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ABSTRACT. We propose a new method of classifying vector bun-
dles on projective curves, especially singular ones, according to
their “representation type”. In particular, we prove that the clas-
sification problem of vector bundles, respectively of torsion—free
sheaves on projective curves is always either finite, or tame, or
wild. We completely classify curves which are of finite, respec-
tively tame, vector bundle type by their dual graph. Moreover,
our methods yield a geometric description of all indecomposable
vector bundles and torsion—free sheaves on finite and tame curves.

INTRODUCTION

Vector bundles over projective varieties, in particular, over projective
curves have been widely studied. Usually, the main emphasis lies in
the study of stable bundles and their moduli (cf. [33], [38], [30]). Nev-
ertheless, not too much seems to be known about the classification of
all vector bundles over some variety, which is a quite different problem.
Compared to representation theory, stable bundles play the role of irre-
ducible (simple) modules, as all other ones can be obtained from them
by extensions. In most cases the construction of such extensions is far
from being trivial or simple, even if one restricts to semi-stable bundles,
which are extensions of stable ones with fixed slope [38]. On the other
hand, the classification of vector bundles on projective curves is closely
related to the study of Cohen—Macaulay modules on surface singular-
ities, due to the work of Kahn [28]. Hence, from different points of
view, it is important to have some ideas about the complexity of these
classification problems. The most prominent results here are those of
Grothendieck [26] for the projective line and of Atiyah [2] for ellip-
tic curves. For instance, the latter result made it possible to classify
Cohen-Macaulay modules on simple elliptic surface singularities [28].

This article is devoted to the study of vector bundles over projective
curves, in particular, singular and reducible ones, from the point of
view of representation theory. Since it could be interesting for people
working in algebraic geometry as well as in representation theory, we
try to explain our results in this introduction, in an informal way, such
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that it could be understood from both sides. Moreover, we relate it to
some well known problems in both of these fields.

In several areas of representation theory, for instance, in studying
representations of finite dimensional algebras, Cohen-Macaulay mod-
ules, etc., one usually distinguishes between three main cases of the
classification problem. We propose to use analogous notions when
considering curves with respect to the classification of vector bundles.
Namely, these three cases are the following:

e finite, when indecomposable modules (respectively, vector bun-
dles) are completely defined by some discrete parameters (this
is the case for the projective line);

e tame, when indecomposable modules (respectively, vector bun-
dles) form small, usually only one-parameter, families (this is
the case for elliptic curves);

e wild, which can be defined in two ways:

— geometrically, as those having families of indecomposable
modules (respectively, vector bundles) depending on any
prescribed number of parameters;

— algebraically, as such that for any finitely generated algebra
A there is an exact functor from the category A-mod of
finite dimensional A-modules to the category of modules
(respectively, vector bundles) which maps indecomposable
modules to indecomposable and non-isomorphic to non-
isomorphic ones (we call such a functor a representation
embedding).

However, it is a highly non-trivial problem whether the above two
definitions of wildness are equivalent. For the cases of finite dimensional
algebras and Cohen-Macaulay modules, it only follows from the so
called tame-wild dichotomy [13, 15]. For the case of vector bundles
over reduced projective curves such an equivalence follows from the
results of this paper (cf. Remark 1.8).

When one considers vector bundles, one has to slightly modify these
notions taking into consideration the natural shifts by tensoring with
line bundles of different degrees. Moreover, if the curve is reducible,
one can make shifts on each of its components independently. The
corresponding definitions are given in Definition 1.4.

From this point of view, the projective line is finite, while a smooth
elliptic curve is tame. Note that the latter is a little different from
the tame algebras in representation theory where only rational curves
are used to parameterize indecomposable modules. Here one cannot
avoid using the curve itself as we have to parameterize, in the first
instance, the line bundles. It is not too complicated to show that all
other smooth curves are wild (algebraically, hence, geometrically), cf.
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Theorem 1.6. We suppose that it is more or less known to the experts,
although we do not know any article containing this result.

The aim of this article is to prove the finite-tame—wild trichotomy
for vector bundles over reduced projective curves, in particular, to show
that the geometrical wildness also implies the algebraic one. Note that
sometimes one does not suppose that “tame” excludes “finite.” We
prefer to distinguish between them, following the book [20]. Moreover,
there is at least one important reason. Namely, the finite case for vector
bundles (just as for algebras and Cohen—Macaulay modules) is not only
discrete in the sense that there are finitely many indecomposables, say,
of given rank and degree. It is also bounded in the sense that all ranks
of indecomposables are smaller than a prescribed number. Taking an
example from the representation theory, one can easily see that the
quiver of type AY, that is

is representation discrete, but not bounded. It seems reasonable to call
finite the case which is both discrete and bounded. In representation
theory of finite dimensional algebras the claim that “discrete” implies
“bounded” is known as the second Brauer-Thrall conjecture and its
proof (a complicated one) was only given in [4].

