CLASSIFICATION OF STABLE HOMOTOPY TYPES
WITH TORSION FREE HOMOLOGY

HANS-JOACHIM BAUES AND YURI DROZD

The classification of homotopy types of finite polyhedra is a classical and funda-
mental task of topology which in particular is an inevitable step for the classification
of manifolds. There are only a few explicit results on this problem in the literature;
see [W1], [CH], [BH], [H], [B1], [B2], [BD1], [BD2]. A best possible solution is
the classification by a complete list of indecomposable homotopy types as in the
following surprising result.

Theorem A. Letn > 6. There is a minimal list X (Ls) of 451 polyhedra such that
each (n — 1)-connected (n + 5)-dimensional polyhedron X with finitely generated
torsion free homology admits a homotopy equivalence

X’inVXz\/...\/Xt

with X; € X(Ls) for 1 <i<t. Here X1 V...V X; denotes the one point union of
the spaces X;.

We describe the elementary polyhedra in the list X (L5) explicitly in § 1. They
turn out to be CW-complexes with at most 6 non-trivial cells.

Let F¥ be the homotopy category of (n — 1)-connected (n + k)-dimensional
polyhedra or CW-complexes with finitely generated torsion free homology. In the
stable range n > k + 2 the category F*¥ = F¥ is an additive category which does
not depend on n. Recall that the isomorphism class group Ko(F¥) is generated by
the homotopy types {X} in F* with the relations

[X}+{¥}={XVY}

It is a remarkable result of Freyd [F] that Ko(F*) is actually a countably generated
free abelian group for all & > 0. It is well known that F? is equivalent to the
category of finitely generated free abelian groups so that Ko(F°) = Z. We compute
Ko(F¥) for all k > 0 and we compute the number I(F¥) < oo of indecomposable
homotopy types in F* for all k£ > 0 as follows:

Theorem B.

I(F*) 1 2 4 7 67 451 oo
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Hence k = 5 is the maximal dimension k for which K (F*) is finitely generated.
We describe a list of generators of Ko(F®°) in (2.10) below. Theorem A, B and
[BD2] imply the following result concerning the representation type of the additive
category F¥.

Theorem C. The category F* has finite representation type if and only if k < 5.
Moreover for k > 10 the category F¥has wild representation type.

Hence only the representation type of F6, F7, F& F? are unknown. The compu-
tation of the representation type of F® involves a matrix problem given by a matrix
with 328 rows and columns.

§ 1 THE LIST X (L) OF ELEMENTARY POLYHEDRA

We need the following elements in stable homotopy groups of spheres, compare
Toda [T]. Let 7, = 1 € Tp41(S™) = Z/2 be the Hopf map, and let 2 = nn €
Tn4+2(S™) = Z/2 be the double Hopf map, n > 3. Moreover let v = v, = ay €
Tn+3(S™) = Z /24 be the generator of order 8 and 3 respectively.

(1.1) Definition. We define a list L5 of 451 elements as follows. The spherical
elements S°, S*, S2, 83, §*, S5 belong to L5 and the Hopf elements 1y, n1, 12, 3 and
(mm)o, ()1, (nm)2 belong to Ls. Moreover the following words consisting of letters
7, vo, w1 belong to Ls. Here vg and w; are numbers with an index in {0,1}; for
example for v = 3 the letter vy is 3¢ and for w = 6 the letter w; is 6;. The words
are

(1) nvon, nwin with ov,we {1,2,3}, and
(2) vo, w1 with wv,we{l,...,12},
and for v,w € {1,...,6} all subwords of

(3) 171 Vo 1M W1 7

which are not of the form (1) or (2) or 5 or nn. Here a subword of apa; ...a: is a
connected subsequence a,Gn41 ... apyr With 0 <n <n4+k < t. We call a subword
of (3) containing both letters vg and wy a 5-dimensional word.

We can visualize the elements of L5 by graphs as follows. First we describe
spherical elements and Hopf elements by points and vertical edges respectively.
Then we describe the words in L5 by graphs consisting of such vertical edges and
diagonal edges which represent the letters vy and w; respectively. This way we
identify the elements of L5 with the following graphs.

Elementary polyhedra from dimension 4:

O =N Wk O
®

S0 sl 5% 83 5t S5 mo o om m2 w3 (mm)o(nm)i(nm)2
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Only the 5-dimensional words correspond to graphs which have vertices in level
0 and level 5. Let L4 be the subset of all graphs in £5 which have no vertex of level
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5. Then L4 coincides with the following list of 67 elements. (The list £4 = £ was
already achieved in our previous paper [BD2] and is needed in the proof below).

Elementary polyhedra of dimension 4:
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Given an element g in £4 we obtain the suspension >.g € L5 by shifting all levels
of g by +1; for example X(nuonm) = nuinm. Hence the set L5 is the union of the
subsets L4, XL4 and the set of 5-dimensional words. The intersection L4 N XLy
contains only spherical elements and Hopf elements.

(1.2) Definition. The duality operator D on Ls is the function

D:Ls— Ls
with DD = identity defined as follows:

=8  for i€{0,...,5}
i) = M3—i for i€ {0,1,2,3}
D(nm); = (nm)a—; for i€ {0,1,2}

Moreover for a word g in £ let D(g) be obtained by reversing the order of g and by
replacing vg by v; and wy by wy; that is, for example D(nmvo nmw1) = wo nm vy
with w,v € {1,...,6}. Hence if we look at the graph g then the graph D(g) is
obtained by turning g around.

(1.3) Definition. Let n > 6. We associate with each element g € L5 a CW-complex
X (g). The vertices of the graph given by g correspond exactly to the non-trivial
cells of X(g). We call X(Ls5) = {(X(g),9 € L5} the list of elementary polyhedra
associated to L5. For the spherical elements we set

X (8 =8 with i¢€{0,1,2,3,4,5}

where S™"*% is the (n + i)-sphere. For the Hopf elements we obtain the following
2-cell complexes where ¥ denotes the suspension and 7 the Hopf map
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X (i) =X4(S" U, e"t?) for i€ {0,1,2,3}

X ()i = X4S™ Upy e"T3) for i€ {0,1,2}
Moreover for the words g in £4 we get the following CW-complexes with attaching
maps corresponding to the edges of the graph g. In the following definitions the
attaching map v at the right hand side is obtained by identifying the number
v with the v - (v + @) € m,43(S™) where v and « are the generators described

above. Moreover i, denotes the inclusion of S™t* into a wedge of spheres with
ke {0,1,2,3}.

v € {1,2,3}, X(ngon) =8"V S22y Uson ent2 Usgu+ian entt

! +4
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Moreover for elements g € L4, we define
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X(Xg)=%2X(9)

Finally we define for the 5-dimensional words g in L5 the following CW-complexes
with v,w € {0,...,6}. Here we identify v with v(v + «) € 7,4+3S™ and w with
w(v + @) € TS

— n+5
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The cells of the CW-complexes X (w) with w € L5 correspond exactly to the vertices
of the graph w above and the edges in the graph w show precisely how these cells
are attached.
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§ 2 DECOMPOSITION AND CONGRUENCE OF
SPACES WITH TORSION FREE HOMOLOGY

Let C be an additive category with zero object x and biproducts A & B. An
object X in C is decomposable if there exists an isomorphism X = A @ B where A
and B are not isomorphic to *. A decomposition of X is an isomorphism

(2.1) X=A1®0...0A,,n < o0,

where A; is indecomposable for all i € {1,...,n}. The decomposition of X is
unique if B1®... & B,, T X =2 A; ®... A, implies that m = n and that there is a
permutation o with B, ;) & A;. The decomposition problem in C can be described
by the following task: find a complete list of indecomposable isomorphism types
in C and describe the possible decompositions of objects in C. This problem is
considered by representation theory. We say that the decomposition problem in C
is wild or equivalently that C has wild representation type if the solution of the
decomposition problem would imply a solution of the following problem.

(2.2) Problem. Let k be a field and consider the following additive category V5.
Objects are finite dimensional k-vector spaces V together with two endomorphisms
ay, Py : V. — V. Morphisms are k-linear maps f : V — W satistying fay = aw f
and fBy = Bwf. The decomposition problem in V®# for any field & is termed a
”wild problem of representation theory”.

If the list of all indecomposable objects of C is finite then C has finite represen-
tation type. If the representation type of C is neither finite nor wild then C is of
tame representation type. In representation theory there are in general means to
compute an explicit list of all indecomposable objects in C if C has finite or tame
representation type.

Next we describe our decomposition problem of homotopy theory. Let Top*/ ~
be the homotopy category of pointed topological spaces. The set of morphisms
X — Y in Top*/ ~ is the set of homotopy classes [X, Y]. Isomorphisms in Top*/ ~
are called homotopy equivalences and isomorphism types in Top®/ ~ are homotopy
types. Let FF be the full subcategory of Top*/ ~ consisting of (n — 1) -connected
(n + k) -dimensional CW-complexes which have finitely generated torsion free ho-
mology. The objects of F¥ are special A* -polyhedra, see [W1]. The suspension %
gives us sequences of functors

(2.3) FY Sk o F SR

with & > 0. The Freudenthal suspension theorem shows that these sequences
stabelize in the sense that for k+1 < n the functor X : F¥ — F¥_ | is an equivalence
of additive categories so that

(1) FF=FF  with Ek4+1<n

does not depend on n. This is the stable homotopy category of (—1) -connected
k-dimensional spectra with finitely generated torsion free homology. The biproduct
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in the additive category F* is the one point union of spaces. We point out that for
k + 1 = n the functor X is full and a 1-1 correspondence of homotopy types. The
Spanier-Whitehead duality is a contravariant functor

(2) D:F* - F*

satisfying DD = 1 and D(S"*%) = §"*+*~% for i € {0,...,k}; compare for example
[Co].

Each nontrivial element « in the (k — 1) -stem, o € mp4—1(S™), yields the
canonical 2-cell complex S™ U, e"t* € F¥ n > 2, which is indecomposable. Hence
elements in homotopy groups of spheres can essentially be identified with special
indecomposable objects in F¥ %k > 2. The decomposition in FE is not unique. For
example Freyd [F] points out that for n > 5 there is a homotopy equivalence

(2.4) S™V (8™ U, etH) ~ STV (8™ Us, e )

in F4 where, however, the CW-complexes S™ U, e"** and S™ Uz, e"** are not
homotopy equivalent. Here v € m,,3(S™) is a generator of order 8 as in § 1.

In [BD2] we solved the decomposition problem in the additive category F* by
showing that X (L4) is a complete list of indecomposable objects in F4. Our main
purpose in this paper is the solution of the decomposition problem in F°. We show
that F® is again of finite representation type. On the other hand we have seen in
the Appendix of [BD2] that F* is of wild representation type for & > 10. Hence
only the representation types of F& F7, F& F° remain unknown.

(2.5) Theorem. The list X (L5) of 451 elementary polyhedra in § 1 is a complete
list of all indecomposable spaces in F°. Hence for n > 6 each (n — 1)-connected
(n + 5)-dimensional CW-complex X with finitely generated torsion free homology
admits a homotopy equivalence

X~X3V...VX

with X; € X(Ls) for 1 < i < t. Moreover the Spanier-Whitehead duality functor
D : F? = F3 is completely understood on objects since we have

D(X(g)) = X (D(g))
where D(g) is defined by the duality operator D in (1.2) with g € Ls.
Following Freyd [F] and Cohen [Co] 4.26 we use the following notation.

(2.6) Definition. We say that two spaces X,Y in F* are congruent and we write
X =Y if (a) or equivalently (b) is satisfied.

(a) There exists a space Z in F* such that X V Z ~ Y V Z are homotopy
equivalent
(b) There exists a homotopy equivalence X V Bx ~ Y V Bx where Bx is the
unique one point union of spheres which has the same Betti numbers as X,
that is H,.(X)/torsion = H.(Bx).
7



. efinition. Let p be a prime. A space X in is a p-primary space if there
2.7) Definiti Let pb i A X in FF i i if th
exists a homotopy commutative diagram

N1

x P ¥ X
NN
B

where B is a one point union of spheres. Here p”" is a power of the prime p and
p" - 1x is a multiple of the identity of X in the abelian group of homotopy classes
[X,X]in F* and N can not be chosen to be N = 0. This implies that X is not a
one point union of spheres.

(2.8) Lemma. An elementary polyhedron X (g) with g € Ly is 2-primary if and
only if g is a Hopf element or g is a word with letters in the set {n,vo,w1;v and
w divisible by 3}. The only congruences between 2-primary polyhedra in X (Ls) are
given by (2.4) that is X (30) = X(90) and X(31) = X(91). Moreover X(g) is 3-
primary if and only if g = 8y or g = 81. For a prime p > 3 there are no p-primary
spaces in X (Ls).

Recall that for any small additive category C (for example C = F* k > 0)
we have the isomorphism class group Ko(C). This is the abelian group with one
generator [A] for each isomorphism class of objects A € C with relations [A]+[B] =
[A® B]. This is just the Grothendieck group of C as defined by Bass [Ba|. A typical
element of K((C) is a formal difference [A] — [B] with [A] — [B] = [A’] — [B'] if and
only if there exists an isomorphism in C of the foorm A® B'®C = A’ ® B @ C for
some object C in C. The following result is due to Freyd [F]; see also Cohen [Co]
4.44.

(2.9) Theorem of Freyd. Let k > 0. Then Ko(F*) is a free abelian group
generated by the spheres in F* and by the congruence classes of indecomposable
p-primary spaces in F¥ where p runs through all primes.

Such a wonderful result yields the crucial task to compute the generators of
Ko(F*) explicitly. For the category F¥ of torsion free polyhedra we get accordingly:

e K((F%) = Z generated by S™
o Ky(F!) = Z? generated by S™, S"+1
o Ko(F?) = Z* generated by S™, S™+1 S"*+2 X (ny)
o Ko(F3) = Z" generated by 8™, S7+1, §7+2 §n+3 and X (n0), X (1), X (1m)o-
In [BD2] we show that
° KO(F4) =7%
is generated by the 5-spheres S”,...,S™t* in F*, the 23 congruence classes of

2-primary polyhedra in X (£4) and by the unique 3-primary polyhedron in X (L4).
Using (2.8) and (2.5) we get accordingly:

(2.10) Theorem. The group Ko(F3) = Z8" is generated by the 6-spheres S,
cor, 8" the two 3-primary polyhedra in X (Ls) and the 79 congruence classes of
2-primary polyhedra in X (Ls).

In § 6 we show that Ko(F¥) = Z> for k > 6.



§ 3 THE ALGEBRAIC CLASSIFICATION OF HOMOTOPY TYPES IN F®

Let X be a CW-complex in F® = F> with n > 7. We use stable notation so
that we are allowed to omit n. Hence S* corresponds to the sphere S™t¢, more-
over e’ corresponds to the cell "+, and the homotopy group 7; S¢ corresponds to
T4 97T, etc. We may assume that X has a cell structure given by the homology
decomposition; see [B1]. This implies (since the homology of X is free abelian)
that the cells of X are in 1-1 correspondence with free generators of the homology
of X. Let ¢; be the number of i-cells in X so that H;(X) = Z¢. For a space A and
a natural number d > 0 let

(3.1) dA=AvV...VA
N e’

d—times

be the d-fold one point union of A. The attaching map of (stable) 5-cells of X is a
map

(32) fresSt— x4

with X* € F%. Here X* is the 4-skeleton of X. Since the cell structure is given by
a homology decomposition we know that f admits a factorization

(1) fresSt— X3 x?
with X3 € F3. Let

'y X = image{ms X3 — 7T4X4}

Then the homotopy class of f in (3.2) is determined by a homomorphism

(2) [ Hs(X) = 2% — Ty(X*

This is the secondary boundary in J.H.C. Whitehead’s exact sequence [W2]. In
[BD2] we classified the homotopy types in F4 showing that X* is a one point union
of spaces X(g) with g € £4. We say that f in (2) is in normal form if X is a
one point union of spaces X (g) with g € L5 so that f is canonically given by the
attaching maps of 5-cells in X (g) with g € L5, see (1.3).

Since we are in the stable range the functor I'y is additive. Therefore we can
compute ['y X* as in proposition (3.4) below which determines 'y X (g) for g € Ly4.
We define a subset £} of L4 by

ﬁl :{ Soa 547 To, N2, (7777)07 777710777}
Y7 Lovn, mmu, U, v, w
9



Moreover we define the spaces Y; and Y’ with i € {1,...,5}, j € {1,2,3},v €
{1,...,6} by
(Y1 =8"=X(S)

Yo =5'U, e* = X(m)

Y3 = 8" Uy e* = X ()1

Yy = 8% =X (5%

Ys = 8% = X(S%)

Yy = X (nnnmn)

Yy = X (numm)
L Y3 = X (vnm)

(3.3) 4

These spaces form the set X (L4 — L£}); they are given by the following graphs

4
2 . | A A
3 . /7
2 — 7 Y
0 /4 /4 VA
Y1 Y5 Y3 Y4 Yj YYP Yy Yy
di do ds ds4 ds d3y d3 d3
Vi Vo Vs Vi Vs Uy Uy U. é’

Here the numbers d;, d} and the corresponding free abelian groups V; and U} are
chosen in (3.5) and (3.8) below.

(3.4) Proposition. I'4X(g) =0 for g € L} and
T4(Y1) = Z/24
Ty(Yy) =Ty (Ys) =2Z/2
Ty(Ys) =Ty (Ys) = Ty(Y}) = Z/12

Proof. We describe three examples. Consider g = 79 € L} so that X (1) = S°U, €%
Then we have the stable cofiber sequence

St 180 5 X (o) —» 52 1 St
which induces the exact sequence

mS° — maX(no) — 7482 1 7y St

Here 74,8° = 0 by [T] and 7, is injective by [T]. Hence 74X (19) = 0. In the same
way we see m4X (1m)o = 0. Moreover consider g = vn € L. Then we have

[y X (vn) = image{m4(S° vV §2) = 7148 = 74X (vn)}

where i3 : S2 — X (vn) satisfies igv +iam = 0 by definition of X (vn) in (1.3). Hence

we get iamn = ioun = 0 since v = 0 by [T]. Hence I's4 X (vn) = 0. Moreover we use

similar arguments for the computation of I's X (g) with g ¢ £}. Here we need the
10



relation 12(v + @) = 9y in m4S* = Z/24; compare [T]. For example we have the
cofiber sequence
S% s 8T — X (m)

inducing the exact sequence

74S? = St — w4 X ()

so that T4 X (1) = cokernel (. : m4S? — 74S') = Z/12 since mS? = Z/2 is
generated by 7m and 74S' = Z/24 is generated by v + a. We point out that the
generator of Z/12 in the proposition is the composite i1(v + «) where i is the
inclusion of S* into Y5,Y3 or Yy g.e.d.

Since X* is a one point union of spaces X (g) with g € L4 we can write

(3.5) X*=Lv X%

Here L is a one point union of spaces X (g) with g € £} and X* is a one point union
of spaces in (3.3), that is,

(1) Xt =d\ Y1 VdoYs V Z3V dyYy V dsYs

where Z3 is a one point union of spaces Y3, Y, Yy, Yy namely

(2) Zy=dsYsv \/ (dVYyVdyYy v dyYy)
ve{l,... .6}

Here d; and df are numbers > 0. Using (3.4) we see that ['4(L) = 0 so that the

attaching map (3.2) factors through the inclusion X* C X*. Hence we get the
following result which simplifies the proof of the decomposition theorem (2.5) a lot.

(3.6) Proposition. For X in F* there is a homotopy equivalence X ~ LV X.
Here L is a one point union of spaces X (g) with g € £y and X is the cofiber of a
map f: csS* — X* with X* as in (3.5).

Hence in order to find all indecomposable spaces in F? we only have to consider
decompositions of spaces X as in (3.6). We therefore assume in the following that
L = « so that X = X satisfies X* = X* with X* as in (3.5) and f = f. In this
case we say that X is special.

(3.7) Proposition. The space Z = d1Y1 V daYa V Z3 in (3.5) admits a surjection

Hi(Z)®Z]24 — T4(Z)
which is natural in Z.

This is an easy consequence of (3.4) and the definition of Z. We associate with
a special space X the following free abelian groups; see (3.5).
11



6 3
vy =25, U =@y, v =By
v=1 j:l

U=~ DDU - P - DU

\ j=1v=1 j=1 v=1

Then we obtain the homology groups H; = H;(X) of the special space X by the
formulas:

(Hy=U

H=VieV,oVsoU
1) <H2=V4EBU2

Hy3=Vo,®o Vs U;

Hy=V360U

| Hy = 7%

We also obtain for I'y = T'4y(X*) the formula

(2) F4=V1®Z/24EB(VQEBV3€BU)®Z/12EB(V4EBV5)®Z/2

as a consequence of (3.4).

(3.9) Sketch of proof. Let X be special. In order to prove the decomposition the-
orem (2.5) we show that there exist a homotopy equivalence o : X% ~ X* and an
automorphism ¢ of H5X such that the composite

-1, L f 4 % 4
(1) axfo~" : H5(X) = Hs(X) — [y (X7) = [y (X7)
is in normal form; see (3.2). This implies that a special space admits a decomposi-
tion as in (2.5). Here a map o : X* — X* is a homotopy equivalence if and only

if o induces an isomorphism in homology. Since X* is a one point union of spaces
X (g) with g € L4 — L} as in (3.5) (1) we have to consider algebraic maps

(2) ng, : H.X(g9) - H.X(g")

with g,¢’ € L4 — L} such that there exists a map

(3) al 2 X(g) = X(g")
12



inducing n?, in homology. Moreover we determine I'y(c),) in terms of n?,. Using
(2) we can describe all automorphisms n, of the homology H,(X*) in (3.9) for
which there exists a map o : X* — X* with n, = H,(a) and we can compute
a, = I'4(a) since we know I's(a?,) in terms of n),. This leads to the following

definitions and theorem.

(3.10) Definition. We say that an automorphism ¢ : Ty(X*) 22 T'y(X*) is realizable
if there exists a homotopy equivalences o : X* ~ X* which induces ¢; that is
Ls(a) = .

The next result yields by the remarks in (3.9) a purely algebraic classification
of all special homotopy types in F°. Proper automorphisms are defined in (3.12)
below.

(3.11) Theorem. An automorphism ¢ of T4(X*) is realizable if and only if there
exists a proper automorphism M of the free abelian group

W=viee(VzaolU)oV,oVs

for which the following diagram commutes
w M ow

”l l”
T4(X4) —2— Ty (XY

Here p is the quotient map given by (3.8) (2).
(3.12) Definition. Let W3 = V3 @ U so that

W=VioV,oWz0 V.0 Vs

is a direct sum of 5 summands. An automorphism M of the free abelian group W
is proper if and onyl if M is given by a 5 X 5 matrix of the form

ail 2@12 2013 12@14 12@15

a21 Q22 a3 12a34 Oags

(].) M = azi 2@32 ass 12@34 12@35
0 0 0 a44 045
0 0 0 0 ass

with the following properties. The coordinates of the matrix M correspond to
the direct sum decomposition of W above, for example a15 € Hom (V;, V1), as3 €
Hom (W3, Vz), a3z € Hom (W3, W3) . The submatrix

a1 2a12 2a13
(2) Hi=| 621 a2 a2
az1 2azz ass

of M is an automorphism of V; & Vo & W3. Recall that W3 = V3 & U where
U=U'®...0US as in (3.8). We say that for
13



F,G € Hom(U,U)

the homomorphism F' is Z/12-related to G if the coordinates F,y,, Gy € Hom (UY,U?)
of F and G satisfy for v,w € {1,...,6} the equation

(3) (W Fuyy) ®ZJ12 = (v - Gyyy) QZ/12

We require that there exist automorphisms

@ { Ho € Aut (U) = Aut (U, @ U @ Us)

Hy € Aut (W3) = Aut (V3 @ U)

as follows. With respect to the direct sum decomposition U = U; @U@ Us in (3.8)
the automorphism g is given by a matrix of the form

bii  2bia bis
(5) Ho= 1 bar ban o3
2b31  2b3zy b33

Moreover with respect to the direct sum decomposition W3 = V3 @ U the automor-
phism H,4 is given by a matrix

©) w= (20 o)

Cus Cuu

We require that

(7) Ho is Z/12-related to cyy € Hom (U, U)

and cys € Hom (V3,U) has coordinates cyvg € Hom (V3,U?) with v € {1,...,6}
which satisfy the equation

(8) (v-cyvs) ®Z/12 = 0.

Finally we require that #4 in (6) satisfies

(9) HiQZ/2=a33 RZL/2

where a3z € Hom (W3, W3) is the coordiante of M in (1) above.
We point out that by (3.8) (1) we have the homology groups

Hy=U
(3.13) Hi=VieV,oWs
H4:W3 :V3€BU
14



so that the automorphisms Hg, H1,H4 in (3.12) are automorphisms of Hy, H; and
H, respectively. Clearly a homotopy equivalence X* ~ X* induces such automor-
phisms Hg, H1,H4 of homology and in addition automorphisms of Hy and Hj3 in
(3.8) (1) which we obtain as follows.

(3.14) Definition. Given M, Ho,H1,Ha4 as in (3.12) we choose automorphism Hy
on Hj as follows. Let Ho be an automorphism of Hy = V4 @ U, which is given by
a matrix

_f das  dao
Ha = <2d24 dzz)

satisfying the equations (1) and (2).

(1) iy ®ZL[2 =044 ®L/2
) doo ® /2 = byy @ 7,/2

Here a44 and byy are coordinates of I' and H, respectively. The properties of M
and Ho readily show that a44 ® Z/2 and bez ® Z/2 are automorphisms. Hence we
can choose Hg since GL,(Z) — GL,(Z/2) is surjective for all n; choose for example
dss = 0.

Moreover let H3 be an automorphism of Hz = V5 & V, @ U; which is given by a
matrix

Hs = | 2e25 e22 2e9;

satisfying the equations (3) ... (4).

(3) ess @Z/2 = as5 @ Z/2
(4) e ®Z/2=a22Q7Z/2
(5) e11®Z/2=0b11QZ/2
(6) eos ®ZL[2= a5 QZ/2

Here again ass, 22, ags are coordinates of M in (3.12) (1) and b1 is a coordinate
of Ho in (3.12) (5). Since as5 and ase ® Z/2 and by; ® Z/2 are automorphisms it is
possible to choose Hs. For example take e5s = e51 = €37 = 0 and use the surjection
GL,(Z) — GL,(Z/2).

Equation (6) above corresponds to the equation in 4.6 (13) of [BD2].

§ 4 PROOF OF THEOREM (3.11)

Let X* = X* be a one point union as in (3.5) (1), that is,
15



Xt=2Zv dsYs V dsYs,
Z =d1Y1VdYaV Z3,

Zy=dsYsv \/ (dVYY Vv dyYy v dyYy).
ve{l,... ,6}

(4.1)

Here Y; and Y} are given by (3.3). With respect to the decomposition (4.1) a map
a: X* = X* is given by a matrix

tzz Qz4 Qzs
(4.2) = | 4z Q44 Q45
asz 0 s

with agzs : dsYs — Z, etc. We clearly have as4 = 0 since there are no essential
maps from Yy = S? to Y5 = S3. Moreover ayy = a44 and ass = ass are determined
by H,(a) and Hs(c) respectively and aus is given by a homomorphism gass : Vs —
Vi — V4 ® Z/2 where q is the quotient map. Clearly as5 is not well defined by a4s.

(4.3) Proposition. The maps asz and asz induce the trivial homomorphism on
T4, that is T4(aaz) = Ta(asz) = 0. Moreover aza has a coordinate az,4 : daYs —
Z3 and azs has a coordinate az,s : dsYs — Zs with Ty(az,4) =Ta(az,s) = 0.

Proof. We obtain I'y(asz) = T's(asz) = 0 easily from (3.7) and (3.4) since com-
posites S' — Z — 2,83 are trivial. Moreover I'y(az,4) = T4(az,5) = 0 is a
consequence of the fact that I'4S? and I'yS? are generated by 77 and 7 respectively
and that nnm is trivial in T'4Y3 and T'4Y? by (3.4). g.e.d.

Moreover we deduce from (3.7):

(4.4) Proposition. T's(azz) = Hi(azz)« is induced by H1(azz) and with respect
to the decomposition Z = d,Y1V d2Y2 V Z3 the automorphism Hi(azz) is given by
a matriz of the form

a1 2a12  2a13
H; (Ol) = 21 a22 23
az1 2azz a33

Proof. One readily checks that each realizable map Hy X (1) — Hy(S") is divisible
by 2 so that we obtain 2a;5. Similarly one readily checks for ¥ = Y¥3,Y/ that

realizable maps Hy X (1) — Hy(Y) and H,(Y) — H;(S") are divisible by 2. Hence
we obtain 2a32 and 2a13. These facts are easy consequences of the attaching maps
g.e.d.

Using (4.4) nd (4.3) we see that with respect to the decomposition

Ty(X*) =Ty(d1Y1) ® Tu(d2Ys) ® T4(Z3) ® T4(daYs) ® T4(dsYs)

the homomorphism I'4« is given by a matrix of the following form:
16



12@14 12@15

. . 0 6025
(4.5) Tsa=]- - - 0 0

0 0 O (177 aas

0 0 0 0 ass

Here the dotted 3 x 3-matrix is induced by Hi(c) in (4.4). The coordinates a14, a15
and ags are obtained as in the proof of [BD2].

If the map « is a homotopy equivalence then clearly H;(«) is an automorphism
and by the form (4.5) of the automorphism I'ya we see that also a4q ® Z/2 and
ass ® 7 /2 are automorphisms. Using the surjection GL,,(Z) — GL,(Z/2) we may
assume that a44 and ass are automorphisms over Z and hence we obtain by (4.5) a
matrix M as in (3.12) for which the diagram (3.11) commutes with ¢ = T's(c).

In order to prove (3.11) we have to show the following two lemmas.

(4.6) Lemma. Leta be a homotopy equivalence as above. Then Hi = Hy(a), Ho =
Hy(a), and Hq = Hy(a) together with M given by T'g(«) as above have properties
as described in (3.12)

Hence for each homotopy equivalence o there is a proper automorphism M such
that diagram (3.11) with ¢ = I'y(«) commutes.

(4.7) Lemma. Let M be a proper automorphism as in (3.12) so that we can choose
Ho, Hi, Ha, Hs, Ha as in (3.12) and (3.14). Then there exists a map o : X* — X*
with H;(a) = H; such that diagram (3.11) with ¢ = T'4(c) commutes.

Since #; are automorphisms we see that « in (4.7) is a homotopy equivalence.
Therefore each proper automorphism M induces a realizable automorphism ¢ on
F4 (CV)

In order to prove (4.6) and (4.7) we repeat the classification theorem of Unséld
[U1], [U2]. He defines the following algebraic category SF*.

(4.8) Definition. Objects in SF* are tuple of abelian groups

H = (Ho, Hy, Hy, H3, Hy, m1,72) € Ab’

where H; with ¢ € {0,...,4} is finitely generated and free abelian together with
the following diagrams (1), (2), (3) in Ab:

(1) An exact sequence
1
H3—)7Tl®Z/2—)7Tz—)H2L)H()@Z/2n—)ﬂ'1—)ﬂl—)0
1
(2) Let P = ker(Hy - Hy ® Z/2 = ;) where ¢ is the quotient map. Then

0——» Hy —2» P —— ker(p)) ——0

- | Js

T QL2 —— T Q®ZL/2 — ker(b) ®Z/2
17



commutes where gnlq is given by (1) and where Q is determined by the
extension

0 — ker(b) — Hy — ker(n') = 0

given by (1). The top row of the diagram is short exact.
(3) Moreover for the abelian group

Dy = (Ho ® 2/24@ m3 © 2,/2)/{(£ ©6,T(€)); ¢ € P Ho)
defined by T in (2) a homomorphism

b4:H4—)F3

is given.
A morphism between such objects in SF* is a tuple of homomorphisms H — #' in
Ab” which is compatible with all arrows in the diagrams (1), (2) and (3). Clearly
SF* is an additive category with the direct sum of objects given by the direct sum
of abelian groups and morphisms.

In [U1], [U2] one finds the proof of the following result.

(4.9) Theorem. There is an additive functor X : F* — SF* which is full and
representative and which reflects isomorphisms.

The functor carries a space X to the certain exact sequence of J.H.C. Whitehead
[W2] of X together with the secondary homotopy operation 7' which was introduced
by Unsold.

Theorem (4.9) allows the computation of all realizable homology homomorphisms

(4.10) ny : Ho(Y) = Hy(Y')

with Y)Y’ € X (L4 — L})); see (3.3). For this we use the fact that the functor A
in (4.9) is full. One readily checks that H;(Y) is either 0 or Z so that n, is given
by n; € Z with i € {0,...,4}. Below we describe the non-trivial n; for which
n. = (ng, n1,n2,n3, n4) is realizable by a map Y — Y. For example if Y or Y’ are
spheres with Y # Y’ one can check that there are only the following possibilities

(1)...(5).

1 50(2)

(1) Vi Y, —Y

2) Vi My, 2Ny vy mENP y, e,y
(3) v, 2 yp MEAD oy EAD e msy g
(4) Vi My 20y v, Py meyy,
(5) v M yy mE y

Moreover if Y or Y’ are Hopf elements we get the following possibilities (6)...(14).
18



(11)
(12)
(13)
(14)

Finally we get for Y)Y’ € {Y?, Yy, Y7} the following possibilities (15)...

v,we{l,...,
(15) Ylw noEn3(2)_,n>1§n4 (2) Yl,u
now=n4v(12)
(16) R S ]
now=n4v(12)
(17) yp no=0CLmEM ) yy
n4av=now(12)
(]_8) Y no= 0(2),77,1_77,4(2) Y
2 NowW= n4v(12) 1
(19) Y2w n2=no(2)_,n>1=n4 (2) Y2,U
now=n4v(12)
(20) Y2w noEO(2m;>En1(2) Y3U
now=n4v(12)
(21) yp ™MER® oy
3 now=n4v(12) 1
(22) yp MEH® oy
3 now=n4v(12) 2
(23) Yw n1=n4(2) Y,U
3 now=n4v(12) 3
One can prove the conditions of realizability of n. = (n1,...,n4) in (1)...

v, "3y,

n1=nN4 (2)

Y3 Y3

v, "y, My,

v, "y M, oy,
n3 n3=0(2)

n4_n1(2) _n4(2)

Ys yr ™ Ys

N4U= 0(12)

Y, n1=_0§2) Yy 25 Y,

n1_n4(2) _n4(2)

Ys vy ™ Ys

N4U= 0(12)

ni= 0(2)

Y, Yy 25 Y,

Y3 n1_n4(2) Y,U n1_n4(2) Y
N4U= 0(12)

(23) with

(23) either

directly by use of the cell structure of Y,Y’' € X(L4 — L)) or by use of theorem
(4.9). In order to apply (4.9) we point out that the objects in SF* corresponding
to Y3, Y, Yy, Yy are given by the following list.

19



Hy — T RZ/2 — w2 — He — Hy®Z/2 — w1 — Hi, