REPRESENTATION THEORY OF HOMOTOPY TYPES WITH
AT MOST TWO NON TRIVIAL HOMOTOPY GROUPS

HANS-JOACHIM BAUES AND YURI DROZD

It is a classical result of Postnikov [15] that homotopy types X with at most two
non trivial homotopy groups 7, X = A and 7, X = B,2 < m < n, are classified by
the k-invariant

(1) kx € H" ' (K(A,m), B)

Here the cohomology group of the Eilenberg-Mac Lane space K(A,m) was com-
puted by Eilenberg-Mac Lane [11] and Cartan [5]. Let p be a prime and let Z, C Q
be the smallest subring of Q@ containing 1/¢ for all primes ¢ with ¢ # p. We consider
finitely generated Z,-modules A and B and the stable range n < 2m — 1. Hence X
is a p-local space with at most two non trivial homotopy groups in a stable range.
Then the homotopy type of X admits a product decomposition

(2) X~X;x...xX;

where all X; with 1 < ¢ < j are indecomposable and this decomposition is unique
up to permutation. We classify in this paper the indecomposable factors in (2) by
the following result.

Theorem (A). Letn—m < (p+1)(2p — 2). Then the classification of indecom-
posable factors in (2) is

wild forn—m=(p+1)(2p—2),
tame forn—m=t(2p—-2),1<t<p,
tame forp=2andn—m =3, and

essentially finite otherwise.

For the tame and essentially finite cases we compute below a complete list of all
possible indecomposable factors. Moreover we obtain a corresponding result as in
theorem (A) also for all cases g =n —m > (p+1)(2p — 2). But for this one has to
use the explicit computation of the homology HyK (A, m) by Cartan [5].

Let A* be the stable homotopy category of (m—1)-connected (m+k)-dimensional
finite CW-complexs, m > k-+1. Then A¥ is an additive category and there is the old
problem to classify the indecomposable objects in A* or equivalently to determine
the “representation type” of A*. J.H.C. Whitehead [16] and Chang [6] showed
that A? has essentially finite representation type; compare the books of Hilton
[13], [14]. The representation type of A? can actually be deduced from theorem
(A). Moreover Baues-Hennes [2] showed that A3 has tame representation type; a
complete list of indecomposable objects in A3 is given in [2]; compare also the book
[1]. Now theorem (A) implies
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Corollary (B). AF has wild representation type for k > 6.

Hence only the representation type of A* and A% remain unknown. Theorem
(A) and the classification in [1] indicate the complexity of the categories A* and
A3, It is, however, amazing that the spaces in A* with torsion free homology still
have finite representation type, see Baues-Drozd [3]. Moreover Henn [12] showed
that the p-local version of A* has a tame representation type for k < 4p — 5, p odd.
Theorem (A) overlaps with the result of Baues-Hennes [2] for p =2 and n —m = 2
and with the result of Henn [12] for p =3 and n —m = 4.

The authors would like to thank Idun Reiten and Claus M. Ringel for the orga-
nization of a wonderful conference on representation theory in Oberwolfach (1997)
which led to the results in this paper.

§ 1 THE DECOMPOSITION PROBLEM

Let C be an additive category with zero object x and biproducts A & B. An
object X in C is decomposable if there exists an isomorphism X & A @ B where A
and B are not isomorphic to x. A decomposition of X is an isomorphism

(1.1) X=410...0A, with n <o,

where A; is indecomposable for all i € {1,...,n}. The decomposition of X is
unique if B1®...®B,, 2 X 2 A, ®... D A, implies m = n and that there is
a permutation ¢ with B,;y & A;. A morphism f in C is indecomposable if F' is
indecomposable in the category of pairs in C; objects in this category of pairs are
the morphisms f in C and morphisms («, 8) : f — g are pairs of morphisms in
C satisfying ga = Gf. The decomposition problem in C can be described by the
following task: find a complete list of indecomposable isomorphism types in C and
describe the possible decomposition of objects in C. This problem is considered
by representation theory. We say that the decomposition problem in C is wild or
equivalently that C has wild representation type if the solution of the decomposition
problem would imply a solution of the following kind of problem.

(1.2) Problem. Let k be a field and consider the following additive category V5.
Objects are finite dimensional k-vector spaces V together with two endomorphism
ay, Py : V. — V. Morphisms are k-linear maps f : V — W satistying fay = aw f
and fBy = Bwf. The decomposition problem in V®# for any field & is termed a
“wild problem of representation theory”.