In this article we prove that the following assertions hold, with C'
reduced and connected (cf. Theorem 1.6, Proposition 2.7 and Theo-
rem 2.8):

(1) A non-singular projective curve C' is:

o VB-finite if and only if it is rational;

e VB-tame if and only if it is elliptic (that is, of genus 1);

o VB-wild in all other cases.

(2) Let C be a singular projective curve, Ci,...,Cy its irreducible
components and A the intersection graph (or the dual graph)
of C. Then C' 1is:

e VB-finite if and only if all C; are smooth, rational and A
is of type A, (that is, a chain);

e VB-tame if and only if all C; are smooth, rational and A
is of type A,, (that is, a cycle) or C is irreducible, rational
with one simple node;

o VB-wild in all other cases.

In the wild case we construct explicitly a representation embedding
of the category A-mod to that of semi-stable vector bundles. This
shows that even semi-stable bundles are extremely complicated if we
do not restrict to a fixed rank but allow extensions. Certainly, it is
impossible that the image of a representation embedding belongs to

LAfter this article had been written, W. Scharlau informed us that he had also
proved the result for smooth curves; moreover, it is also true for any smooth variety
of dimension greater than 1, see [37].
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the category of stable bundles, as it must preserve extensions, and
extensions of stable bundles are in general not stable. On the other
hand, in the finite and tame cases we give a complete description of all
indecomposable vector bundles (Theorems 2.11 and 2.12) and illustrate
it in a geometric way. Moreover, it happens that for VB—finite and VB-
tame curves the classification of all torsion-free sheaves can also be done
within the same framework.

Of course, in the smooth case there is nothing to add here. More-
over, every coherent sheaf over a smooth curve is just a direct sum
of a vector bundle and a sky-scraper sheaf, and the indecomposable
sky-scrapers of prescribed length are parameterized by the curve it-
self. But in the singular case there is an essential difference between
the classification of vector bundles (or torsion free sheaves) and that
of all coherent sheaves. First of all, the classification of sky-scrapers
can be very complicated. It is known, for instance, that all simple
plane curve singularities are finite with respect to the classification of
torsion-free modules [24], while all of them, except of A;, are wild
with respect to the classification of modules of finite length (i.e., sky-
scrapers) [12]. Secondly, in the singular case we always have also mized
indecomposable sheaves, i.e., neither sky-scraper nor torsion-free, and
their description is also non-trivial. There is, however, some evidence
that for the VB-tame projective curves a complete classification can
also be done for all coherent sheaves, but we still do not have a definite
result.

Our classification of vector bundles has already been used to describe
Cohen—Macaulay modules over the so called cusp surface singularities,
as well as to find out which of the minimally elliptic surface singularities
are tame and which are wild with respect to the classification of Cohen—
Macaulay modules [18].

The methods we use are well-known in representation theory. Name-
ly, it is the techniques of matrixz problems, which are used, for instance,
to prove the tame-wild dichotomy in [13, 15] or to determine the types
of some classes of classification problems. Fortunately, after eliminating
the wild cases, we come to a known matrix problem (the so called
“Gelfand problem” in the version due to Bondarenko [6]). This gives
us the possibility to obtain a complete list of indecomposable vector
bundles for the finite and tame cases.

Unfortunately, we cannot recommend any relevant textbook for this
material. The only one dealing with matrix problems is [20], but it only
considers a very special case of matrix problems which does not include
those we use here. This is why we try to give complete definitions
and include Appendix B devoted to bunches of chains in the sense
of [6]. As we only need a special case of such bunches, we restrict
Appendix B to this case, which is essentially easier than the general
one. We reformulate it in terms of bimodule categories which seems to
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be more usual than the original matrix formulation and present the list
of indecomposable objects from [6] in a form which is easier to apply
in our case. On the other hand, we use the standard textbook [27] for
the references concerning algebraic geometry. For more special results
concerning vector bundles we refer to [30, 38|, although we never use
anything but some standard definitions.

The description of torsion-free sheaves in the tame singular case fits
into the framework of the so called strings and bands which is wide-
spread in representation theory (cf. [40, 7]). There is no a priori
explanation why other kinds of tame matrix problem (for instance,
more general clans [9] or bunches of semi-chains [6]) do not appear.
Such an explanation would certainly be of interest.

