
n=0

χ
Γ

(n)
Λ

(γ)
1

(m (Λ))n

∫
Λn
F ({x1, . . . , xn}) dx1 . . . dxn.

It follows from the fact that if H(n) is the n-particle Laplace operator on functions over Λn,
which satisfies Neumann boundary conditions, then

PrKerH(n) f (n) =
1

(m (Λ))n

∫
Λn
f (n) ({x1, . . . , xn}) dx1 . . . dxn

It is well-known that the Poincaré inequality has a following multiplicative property (see, e.g.,
[7]):

Proposition 1.4. Let f (n) be a symmetric smooth function on Λ̄n. Then

∫
Λn

(
f (n) (x1, . . . , xn)− 1

(m (Λ))n

∫
Λn
f (n) (x1, . . . , xn) dx1 . . . dxn

)2

dx1 . . . dxn

≤ C
∫

Λn

∣∣∣∇(n)f (n)
∣∣∣2 (x1, . . . , xn) dx1 . . . dxn,

and a constant C doesn’t depend on n.

Because of this fact we may obtain the spectral gap inequality on a configuration space ΓΛ.

Theorem 1.5. For any function F ∈ FC∞b (ΓΛ,D) the spectral gap inequality holds

(1.1)
∫

ΓΛ

|F (γ)− PrKerHΓΛ F (γ)|2 dπΛ (γ) ≤ C
∫

ΓΛ

∣∣∇ΓF (γ)
∣∣2
Tγ(Γ)

dπΛ (γ) .

For a proof we need rewrite the left hand side of (1.1) using Proposition 1.3 and on each Γ(n)
Λ

use Proposition 1.4.
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Remark 1.6. The inequality (1.1) is really the spectral gap inequality, since (see [5])∫
ΓΛ

∣∣∇ΓF (γ)
∣∣2
Tγ(Γ)

dπΛ (γ) =
∫

ΓΛ

HΓΛF (γ) · F (γ) dπΛ (γ)

for F ∈ FC∞b
(
ΓΛ,DN (Λ)

)
.

Remark 1.7. By a projection property one has∫
ΓΛ

|F (γ)− PrKerHΓΛ F (γ)|2 dπΛ (γ)

=
∫

ΓΛ

F 2 (γ) dπΛ (γ)−
∫

ΓΛ

(PrKerHΓΛ F (γ))2
dπΛ (γ) .

Since ∫
ΓΛ

PrKerHΓΛ F (γ) dπΛ (γ) =
∫

ΓΛ

F (γ) dπΛ (γ) ,

then by Hölder inequality we have that∫
ΓΛ

|F (γ)− PrKerHΓΛ F (γ)|2 dπΛ (γ) ≤
∫

ΓΛ

(
F (γ)−

∫
ΓΛ

F (γ) dπΛ (γ)
)2

dπΛ (γ) .

So, we see that the Poincaré inequality is more strong than the spectral gap inequality.

2. A spectral gap inequality on Γ

In this section we consider a space of all configurations (locally finite subsets) of Rd:

Γ :=
{
γ ⊂ Rd ||γ ∩K| <∞ for any compact K ⊂ Rd

}
.

The Poisson measure π is defined as a measure on Γ such that its projection on ΓΛ is πΛ for
any bounded measurable Λ ⊂ Rd. For main properties of this space we again refer to [1].

Let us consider an operator A on D in L2
(
Rd, dx

)
such that

Af (x) = −div (a (x)∇f (x)) ,

where a (x) is a positive matrix function which has enough growing. The simplest but useful
example is the case

(2.1) a (x) =
(

1 + ‖x‖2
)

11.

The corresponding Dirichlet form is

E (f, g) =
∫

Rd
a (x) |∇f (x)|2 dx.

Let us collect useful for us properties of the operator A:
1. (See, e.g., [6], [2], [3]). (A,D) is essential self-adjoint operator, if

‖a (x)‖ = O
(
r2 log2 r

)
, r = ‖x‖ → ∞.