On the other hand we say that C has tame representation type if a complete list
of indecomposable objects of C is computed. If the number of objects in this list
which satisfy a given finiteness restraint is finite then we say that C has essentially
finite representation type. If the list is finite then C has finite representation type.

For example consider the category of finitely generated (f.g.) abelian groups; this
category has essentially finite representation type since the list of indecomposable
objects is given by the indecomposable cyclic groups Z and Z/p® where p is a prime
and ¢ > 1. The finiteness restraint is given by a number N which bounds the order
of the torsion subgroup. In fact, it is well known that a f.g. abelian group A admits
a decomposition

(1.3) AZ2Ci®...0C
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where C; for s = 1,...,¢ is an indecomposable cyclic group and this decomposition
is unique. We say that ¢ is the rank of A and that the f.g. abelian group A is

( torsion: if C; € {Z/p?, j > 1, p prime}
p-torsion: it C; € {Z/p?, j > 1}
elementary: if C; € {Z/p, p prime}
p-elementary: if C; € {Z/p}
free: it C; € {Z}

L p-primary: if C; € {Z, Z/p’, j > 1}

§ 2 THE CLASSIFICATION THEOREM

Let p be a prime. We say that a simply connected CW-complex X is p-
local finite type if all homotopy groups or equivalently all homology groups of X
are finitely generated Z,-modules. Moreover the p-local dimension of X satisfies
dim,(X) < n if H;X =0 for ¢ > n and if H,X is a free Z,-module. Let 2 < m.
We define homotopy categories together with a Postnikov functor

(2'1) ¢ : K(ma n)P - k(ma n)P

Here the objects of k(m,n), are CW-complexes X with at most two non trivial
homotopy groups 7, X = A and 7, X = B such that A and B are finitely generated
Zy-modules. Moreover the objects of K(m, n), are p-local finite type CW-complexes
Y with dim,(Y) <n-+1 and m;Y = 0 for m < ¢ < n. The functor ¢ in (2.1) carries
Y to the n — th section of the Postnikov tower of Y. The categories in (2.1) are
both additive categories and ¢ is an additive functor. The biproduct of X, X5 €
k(m,n)p is the product X; x X of spaces and the biproduct of Y1,Y> € K(m,n),
is the one point union Y7 V Y5 of spaces.

(2.2) Proposition. Objects X € k(m,n), and Y € K(m,n), with2 <m <n <
2m — 1 have unique decompositions

X=X x...xX;
Y=Y,Vv...VY,

where the X; and Y; are indecomposable. Moreover the additive functor ¢ yields
a bijection of the set of indecomposable homotopy types in k(m,n), and the set of
indecomposable homotopy types Y in K(m,n), with Y # Sg"'l where Sg"'l s the
p-local sphere of dimension n + 1.

Proof. The unique decomposition is well known, see for example [17]. Hence the

bijection is obtained by a theorem of J.H.C. Whitehead on trees of homotopy types

see for examples 10.4.4 in [1]. Given an indecomposable X € k(m,n), we obtain

the inverse =1 X =Y by the unique indecomposable Y € K(m,n), for which there

exists a set E such that Y'V\/Sp+! is homotopy equivalent to p-local (n+1)-skeleton
E

of X. g.e.d.
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The proposition shows that the representation types of the categories k(m,n),
and K(m,n), coincide. For the classification of objects in these topological cate-
gories we use the following algebraic category; see 3.6.1 [1].

(2.3) Definition. Let Ab be the category of abelian groups and let E, F': Ab — Ab
be functors. Let p be a prime. Then the category S(E, F'), is defined as follows.
Objects are triple of f.g. Z,-modules (A, R, H) where H is free together with a
chain complex

(1) S=(H-% F4) % R-% E(4) - 0)

which is exact in F/(A) and E(A). Moreover 60 = 0. Morphisms S — S’ are triple
(a, 7, h) of homomorphisms in Ab for which the following diagram commutes.

d

H —— F(A) > R > E(A) —— 0
) | |- | |-
H —— F(4) > R P EA)y —— 0

We introduce a natural equivalence relation ~ on S(E, F'), by setting (a,r, h) ~
(a',7',W)if a=a',h=h and

(3) r. =7, : ker(9) — ker(9")
We associate with an object S the exact sequence
(4) H -2 F(A) -2 ker(6) -1 cok(d) - E(A) — 0

where j is given by ker(d) — R — cok(d). Here ker(é) denotes the kernel of § and
cok(0) denotes the cokernel of 9. If E and F are additive functors then S(E, F),
and also the quotient category S(E, F),/ ~ are additive categories. We call S an
Filenberg-Mac Lane objectif A =0 or B =ker(6) =0 or even A= B = 0.

We say that a functor ¢ : C — K between categories is a detecting functor if ¢
reflects isomorphisms and is full and representative. This implies that ¢ induces
a bijection between isomorphism types in C and K respectively. For example the
quotient functor

(2.4) q:S(E,F), = S(E,F),/ ~

is a detecting functor since ¢ is a linear extension of categories, see 3.6.1 (6) [1].
Moreover we prove in 6.5.2 [1] the following result.

(2.5) Classification theorem. Let p be a prime and let 2 < m <n < 2m — 1.
Then there is an additive detecting functor

A:K(m,n)p, = S(E,F)p/ ~
where E and F' are additive functors given by the homology

E(A) = H, K(A,m)
{ F(A) = Hp 1 K(A,m)
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of an Filenberg-Mac Lane space K (A, m).

Given Y € K(m,n), we have the k-invariant
ky € H" (K (A, m), B)

(2.6) L Hom(Hpy 1K (A, m), B) @ Ext(H, K (A, m), B)
— Hom(F(4), B) ® Ext(E(A), B)

with A = 7,,Y and B = 7,Y. Here the isomorphism ¢ in (2.6) can be chosen to
be natural in A and B if the assumptions in (2.5) hold, see Decker [7]. Hence the
k-invariant ky yields the coordinates

(2.7)

ki € Hom(F(A), B)
{ k2 € Ext(E(A),B)

Now the functor A in (2.5) has the property that for S = A(Y") there is a natural
commutative diagram
(2.8)

H,.1K(A,m) B H,K(A,m)

H
H —— F(A) —2— kerd —L— cok(d) —2>— E(4) —— 0
H

H,(,Y — 1.V — Y — H)Y —I,1Y —— 0

Here the bottom row is part of the exact sequence of J.H.C. Whitehead, see 6.5.3
[1]. Moreover ky, coincides with @ in (2.8) and k% coincides with the extension
element {R} € Ext(F(A), B) given by the chain complex S = A(Y'). This shows
that the k-invariant ky can be readily deduced from the chain complex S = A(Y).

We say that an additive functor £ : Ab — Ab is elementary if there exist
elementary f.g. abelian groups F; and F3 (see (1.3)) such that

where we use the tensor product A ® B and the torsion product A x B of abelian
groups A, B. Moreover F is p-elementary if E; and F5 are p-elementary.

(2.10) Proposition. Consider the functor Ab — Ab which carries A to the
homology H,K (A, m) of the Eilenberg-Mac Lane space K(A,m). Form <n < 2m
this functor is elementary.

In fact, Cartan showed in theorem 2 of section 11 [5] that for ¢ < m
Hm+qK(A,m) = A®E1 EBA*EQ

with E; = {E?, p prime} and Ey = @{EY, p prime}. Here E? (resp. E%) is
the Z/p-vector space with the basis consisting of “admissible p-words (a1, as,...)
of the first (resp. second) kind of stable degree ¢ such that a; =0 (mod 2p — 2)”.
In particular we can deduce from Cartan’s result the following addendum which is
of importance for the proof of theorem (A).
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(2.11) Addendum. Let p be a prime and let m <n < 2m and

m—n<(p+1)(2p—2). Then

A® (Z/pe2/p) i m—-n=(p+1)(2p—2)
ARZlp if m—n=t(2p—2), 1<t<p
AxZ[p if m—n=t2p—-2)+1,1<t<p

0 otherwise

Z/px HoK(A,m) =

The addendum is relevant for the application of theorem (2.5) since one readily
obtains the following fact.

(2.12) Lemma. Let E and F be elementary functors Ab — Ab and let p be a
prime. Then there is a canonical isomorphism of additive categories

S(EaF)P: S(Z/p*EaZ/p*F)P

where the functors Z/p* E and Z/px F are p-elementary.

Using (2.4), (2.9) and (2.12) we see that the classification of indecomposable
objects in K(m,n), is obtained by the classification of indecomposable objects in
S(E,F), where E and F are p-elementary functors. We prove below the following
result.

(2.13) Theorem. Let E and F be p-elementary functors given by (E1, Fs) and
(F1, Fy) respectively. Then the objects in S(E,F), have a unique decomposition
and the representation type of S(E, F), is

e cssentially finite if at most one of the groups F1,E3, F1, Fs is Z/p and all
the others are trivial,

o tame if E(A) = AQZ/p and F(A) = AxZ/p,

o tame if E(A) = A% Z/p and F(A) = A® Z/p,

o unld otherwise.

For the tame cases the classification of indecomposable objects is given in §3
below. Using (2.11) the theorem implies theorem (A) in the introduction. Theorem
(2.13) is proved in section §4.

§ 3 THE INDECOMPOSABLE OBJECTS

We first consider the tame cases of theorem (2.13) and theorem (A) in the in-
troduction.

For the description of indecomposable objects we use certain words. Let L be a
set, the elements of which are called “letters”. A word with letters in L is an element
in the free monoid generated by L. Such a word a is written a = a1a2...a, with
a; € L,n > 0; for n = 0 this is the empty word ¢. Let b = b1 ...b; be a word. We
write w = ... b if there is a word a with w = ab, similarly we write w = b... if there
is a word ¢ with w = be. A subword of an infinite sequence ...a_sa_1agaias. ..
with a; € L,% € Z, is a finite connected subsequence a,apy1 .. .Ap4k; 7 € Z.

(3.1) Definition. Let p be a prime. We define a collection of finite words w =
wiws . . . wg. The letters w; of w are the symbols &, n or natural numbers s;, r;, ¢ € Z,
6



which are powers of p. We write the letters s; as upper indices, the letters r; as
lower indices since we have to distinguish between these numbers. For example
£2ngé*n is such a word for p = 2. The basic sequence is defined by

(1) P Mo €8, £y

This is the infinite product ...a(—1)a(0)a(1)a(2)... of words a(i) = £%n,, with
1€ 7.

The basic sequence (1) can be visualized by infinite graphs in two ways, either
by the tensor graph or by the torsion graph:

% .../A\V/A\V/A\V/A\V,---

TORSION GRAPH

The letters s;, resp. r; in the basic sequence correspond to vertical edges conect-
ing levels 2 and 3 resp. the levels 0 and 1. The letters  and & correspond in
both graphs to diagonal edges: In the tensor graph 7 connects level 0 and 2 and &
connects level 1 and 3; in the torsion graph 7 connects level 1 and 2 and £ connects
level 0 and 3. We consider connected finite subgraphs of the tensor graph and the
torsion graph. These subgraphs have an initial vertex at the left hand side and a
final vertex at the right hand side.

A p-tensor word is any finite subword w of the basic sequence of the form

(2) w=a... where a:iln or a=mn

This is the same as any connected finite subgraph of the tensor graph containing 7
with initial vertex at level 2 or 3. Moreover w #P 1 and w #P 7, since these words
correspond to indecomposable Eilenberg-Mac Lane objects.

A p-torsion word is any finite subword w of the basic sequence (1) satisfying

w=a... and w=...c where
(3) a=¢ or a=%n or a=mn and
C=Tr; OT c=§¢ or ¢c=¢&%
This is the same as any connected finite subgraph of the torsion graph contain-

ing & or n with the property that both the initial vertex and the final vertex are
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not at level 1. Moreover w # & and w #P € since these words correspond to
indecomposable Eilenberg-Mac Lane objects.

The vertices of level i of a tensor word (resp. torsion word) are defined by the
vertices of level ¢ of the corresponding graph; ¢ € {0,1,2,3}. We also write | z |= 4
if x is a vertex of level . We call x an oo -vertex if z is not a vertex of a vertical
edge. Such an oo-vertex of a tensor word w or a torsion word w (if it exists)
automatically is the initial or the final vertex of the corresponding subgraph. Let
Bi(w) be the number of co-vertices of level 7 in the word wj; this is the Betti number
of w satisfying 0 < G;(w) < 1 and fi(w) = 0. Let 7o...73 and s, ...s, be the
words of lower indices and of upper indices respectively given by w. We define the
homology of w by

Hy(w) = Zg"(w) ®ZL/ra®...®L/rs
Hi(w)=0

(3.2) Hs(w) =Zg2(“’)EBZ/s“GB...EBZ/S,,
Hj(w) = Z*™)

It is in the definition of the Betti numbers of w where the difference between the
tensor graph and the torsion graph plays an essential role.

(3.3) Definition. We associate with a p-tensor word w a chain complex
S(w) € S(®Z/p,+Z/p)p
Here S(w) is given by A = Hy(w) and the chain complex
Hs(w) i)A>|<Z/pi>Ri)A@Z/p—)O
with cok (0) = Ha(w). The abelian group R is given as follows. Let s, ...s, be the
word of those upper indices of w which are exponents of &; that is for p < < v
the word &% is a subword of w. Then

R(w)=1Z/s, p®...®ZL[s,-p

is defined where the order of the cyclic summands is the product s; - p of s; and the
prime p. Moreover we define

Z, fw=mn...
Rl(w)=4 Z/s ifw="ny...

0 otherwise

Z fw=...%
mw) = { 77 "

0 otherwise

Using these pieces we obtain the direct sum

R = R%(w) ® R?(w) ® R} (w)
8



which is part of the chain complex above. The maps b,d,4 in (1) are all given by
the canonical maps

Zp,—7Z/p and Z/p— Z/p*— Z/p

where the cyclic summands correspond to indices in w which are neighbours via &
or 7 respectively. For example we have the following list. We write E(r) = E(Z/r)
and E(co) = E(Z,) and similarly F(r) = F(Z/r).

AxZ/p A®L/p
I I
w H3;(w) —» FA) —- R — E(A)
7 0 0 Z, — E(x0)
s#E DSy 0 0 Z/s — E(c0)
. 0 Z/s —  E(r)
o F(r) = Z/p 0
. 0 Z/s —  E(r)
e N 0 0
s ot 0 0 Z/s —  E(r)
T 0 F(r) — Z/t-p 0
- 0 0 Z/s —  E(r)
a3 0 F(r) — Z/t-p — E(co)
0 Z/s —  E(r
STy, 0 F(ry — Z/t-p — E(u
F(u = Z/p 0
0 Z/s —  E(r
S &l & 0 F(ry — Z/t-p — E(u
Z, — F(u 0 0
0 0 Z/s —  E(r
S &4 &Y 0 F(ry — Z/t-p — E(u
0 Fluy — Z/t-v 0

If we omit the initial upper index s in w on the left hand side of the list then we
have to replace Z/s in the list by Z,.
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(3.4) Definition. We associate with a p-torsion word w a chain complex
S(w) € S(+Z/p, ®Z/p)p
Here S(w) is again given by A = Hy(w) and the chain complex
Hy(w) -5 A®Z/p-5 R -2 AxZ/p— 0
with cok (0) = Ha(w). The abelian group R is defined by
R = R%(w) ® R (w) ® RI(w)

where R¢(w) and R7(w) are given as in (3.3) and where RJ(w) is the following
modification of R](w) in (3.3):

_ Z fw=...
0 otherwise

The maps b,d and ¢ are again defined by canonical maps as in (3.3). For example
we have the following list.

AQZ/p AxZ[p
I I
w Hi3(w) — F4) — R — E(A)
3 0 F(oo) — Z/u-p 0

S Ft) = Z/p 0
N 0 F(oo) — Z/u-p —  E()
SHeS Z, — F() 0 0
. oo 0 F(oo) — Z/u-p —  E()
SHeS 0 E(t) — Z/v-p 0
. 0 0 Z/s — E()
e 0 F(ty = Z/p 0
. 0 0 Z/s — E()
SEPIME L R 0 0
o 0 Z)s — E@)
T F(it) — Z/u-p 0




& 1y 0 F(t) — Z/u-p — E(v)
0 F(v = Z/p

0 Z/s — E(t

ne&Unué 0 F(t) — Z/u-p — E(v)

Z, — F(v 0 0

0 Z/s — E(t

et &Y 0 Ft) — Z/u-p — E({v)

F(v) — ZJy-p 0

Again if we omit the initial upper index s in the word w on the left hand side of
the list then we have to replace Z/s in the list by Z,,.

(3.5) Definition. A p-cyclic word is defined by a pair (w, ) where w is a subword
of the basic sequence of the form (¢ > 1)

w =&, £y, . 5, = a(l) .. .a(q)

and where ¢ is an automorphism of a finite dimensional Z /p-vector space V = V (p).
Two cyclic words (w, @) and (w', ¢') are equivalent if w’ is a cyclic permutation
of w, that is, w' = a(i)...a(g)a(l)...a(i — 1), and if there is an isomorphism

os

P V(p) 2V (¢) with o = 9~ 1p'h. A cyclic word (w, ¢) is a special p-cyclic word
if  is an indecomposable automorphism and if w is not of the form w = w'w’. .. w’
where the right-hand side is a j-fold power of a word w’ with j > 1: We define the
homology of a p-cyclic word by

Hi(w,¢) = P Hi(w)

Here v = dim V() and the right hand side is the v-fold direct sum of the homology
H;(w) defined in (3.2).

(3.6) Definition. We associate with a p-cyclic word (w, ¢) a chain complex

S(w,p) € S(RZ/p, *ZL/p)p
S(w,p) € S(+xZ/p,QZL/p)p

which is given as follows. Let v be the dimension of V(¢) and let U =U@... U
be the v-fold dircet sum of the abelian group U. Then S(w, ¢) is given by

A= Hy(w)’,R=R(w)",H=0
and by the chain complex

0 = F(Ho(w))" -2 RS(w)” 25 E(Ho(w))” — 0
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where Hy(w) is a p-torsion group. The chain complex is given by the direct sum of
the following lines:
8¢ 5
F(re)" —— (Z/s1-p)’ —— E(r1)"

F(r)' —2— (Z/sy-p)* ——— E(ry)"

8" 8
F(rg—1)" —— (Z/sq-p)® — E(rq)®
Here 0¥ and 6" denote the v-fold direct sum of the canonical maps. The map 9%,
however, is given by the composite

F(ry)' £ F(ry)* 25 (Z/s1 - p)"

where ¢ is the automorphism of V() = F(r,)? given by the cyclic word (w, ¢).

It is easy to compute the abelian group B = ker(4) from the description of the
chain complexes S(w) and S(w, ¢) above. Recall that a chain complex S with A = 0
or B =0 is termed on Eilenberg-Mac Lane object; see (2.3). The indecomposable
Eilenberg-Mac Lane objects are completely described by elementary cyclic groups
A or B and by (H = Z, A= B = 0) respectively.

(3.7) Theorem. Let p be a prime. A complete list of indecomposable objects in
S(®Z/p,*Z/p), is given by the following objects:

e indecomposable FEilenberg-Mac Lane objects,

e chain complezes S(w) where w s a p-tensor word,

e chain complezes S(w, ) where (w, @) is a special p-cyclic word.

A complete list of indecomposable objects in S(xZ/p, QL /p), is given by the follow-
ing objects:

e indecomposable FEilenberg-Mac Lane objects,

e chain complezes S(w) where w is a p-torsion word,

e chain complezes S(w, ) where (w, @) is a special p-cyclic word.

For two objects S, S’ in these lists there is an isomorphism S = S’ if and only if
there are equivalent special p-cyclic words (w, @) ~ (w', ') with S = S(w, p) and
S'=SW',¢).

In theorem (A) in the introduction we need the category S(®Z/p, *Z/p), for all
tame cases n — m = t(2p — 2) with 1 < ¢ < p. Also the category S(*Z/p,®Z/p),
is needed in theorem (A) for the tame case p = 2 and n — m = 3. More precisely
we get the following two corollaries of (3.7). Let M(C,n) be the Moore space of
the abelian group C' and let K (C,m)p*! be the indecomposable part of the p-local
(n+1)-skeleton of the Eilenberg-Mac Lane space K (C,m); compare (2.2). Moreover
let X (w), resp. X(w,p), be the space corresponding to S(w), resp. S(w,p), via
the detecting functor A in (2.5). As abelian group C is an elementary Z,-module
if C =2, orif C=27/p* withi > 1.

(3.8) Corollary. Letp be a prime and2 <m <mn withn <2m—1 andn—m =
t(2p—2) with1 <t < p. Then a complete list of indecomposable objects in K(m,n),
s given by the following objects.
o SptL M(C,n), K(C,m)ytt where C is an elementary Zp-module,
12



e spaces X (w) where w is a p-tensor word,
e spaces X (w, p) is a special p-cyclic word.

(3.9) Corollary. Let m > 5. Then a complete list of indecomposable objects in
K(m, m+ 3)2 is given by the following objects with p = 2.

° SI’]L""*, M(C,m+3), K(C, m);;“"4 where C is an elementary Z,-module,

e spaces X (w) where w is a p-torsion word,

e spaces X (w, ) where (w, ¢) is a special p-cyclic word.

Here X (w) and X (w, ) are again defined by the detecting functor A in (2.5)
withp=2and 5<m <n=m-+3.
The homology of the spaces X (w) is related to the homology of the word w by
the following formula.
Hy(w) fori=m
(3.10) Hi(X(w)) =< Hy(w) fori=mn
Hs(w) fori=mn-+1

This also holds if we replace w by (w, ). The classification of indecomposable
objects by words or graphs as above thus shows by (3.10) immediately part of the
homology of the corresponding spaces.

§4 PROOF OF THEOREM 2.13

We are going to interpret the category S = S(E, F), in (2.3) in terms of “matrix
problems”, namely, matrices over a bimodule (cf. [8, 9]). Consider the category
M? = M, X My, where My, is the category of finitely generated Z,-modules and
the bimodule U over it, i.e. the bifunctor U : (M2)°P x M2 — Ab, defined as
follows:

U((A,R), (4, R')) = Hom(R, F(A")) & Hom(F(4), B').

We write U[A, R] for U((A, R), (A, R)). Recall that the category EL(U) of matrices
over U or elements of U has the set of objects (J 4 ) U[A, R]. A morphism from
an element (6,0) € U[A, R] to (§',0") € U[A/, R'] is by definition a pair («, ),
where o : A — A', 3: R — R’ such that o6 = §'8 and 80 = &' a,.

A complex from S is just a triple (6, 9, h), where (4, ) is an object from EL(U)
with the property that § is surjective and 60 = 0, while h is an epimorphism
H — ker 0 for some free abelian group H. Hence, essentially the classification of
objects from S and from EL(U) are the same.

Denote by C, the cyclic group of order p™ if m € N and C,, = Z,, if m = oo.
The following propositions are evident.

(4.1) Proposition.
1. C, ®Z/p=17]p.
2. Cpn*xZ/p=Z/pifmeN and Coo, xZ/p = 0.
3. If m > n, an epimorphism Cy, — Cy, induces an isomorphism Cp, @ Z/p —
Cn ®Z/p and zero map on Cp, x Z/p.
4. If m < n < oo, a monomorphism C,, — C, induces an isomorphism
Cm*Z/p — Cp xZ/p and zero map on Cp,  Z/p.
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(4.2) Proposition.

1. Hom(Cy,,Z/p) = Z/p.

2. Hom(Z/p,Cy) = Z/p if m € N and Hom(Z/p, C,) = 0.

3. If m > 1 then ¢y =0 for each v : Z/p — Cy, and ¢ : Cp, — Z/p.

4. If m > n, an epimorphism C,, — C,, induces an isomorphism Hom(C,,,Z/p) —
Hom(Cy,,Z/p) and zero map on Hom(Z/p,Cy,).

5. If m < n < oo, a monomorphism Cp, — C, induces an isomorphism
Hom(Z/p, Cpn) = Hom(Z /p, Cy,) and zero map on Hom(C,,,Z/p).

Consider the first tame cases of Theorem 2.13. Let £ = _ @ Z/p and F =
—*Z/p. fA=@Q),, Ck and R =Q),, C, an element 6 € Hom(R, E(A)) can be
considered as a block matrix of the form:

011 d12 ... dio
) ) vor 09200
(1) T -
0001 0002 +++ Oooco

where d;; is a matrix with entries in Z/p of size a; x r;. Just in the same way, an
element @ € Hom(F(A), R) can be considered as a block matrix of the form:

a11 a12
(2) a == 821 822

where 0;; is a matrix with entries in Z/p of size 7; X a;. Remark that both F'(Cs)
and Hom(F(A),Cy) are zeros.
A homomorphism « : A — A’ is also given by a matrix

11 Q12 U1co

Q921 G99 NI (6]
(3) o= °°

Aol Apo2 Coooo

where «;; is a matrix with entries in Hom(Cj, C;) of size a} x a;. It is an isomor-
phism if and only if all diagonal blocks «;; are invertible. Just in the same way
a homomorphism § : R — R’ is given by an analogous block matrix (8;;). For a
matrix o of the form (3) put

Q11 G2 Ui1oo

0 a2 (200

at = 0 0 0300

0 0 Qloooo

and
11 0 0 0
- o1 a2 0 0
(84 =
Aol Cpo2 Coooco



Now the objects from EL(U) are just pairs (8, @), where § and 9 are matrices of the
forms (1) and (2) respectively, while a homomorphism from this object to another
one (¢',0") is a pair of matrices (c, 3) of the form (3) such that a*td = 6’8~ and
BT0 = &a~. Therefore elements from EL(U) coincide with representations of a
bunch of chains in the sense of [4] (cf. also [10] for the special case of chains, just
what we need). Namely, this bunch consists of the chains F; ~ FiNU {oc}, Fy ~
F5 ~ N with the equivalence relation ~ such that m € FEs is equivalent to the same
n € E;. Thus we can use the list of indecomposable representation given in [4]
which implies that this classification is tame. Taking into consideration for a pair
(6,0) to represent an object from S and adding, when necessary, a homomorphism
H — F(A), we obtain the following list of indecomposable objects from S.

Consider finite sequences w = (my, ms, ... ,my,), where n is even and m; are
non-negative integers or co such that

m; # 0, except possibly m,,,
(4) m; # 0o, except possibly m; and m,,,
m; # 1, for odd ¢, except possibly m; and m,,_; if m,, = 0.

For each sequence w we define the object S(w) as follows:

A= @Cmp

iodd

H—{Z if n is even and m,, # oo
~ 1 0 otherwise
h  is the surjection Z, — Cy,  (if H # 0)

while 0 and § are given by the following diagram:

where all “left” arrows are monomorphisms and all “right” ones are epimorphisms.
In this case H and h are uniquely defined. Namely if m,, = 0 or m,, = oo then
H = 0; otherwise H = Z, and h is the natural epimorphism Z, — F(Cp,) = Z/p.

Suppose now that m; ¢ {0,1,00} for all i and the sequence w is non-periodic,
i.e. there exists no shorter sequence v such that w is just a repetition of several
copies of v. Then for each polynomial f(T) € Z/p[T), f(T) # T¢, which is a power
of an irreducible one, define the object S(w, f) as follows:

H=0,
1= @oi,
(6) io0dd

R= @ i,

ieven
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where d = deg f, while 0 and § are given by the following diagram:

Flci ) % ci 5 E(CY)

F(CE,) — Cg  — E(CE)
FlE) - C,‘fls — E(C,‘f%)

Fecg ) —» C% . — E(CL)
In this diagram all mappings, except ¢, are given by matrices €I, where I is the
identity matrix, while ¢ is injection for “right” arrows and surjection for “left” ones.
The mapping ¢ is given by the matrix é®, where ® is the Frobenius matrix with
characteristic polynomial f(7'). In this case H = 0.

(4.3) Proposition. All objects S(w) and S(w, f) defined above are indecomposable
and every indecomposable object in S is isomorphic either to S(w) or to S(w, f) for
some choice of w and f. Moreover, the only isomorphisms between these objects are
S(w, f) = S, f), where w' is obtained from w by a cyclic permutation mapping
mq to my with odd k.

The case E = _*Z/p, F = _ ®Z/p is quite analogous, except that the following
values of m; (forbidden above) are possible:

m1 =0, ms = o0

My,_1=1, m, = cc.

Comparing the chain complexes S(w) in (4.3) and (3.3) we see that (3.7) is a
consequence of (4.3).

If E =0 or F =0, while the other functor is - ® Z/p or _ * Z/p, the situation
is quite trivial: the indecomposable objects can only be one of the following forms:

Cm — E(Ck),
F(Cm) — C;
Z — F(Cy,)

(the first one if E # 0, the second and the third if ' # 0). In particular, these
cases are essentially finite.

We now prove that all other cases are wild. For instance, let E=F = _Q Z/p
(other cases are similar or even easier to handle). Then an object from EL(U) is
given by two matrices: § as in (1) and 9 as in (2). Two such objects are isomorphic
if and only if there are matrices «, 8 of the form (3) such that all o;; are invertible,
até =64~ and 10 = &’a™. If there are no direct summands C; in R and the
rows of § are linear independent as well as the columns of 8, the pair (9,4) defines
an object from S (with H = 0).

Put now A = @;_, CF, R = @;_, C?,

I 00 0 0 I
s={o 10|, o=(0o 1 1],
0 0 I I XY
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where I is n X n identity matrix, X,Y are any n X n matrices. This gives an
object S(X,Y) € S. If S(X,Y) = S(X',Y') then at = 87, whence a™ = = =
diag(a1, ag, 3). Then f19 = &t implies that a1 = a2 = a3, B = 0 for ¢ # j
and a3X = X'as,azY = Y'ag, i.e. the pairs (X,Y) and (X', Y’) are conjugate.
Therefore, S is wild.

[16]
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