It is a fact that for every VB—tame curve C' the dualizing sheaf [27]
coincides with the structure sheaf. Hence, Serre duality coincides with
the obvious duality given by the functor Hom(_, O¢) . Moreover, it also
follows from [3] that the Auslander—Reiten translation is also trivial in
the category of vector bundles on such curves. This means that all
indecomposable vector bundles belong to the so called homogeneous
tubes in the sense of [35]. For elliptic curves the latter is also true for
all coherent sheaves. The answer for singular tame curves can only
be given from a classification of all coherent sheaves, which is not yet
known (it follows from [3] that the Auslander—Reiten translation cannot
be defined inside the category of torsion-free sheaves). Nevertheless,
from the description of torsion-free sheaves it seems plausible that the
category of all coherent sheaves in this case should look like that of
modules over the so called string algebras. Moreover, there is a special
class of string algebras which seems closely related to singular tame
curves, just in the same way as the so called canonical algebras [35] are
related to the weighted projective lines considered in [21]. We define
these algebras in Appendix A which is devoted to some other open
questions.

Let us give a short survey of the article. In Section 1 we define VB-
types of projective curves and the result for smooth curves is proved.
In Section 2 we consider singular curves, formulate the trichotomy re-
sult and give a description of torsion-free sheaves in the finite and
tame cases. The following sections present the proofs of these results.
Namely, Section 3 is devoted to matrix problems in a bimodule for-
mulation. As the bimodules arising from projective curves possess a
natural group of shifts, we introduce here shifting bimodules. Again,
shifts make it necessary to modify, in an obvious way, the notions of
finite and tame, which is also done in this section. Section 4 explains
the relations between vector bundles over singular curves and some
shifting bimodules. The latter naturally arise when one compares vec-
tor bundles on a curve and on its normalization. This procedure is
very much like the one used in the study of torsion-free modules over
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curve singularities, for instance, in [15, 16|, the main difference coming
just from taking shifts into consideration. We also prove here that all
irreducible components of a singular curve which is not VB-wild are
rational. This leads to the consideration of rationally composed curves
in Section 5. They give rise to a very special class of shifting bimod-
ules. We call them special bimodules and consider them in Section
5, too. Finally, in Section 6 we establish representation types of spe-
cial bimodules and describe their indecomposable elements in the finite
and tame cases. This immediately implies the trichotomy result and
the description of vector bundles from Section 2. Appendix A presents
some related problems which we consider as interesting and important.
Appendix B is devoted to bunches of chains.

A preliminary version of this article has appeared as Preprint 99-130
of the Max—Planck—Institut fiir Mathematik, Bonn, 1999. The work
on this paper was also supported by the DFG-Schwerpunkt “Glob-
ale Methoden in der komplexen Geometrie,” Grant GR640/9-1, and
CRDF Grant UM2-2094. We should like to thank the Max—Planck—
Institut as well as the DFG and the CRDF for their support. Moreover,
we should like to thank the referee for several remarks which helped us
to make the presentation (hopefully) clearer.

1. VB-TYPE OF A CURVE. SMOOTH CASE

Here we define the notions of finite, tame and wild curves with re-
spect to the classification of vector bundles and prove the finite—tame—
wild trichotomy for smooth curves (Theorem 1.6).

Throughout this section and further on we use the following nota-
tions:

Notations 1.1. (1) C is an algebraic curve over an algebraically
closed field k, which we suppose to be reduced and connected
but usually singular and even reducible.

(2) O = O¢ denotes the structure sheaf of C' and I denotes the
sheaf of rational functions on C' (its stalk at a point x is the
full ring of quotients of O, ).

(3) VB = VB(C) is the category of (finite dimensional) vector
bundles on C' or, equivalently, that of locally free (coherent)
sheaves on C'. (We identify vector bundles with the correspond-
ing locally free sheaves and in our case it is more convenient to
deal with sheaves.)

(4) Let M be a sheaf of O-modules. Call the torsion part of M,
and denote it by t(M), the kernel of the natural homomor-
phism M — K ®p M . The sheaf M is said to be torsion-free
if t(M) = 0 and torsion if t(M) = M. In the following
we always identify a torsion-free sheaf M with its image in

K ®o M.
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Obviously, M is torsion if and only if for every point x € C' and for
every element ¢t € M, there is a non-zero-divisor a € O, such that
at = 0; M is torsion-free if and only if, for every nonzero ¢t € M, and
for every non-zero-divisor a € O,, at # 0. It is also clear that t(M)
is the biggest torsion sub-sheaf of M, while M /t(M) is torsion-free.

We are going to define the vector bundle type (VB-type) of a curve,
i.e., its type with respect to the classification of vector bundles on it.
We take into consideration that such a classification involves evident
discrete parameters, namely, rank and degree. However, if the curve has
several irreducible components, these parameters become more compli-
cated.

Definition 1.2. Let C' be a projective curve, C' = U._,C; its decom-
position into irreducible components, B a vector bundle over C' and
B; the restriction of B onto C;. The vector-degree of B is defined as
the vector Deg B = (dy,ds, . ..,d;), where d; = degB; (cf. [27]).

In particular, the mapping Deg defines an epimorphism Pic(C) — Z'.
For each ¢ choose a non-singular point ¢; € C; and put O(d) =
O(>'_, ¢) . Tt gives us a section of Deg, w: Z! — Pic(C), such that
O(d) = w(d) . Thus, we define Z' as a group of shifts on the category
of coherent sheaves (in particular, on that of vector bundles) by setting
M(d) = O(d)®p M. Considering representation types of categories of
sheaves, we should also take into account the action of this big discrete
group.

If X is an algebraic variety, there is a natural notion of a family of
vector bundles on a curve C' with base X . Namely, such a family is
just a vector bundle ¥V on X xC'. For our purpose, a non-commutative
analogue of this notion is also important.

Definition 1.3. (1) Let A be a k-algebra (not necessarily com-
mutative). We identify A as well as all A-modules with the
corresponding constant sheaves over C'. Denote by VB(C,A)
the category of sheaves over C' which are coherent sheaves
of O ® A-modules, locally free as O-modules and flat as A-
modules. The objects of this category are called families of
vector bundles over C' with base A .

(2) Given a family M € VB(C,A) and a finite dimensional® A-
module N, we can construct the tensor product M(N) =
M ®p N, which is locally free over O, i.e. is a vector bun-
dle over C'. We say that the modules M(N) belong to the
family M.

(3) A family M € VB(C,A) is said to be strict® if the following
conditions hold:

2« finite dimensional” always means finite dimensional as a vector space over k.
3This notion was first introduced in [14]; see also [15, 16].
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(a) If N is an indecomposable finite dimensional A-module,
then the sheaf M(N) is also indecomposable.

(b) If two finite dimensional A-modules N and N’ are non-
isomorphic, then the sheaves M(N) and M(N’) are also
non-isomorphic.

In other words, the functor N — M(N) from A-mod to

VB(C) is a representation embedding: it is exact, maps in-

decomposable modules to indecomposable vector bundles and

non-isomorphic to non-isomorphic ones.

For any morphism f : C' — C of curves and any family M €
VB(C,A), the inverse image f*(M) belongs to VB(C’,A). It is also
quite obvious that if M € VB(C,A), then also M ®p L € VB(C,A)
for every invertible sheaf £ on C'; in particular, M(d) € VB(C,A)
for every vector d € Z'. Moreover, if M is strict, so is M ®¢ L for
each invertible sheaf L£; in particular, M(d) is strict for each d. For
every finite-dimensional A-module N, put M(d, N) = M(d)(N).

If A =k[X] for some affine variety X , then an object from VB(C, A)
can obviously be identified with a family of vector bundles on C' with
base X . However, our construction also produces families of multi-
ple ranks that arise when one considers vector bundles M(N) with
dimy N > 1. Note that for two different points p # ¢ of X the
residue fields k(p) and k(g) are non-isomorphic as k[ X |-modules.
Hence, for a strict family M over X | the fibres over p and ¢, i.e.,
the vector bundles M(p) and M(q), are also non-isomorphic (and
indecomposbale).

Definitions 1.4. (1) Call a curve C' wvector bundle finite or VB-
finite if there is a finite set M of indecomposable vector bundles
on C' such that every indecomposable vector bundle on C' is
isomorphic to B(d) for some B € M and some vector d € Z!.*

(2) Call a curve C VB-tame if there is a non-empty set M =
{M,} of strict sheaves M; € VB(C, A;) (note that the A; may
be different for different i) satisfying the following conditions:

(a) Each A; is a commutative finitely generated integral smooth
k-algebra of Krull dimension 1.

(b) For each integer r and vector d, the set M, q4 is finite,
where M, g = {M € M| 1k(M) =r,DegM =d }, where
Deg M is, by definition, Deg(M/mM) for some (and,
hence, every) maximal ideal m C A; (if M € VB(C, A;)).

(c) For each integer r and vector dg, all but a finite number
of locally free indecomposable sheaves on C' of rank r
and vector-degree dy are isomorphic to those of the form

4We shall see later that indeed rk(B) = 1 for every indecomposable vector bundle
on a VB-finite curve.
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M;(d, N), for some M; € M, d € Z' and some finite
dimensional A;-module N .
In this case call M a parametrising set for vector bundles over
C'. Denote by v(r) the minimal number of sheaves in M, 4,
where M runs through all such parametrising sets and d runs
through Z!, and call it the growth function. Then a VB-tame
curve C' is said to be:
e bounded if there is an integer m such that v(r) < m for
all ranks 7
e unbounded otherwise.
(As we have already mentioned, for representations of finite di-
mensional algebras, as well as for Cohen-Macaulay modules
over curve singularities, only coordinate algebras of rational
curves have occurred in the tame case. Studying vector bundles
we cannot avoid, for instance, the curve C' itself as it gives rise
to families of line bundles. Therefore, in (2a) we only require
that A; is of dimension 1.)
(3) Call acurve C' VB-wildif, for every finitely generated k-algebra
A, there is a strict sheaf M € VB(C,A).
Hence, for wild curves, the classification of vector bundles is at
least as complicated as the classification of the representations
of all finitely generated k-algebras, which justifies the name
“wild.”

Indeed, to prove wildness it is sufficient to check one typical algebra,
as the following result shows.

Proposition 1.5. A curve C is VB-wild if there is a strict sheaf M €
VB(C,T'), where I' is one of the following algebras:

o F = k(z,29), the free algebra in two generators (this is one
way to define wildness, cf. [20, 13, 15]);

e k[z1, 25|, the polynomial algebra in two generators;

e k[[z1, )], the power series algebra in two generators.

Proof. 1t is well known (cf. [13]) that if T is one of these algebras and A
is an arbitrary finitely generated algebra, there is a strict representation
of I' over A, i.e., a I'~A-bimodule V' such that:

(1) V is finitely generated and free as A-module.

(2) If N is an indecomposable finite dimensional A-module, the I'-
module V ®, N is also indecomposable.

(3) If N, N’ are non-isomorphic finite dimensional A-modules, the
I-modules V ®, N and V ®, N’ are also non-isomorphic.

Therefore, if a sheaf M € VB(C,T") is strict, so is also M ®, V' €

VB(C,A).
We recall the explicit form of a strict representation V' of the free
algebra F over any algebra A with generators aq,as,...,a,. As A-

module, V = (n + 2)A while the action of z; and 2o is given by
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the matrices Z; and Z,, respectively, where Z; is a Jordan cell of
dimension n + 2 and

0 0 0 0 00
1 00 0 00
go_|a 10 0 00
2710 ay 1 0 00
0O 00 - a, 10

l

Note also that this definition of tameness (namely, the condition
M +# ()) implies that “tame” excludes “finite,” i.e., we have a real
trichotomy.

First of all, consider VB-types of smooth projective curves.
Theorem 1.6. A smooth projective curve C of genus g is:
e VB-finite if g =0, i.e., if C ~ P!,
o VB-tame bounded if g =1, i.e., if C 1is an elliptic curve,
o VB-wild if g > 1.

Proof. It is known that each indecomposable vector bundle on P! is
isomorphic to O(n) for some n [26]. Hence, P' is VB-finite. On
the other hand, the classification of vector bundles on elliptic curves
2] implies that all elliptic curves are VB-tame and bounded (indeed,
in this case the growth function satisfies v(r) < 1 for each r). So we
only have to prove that any curve of genus g > 1 is VB-wild, i.e.,
to construct a strict sheaf M € VB(C,F), where F = k(z,29).
We shall even construct a sheaf M € VB(C,F) such that M(N) ~
M(N') ®o L for some line bundle £ if and only if N ~ N’ and
L ~ O. In other words, even the natural action of Pic(C') on the set
of vector bundles does not simplify their classification.
For any two points = # y of C,

Homp(O(x), O(y)) ~ H(C,0(y —z)) = 0.
On the other hand,
Extp(O(2), O(y)) ~ HY(C,O(y — 7)),
as ErthH(O(x),0(y)) = 0. Using the Riemann-Roch theorem for the
divisor y — =, we get
dimHY(C,0(y — ) =g—1>1.
We shall also use the following simple lemma.

Lemma 1.7. If C' is a smooth curve of genus g > 0, for any n there
are n points Ti,%s,..., &, on C such that 2z; o xj+xy (as divisors

on C, cf [27]) if i # j.
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Proof. Note that since g > 0, the space H°(C,O(x)) consists only of
constants for any point x € C': otherwise there is a non-constant func-
tion f with the unique pole at the point x and such a function defines
an isomorphism C' — P! [27]. On the other hand, the Riemann-Roch
theorem together with the Clifford theorem [27, Theorem IV.5.4] gives
that dim H°(C, O(2z)) < 2. If this space is one-dimensional, i.e., con-
sists only of constants, x + y ~ 2z is impossible for x # z. Suppose
that it is two-dimensional, i.e., consists of the functions A\+pf for some
fixed (non-constant) f and A, € k. Then f defines a two-fold sur-
jection C'— P! and the set R = {p € P'| card(f'(p)) =1} is finite
(it is the set of the ramification points of f) [27]. Obviously, the set R
does not depend on the choice of f in H°(C,O(2z)). Hence, there are
only finitely many points y € C' such that 2z ~ 2y. Moreover, since
r+yoLax+y forafixed z and y # ¢, an equivalence x +y ~ 2z

for given x,z defines y uniquely. Now the points xq,xs,...,2, can
be constructed by an easy induction. U
Using this lemma, choose 5 different points z1, ..., x5 in such a way

that 2z; % x; +x, if ¢ # j, and consider the class of locally free
sheaves A admitting an exact sequence:

(1) O—>.A1—>A—>.A2—>O,

where
Ay =r10(xq) & r0(x2) @ 130(x3)
and
Ay =1r,0(xy) ® r50(x5) .

Let ¢ € Extp(Ay, A1) be the element corresponding to the sequence
(1). As there are no homomorphisms from the sub-sheaf to the factor-
sheaf, one can easily check that two elements &£ € Exto(As, A;)
lead to isomorphic modules A and A’ if and only if there are auto-
morphisms a : Ay = A; and 3: Ay = A, such that af = &3 (we
mean here the Yoneda multiplication). Choose some nonzero elements
& € Exty(O(x;),0(x)). Put S = O®F, where F = k(z,2),
the free k-algebra in two generators, S(z) = S ®0 O(x) for x € C.
Then Exts(S(x),S(y)) ~ Exty(O(z), O(y)) @ F. Consider the exact

sequence of locally free S-modules
0— S(z1) ® S(x2) & S(23) — M — S(x4) & S(25) — 0

corresponding to the element of the Ext-space given by the matrix

ISYRENST:
§oa 21625
§34 22835

If N is any finite dimensional F-module, then the locally free O-
module M(N) corresponds to the element of the Ext-space given by
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the matrix
SYVARRSTY
§oad  E2571
Eaul 3525

Here I denotes the identity matrix of size dimy N, while Z; and Z,
are the matrices describing the action of z; and z,, respectively, on
the module N . Then an easy straightforward calculation shows that
M(N) ~ M(N') if and only if N ~ N’.

Suppose now that M(N) ~ M(N') ®o L, where £ = O(D) for
some divisor D on C'. Then for each i € {1,2,3}, there are j, k €
{1,2,3,4,5} such that

Homp (O(x;), O(D + z;)) = H(C,O(D + z; — ;) # 0
and
Homo (O(D + z;), O(x1)) = H(C,O(=D + x1, — 1)) # 0.

The first inequality implies that deg D > 0, while the second one
implies deg D < 0. Hence, degD = 0. But then both D + z; — x;
and —D + x), — x; are equivalent to zero, whence 2x; ~ x, +x;. The
choice of these points implies that x; = 2, = x; and D ~ 0, i.e., we
return to the case just considered. U

Remark 1.8. If C' is a VB-wild curve, there are families of vector
bundles on C consisting of indecomposable, pairwise non-isomorphic
bundles and depending on any number of parameters. Indeed, any
strict sheaf M € VB(C,A) for A = k[zy,x9,...,x,] gives rise to such
a family consisting of the vector bundles M(p), where p € A™.

Certainly, the existence of “big families” of non-isomorphic indecom-
posable vector bundles for curves of genus g > 1 is well known and
follows, for instance, from the dimension of moduli spaces of stable
bundles [30, 38]. On the other hand, we could not find any paper
where the VB—wildness of such curves was shown.

Just as above, in the following we give an explicit construction of
strict sheaves from VB(C,F) for F = k(xz,y) (hence, from VB(C,A)
for any A) for any VB-wild curve C'. This gives an explicit represen-
tation embedding from the category of finite dimensional A -modules to
VB(C), i.e., an exact functor A-mod — VB(C') mapping indecompos-
able objects to indecomposable and non-isomorphic to non-isomorphic
ones.

Note also that all vector bundles belonging to the strict families
which we obtain for wild curves are semi-stable (cf.[33], [38]). In the
proof of Proposition 1.6 this follows from the fact that such a bundle
has a filtration whose factors are all of rank 1 and of degree 1 (analogous
observations are also valid in the other cases considered below). As we
have already mentioned, it is impossible to construct strict families such
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that all bundles belonging to these families are stable, as the category
of stable vector bundles is not closed under extensions.

To cast more light on the notion of wildness, we should also mention
that, if a classification problem does not involve extensions, it is not
difficult to present examples where there are n-parameter families of
non-isomorphic indecomposable objects for arbitrary n, but there is
nothing like algebraic wildness. On the other hand, we are not aware
of any classification problem including extensions where such a phe-
nomenon appears, i.e., where algebraic and geometric wildness differ.
Nevertheless, in all known cases the proof used deep investigations.

2. VB-TYPES OF SINGULAR CURVES

In this section we consider the case of singular curves. We formulate
the trichotomy theorem (Theorem 2.8) and give an explicit description
of torsion-free sheaves over VB-finite and tame singular curves (The-
orems 2.11 and 2.12). The proofs of these results will be given in the
following sections.

We introduce, in addition to Notations 1.1, the following

Notations 2.1. (1) Let 7 : C — C denote the normalisation of

C (cf. [27]). (Note that C can be reducible or, equivalently,
non-connected.)

(2) S = S(C) denotes the set of singular points of C' and we put
S=n45).

(3) Set O = 7.(Og) ; we identify O with its natural image in 0.

(4) Let J be the conductor of O in O, i.c., the biggest sheaf on
C of O-ideals contained in O.

(5) Set F=0/J and F=0/J.

(6) For any torsion-free sheaf B on C of O-modules, put B =
O ®0 B/ (0 @0 B) (cf. 1.1) and B = B/JB. In particular,
F=0 and F=0. _

As B is torsion-free, the canonical map B — B is a monomor-
phism and we always consider B as a sub-sheaf of B. Note
also that if B is a vector bundle, then 0] ®e B has no torsion
part, and hence coincides with B. Any morphism ¢ : B — B’

of O-modules lifts in a unique way to a morphism g : B—B
of O-modules.
Lemma 2.2. For every torsion-free sheaf B of O-modules the sheaf

B is naturally isomorphic to the O- subsheaf in K ®o B generated by
B.
(Recall that K denotes the sheaf of rational functions on C'.)

Proof. By definition of the torsion part, we have an exact sequence

0—>t(6®08)—>6®08—>K®0(6®08)2’C®@B.
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The image of (5®@B is hence isomorphic to B and obviously coincides
with the O-subsheaf of I ®p B generated by B. O

Note that F and F are sky-scraper sheaves of algebras, zero outside
S and with finite dimensional stalks. Hence, we may (and will) identify

them with the finite dimensional k-algebras €, .o F, and @, .4 F.
respectively. Just in the same way we identify the sky-scraper sheaf of
modules B with the F-module €, ¢ B,

When considering families of torsion- free sheaves, we have to impose
some conditions, which guarantee that they are “uniformly embedded”
into their O-closures. Thus, we give the following definition for such
families (in [25], in a local setting, they are called 0-constant).

Definition 2.3. Let A be a k-algebra (not necessarily commutative).
Denote by TF(C,A) the category whose objects are coherent sheaves
on C' of O ® A-modules B satisfying the following conditions:

(1) B is torsion-free over O.

(2) B is flat over O®A.
(3) B/B is flat over A.

Such sheaves are called families of torsion-free sheaves on C' with base
A.

Lemma 2.4. If B € TF(C,A), then it is flat over A and, for every
A-module N, the sheaf B(N) =B ®\ N is also torsion-free over O ;
moreover, the natural homomorphism B(N) — B(N) is an embedding

and induces an isomorphism B(N) ~ B(N).

Proof. Put T = B/B, which is a torsion sheaf over @. Consider the

exact sequence 0 — B —~B—T —0.As B and T are both A- flat,
so is B. Tensoring by N over A, we get again an exact sequence:

0 — B(N) — B(N) — T(N) — 0.

As B is flat over O® A and (B @, N) Rp X ~ g@’@@/\ (N®X) for
any sheaf of O-modules X , the sheaf B(N) = B®, N is flat over O,
hence, torsion free. Therefore, B(NN) is also torsion-free. Moreover,
as the image of B(N) obviously generates B(NV), the latter coincides

with B(N) in view of Lemma 2.2. O

Using this notion, we are able to define TF-finite, TF-tame and TF-
wild curves just in the same way as we have defined the corresponding
VB-types. Nevertheless, it happens that indeed the TF-type of a curve
coincides with its VB-type. We formulate in this section the corre-
sponding results; the remaining part of the article will be devoted to
their proofs. First the following holds:

Proposition 2.5. If a singular curve C' is not VB-wild, then:
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(1) All irreducible components of C' are rational curves, i.e., their
normalizations are isomorphic to P! .

(2) Any singular point © € S is a simple node (simple double
point).
In other words, the pre-image 7w '(z) under the normalization

map m consists of 2 points and F, ~ k.

Proof of 1 cf. Section 4, p. 31; proof of 2 cf. Section 6, pp. 36 and 40.
O

If all irreducible components of C' are rational and all its singular
points are simple nodes, we call C' a line configuration. To such a
configuration we associate its dual graph and we shall see that this
graph defines the VB—type of the curve C'. Recall the corresponding
definition.

Definitions 2.6. If C' is a line configuration, its dual graph is the
graph A(C') whose vertices are the irreducible components of C', the
edges are the singular points of C' and an edge corresponding to the
point p; is incident to the vertex corresponding to the component Cj
if and only if p; € Cj.

Note that the graph A(C) is non-oriented, but may have loops and
multiple edges. A loop appears if a singular point p; belongs to a
unique component C; (in this case the edge corresponding to p; is only
incident to the vertex corresponding to C; ). As we always suppose C'
to be connected, the graph A(C') is connected, as well.

It is also convenient to consider P! as a line configuration. As it
has only one component and no singular points, its dual graph has
one vertex and no edges at all. The following result will be proved in
Section 6 (Step 6.3, page 41):

Proposition 2.7. Let C be a line configuration. Then:
(1) C is TF-finite (hence, VB-finite) if and only if A(C) is a

Dynkin diagram of type A | i.e., a chain. (For instance, this is
the case if C =P'.) Moreover, in this case all indecomposable
vector bundles on C' are of rank 1 and they are determined up
to isomorphism by their vector-degrees.

(2) C is TF-tame (hence, VB-tame) if and only if A(C) is an
extended Dynkin digram of type ;&, ie., a cycle. (For instance,
this is the case if C 1is irreducible, rational and has only one
simple node.) Moreover, in this case it is VB-unbounded (hence,
TF-unbounded).

(3) In all other cases C is VB-wild (hence, TF-wild).

In the first, respectively, the second case, we call C' a line configuration
of type A, respectively, A.
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Altogether, we obtain from Theorem 1.6 and Propositions 2.5 and 2.7
the following theorem, completely describing the VB-types of projective
curves:

Theorem 2.8. Let C' be a reduced projective curve.
(1) If C s a line configuration of type A, then it is TF-finite
(hence, VB-finite).
(2) If C is a smooth elliptic curve, then it is VB-tame, bounded.
(3) If C 1is a line configuration of type A, then it is both TF-tame
and VB-tame, unbounded.
(4) In all other cases C is VB-wild (hence, TF-wild).

Remark 2.9. Note some evident corollaries of Theorem 2.8.

(1) An irreducible projective curve C' is

(a) VB-finite if and only if C' ~ P!;

(b) VB-tame bounded if and only if it is smooth elliptic;

(c) VB-tame unbounded if and only if it is rational and has
only one singular point which is a simple node;

(d) VB-wild otherwise.

(2) Any deformation of a VB-finite curve is also VB-finite; any
deformation of a VB-tame one is also VB-tame.

(3) If a curve C' is VB-finite, its arithmetic genus dimy H!(C, O¢)
(cf. [27]) is always O; if it is VB-tame, its arithmetic genus is
always 1. The converse is not true: any line configuration C'
such that its dual graph A(C) is a tree has arithmetic genus
0, although most of them are VB—wild.

(4) In the tame case the dualizing sheaf w¢ (cf. [27]) is trivial, i.e.,
isomorphic to Oc. Hence, Serre duality (cf. [27]) on such a
curve is just given by the functor Home(_, O).

The triviality of the dualizing sheaf implies the following corollary

concerning the Auslander—Reiten quiver of the category of vector bun-
dles. We refer to [3] for the corresponding definitions.
Corollary 2.10. Let the curve C' be VB-tame and T be the Auslander—
Reiten translation in the category VB(C'). Then 7B ~ B for every
indecomposable vector bundle B . In particular, the Auslander—Reiten
quiver of VB(C') consists only of homogeneous tubes, i.e., quivers of
the form

with the identity translation.

Proof. Follows from [3, Theorem 3.3]. O

We shall now give a description of all vector bundles and torsion-free
sheaves on line configurations with dual graphs of types A and A.
Such a sheaf B can be given by its “normalization” B and by the rule
of glueing, which describes the image of B/JB in B /T B. Recall that
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7 :C — C denotes the normalization, O = m.0s, J the conductor
of O in O and B =0 ®e B/t(0O ®0 B).

First, let C' be a line configuration of type A, {Cy,Cy,...,Cy } its
irreducible components. Each C; is isomorphic to P! and the nor-
malization C' of C' can be identified with their disjoint union | |, C;.
Let {x1,22,...,2,1} be the singular points of C'; we suppose that
x; € C;NCiyq and denote by ) (resp., z7) the pre-image of z; on
C; (resp., on Ciyq).

Consider any vector of the form s = (m;dy,ds,...,d,), where 1 <
m<t, r<t—m++1, and define the torsion-free sheaf B = B in the
following way:

e Set B = 7Bz, where Bz is the unique sheaf on C with
support |_|§:1 Crnyjr and Bgle,., ., = Oc,,,;_,(d;) for j =
1,....r. Then B ~ @; 1 O0c,.;o1(dy) if we identify every
Oc,(d) with its direct image on C'. Hence, the stalk of the
sky-scraper sheaf B / JB at a point x € C' is nonzero only if
x=ux; for i =m,...,m+r—1;in this case it is k(z}) dk(z)).

e Let B bethe preimage in B of the subsheaf of the factor B /T B
such that its stalk at the point w; , for each 7 = ,m+r—1,
is the one