2. (See [3]). The semigroup Tt := e−tA is conservative, that means that

Tt1 = 1 for all t ≥ 0,

if
‖a (x)‖ = O

(
r2 log r

)
, r = ‖x‖ → ∞.

3. (See [4]). If
a (x) ≥

(
1 + ‖x‖2

)
11,
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then (A,D) is a strongly positive operator in L2
(
Rd, dx

)
, more precisely:

A ≥ d

4
.

4. Under previous condition (A,D) has discrete spectrum if d ≥ 3.
As we see, the growth ”between” r2 and r2 log r is satisfied for all conditions.
Let us consider the second quantization of A in the Fock space Exp

(
L2
(
Rd, dx

))
, and let AΓ

be an image of this second quantization under the canonical isomorphism between this Fock space
and L2 (Γ, π). It is known from a general result (see [1]) that

∫
Γ

AΓF (γ) ·G (γ) dπ (γ)

=
∫

Γ

∫
Rd
Ax (F (γ + εx)− F (γ)) · (G (γ + εx)−G (γ)) dπ (γ) .

From this equality and Mecke formula (see, e.g., [1], [5]) one has∫
Γ

AΓF (γ) ·G (γ) dπ (γ) =
∫

Γ

〈
AΓ (γ)∇ΓF (γ) ,∇ΓG (γ)

〉
Tγ(Γ)

dπ (γ) ,

where AΓ (γ) is a diagonal matrix:

AΓ (γ) = diag {a (x)}x∈γ .

Then, if the conditions 1–4 on the growth of a hold, from the general theory of second quanti-
zation one has that the operator

(
AΓ,FC∞b (Γ,D)

)
is essentially self-adjoint in L2 (Γ, π) and has

a discrete spectrum if d ≥ 3.
Moreover, under a conservative property (see [1]) we know that the corresponding stochastic

process on the configuration space can be considered as a collection of independent processes
(without interaction) on Rd. (It means that the dynamics of a configuration is a collection of the
dynamics of the points of this configuration).

Finally, the following theorem states that the corresponding spectral gap inequality (which really
is a Poincaré inequality, since KerAΓ = {c ∈ R}) is true on a dense subset of cylindric polynomials:

FP (Γ,D) =
{
F (·) = gF (〈ϕ1, ·〉 , . . . , 〈ϕN , ·〉)

∣∣ϕk ∈ D; gF ∈ P
(
RN
)}

,

where P
(
RN
)

is the set of all polynomials on RN (see [1] for main properties of FP (Γ,D)).

Theorem 2.1. For any F ∈ FP (Γ,D) the following Poincaré inequality holds

∫
Γ

(
F (γ)−

∫
Γ

F (γ) dπ (γ)
)2

dπ (γ)

≤ 4
d

∫
Γ

〈
AΓ (γ)∇ΓF (γ) ,∇ΓF (γ)

〉
Tγ(Γ)

dπ (γ) .

Proof. Let F (γ) = FN (γ) = fN (〈ψ1, γ〉 , . . . , 〈ψM , γ〉) ∈ FP (Γ,D) , fN ∈ PN
(
RM

)
. Then (see,

e.g., [1])

FN (γ) =
N∑
n=0

K∑
k=1

bnkQn
(
ϕ⊗nk , γ

)
,

where Qn are the Charlier polynomials (see [1,5]), ϕk ∈ D and some bnk may be equal to 0.
We want to prove that∫

Γ

(FN (γ))2
dπ (γ)−

(∫
Γ

FN (γ) dπ (γ)
)2

≤ 4
d

∫
Γ

〈
AΓ (γ)∇ΓFN (γ) ,∇ΓFN (γ)

〉
Tγ(Γ)

dπ (γ) .
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One has

(∫
Γ

FN (γ) dπ (γ)
)2

=

(∫
Γ

N∑
n=0

K∑
k=1

bnkQn
(
ϕ⊗nk , γ

)
dπ (γ)

)2

=

(
K∑
k=1

b0k

)2

=
K∑

k,j=1

b0kb0j ;

(FN (γ))2 =
N∑

n,m=0

K∑
k,j=1

bnkbmjQn
(
ϕ⊗nk , γ

)
Qm

(
ϕ⊗mj , γ

)
;

∫
Γ

(FN (γ))2
dπ (γ) =

N∑
n,m=0

K∑
k,j=1

bnkbmj

∫
Γ

Qn
(
ϕ⊗nk , γ

)
Qm

(
ϕ⊗mj , γ

)
dπ (γ)

=
N∑
n=0

K∑
k,j=1

bnkbnjn! (ϕk, ϕj)
n
.

Combining these equalities we obtain that∫
Γ

(FN (γ))2
dπ (γ)−

(∫
Γ

FN (γ) dπ (γ)
)2

=
N∑
n=0

K∑
k,j=1

bnkbnjn! (ϕk, ϕj)
n −

K∑
k,j=1

b0kb0j =
N∑
n=1

K∑
k,j=1

bnkbnjn! (ϕk, ϕj)
n
.

Next, we have that

4
d

∫
Γ

〈
AΓ (γ)∇ΓFN (γ) ,∇ΓFN (γ)

〉
Tγ(Γ)

dπ (γ)

=
4
d

∫
Γ

∫
Rd
|a (x)∇xFN (γ + εx)|2 dxdπ (γ)

=
4
d

∫
Γ

∫
Rd
|a (x)∇x (FN (γ + εx)− FN (γ))|2 dxdπ (γ)

≥ 4
d

∫
Γ

d

4

∫
Rd

(FN (γ + εx)− FN (γ))2
dxdπ (γ)

=
∫

Γ

∫
Rd

(FN (γ + εx)− FN (γ))2
dxdπ (γ) .

Since

FN (γ + εx)− FN (γ) =
N∑
n=0

K∑
k=1

bnk
(
Qn
(
ϕ⊗nk , γ + εx

)
−Qn

(
ϕ⊗nk , γ

))
=

N∑
n=1

K∑
k=1

bnknϕk (x)Qn−1

(
ϕ
⊗(n−1)
k , γ

)
,

then

4
d

∫
Γ

〈
AΓ (γ)∇ΓFN (γ) ,∇ΓFN (γ)

〉
Tγ(Γ)

dπ (γ)

≥
N∑

n,m=1

K∑
k,j=1

bnkbmjnm

∫
Γ

∫
Rd
ϕk (x)Qn−1

(
ϕ
⊗(n−1)
k , γ

)
ϕj (x)Qm−1

(
ϕ
⊗(m−1)
j , γ

)
dxdπ (γ)

=
N∑
n=1

K∑
k,j=1

bnkbnjn
2 (n− 1)! (ϕk, ϕj)

n =
N∑
n=1

K∑
k,j=1

bnkbnjnn! (ϕk, ϕj)
n
.
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So, it is enough to prove that

(2.2)
N∑
n=1

n

K∑
k,j=1

bnkbnjn! (ϕk, ϕj)
n ≥

N∑
n=1

K∑
k,j=1

bnkbnjn! (ϕk, ϕj)
n
.

For this let us consider F̂n (γ) =
∑K
k=1 bnkQn

(
ϕ⊗nk , γ

)
, n ≥ 1, then

0 ≤
∫

Γ

(
F̂n (γ)

)2

dπ (γ) =
K∑

k,j=1

bnkbnj

∫
Γ

Qn
(
ϕ⊗nk , γ

)
Qn
(
ϕ⊗mj , γ

)
dπ (γ)

=
K∑

k,j=1

bnkbnjn! (ϕk, ϕj)
n
,

so (2.2) is true. �
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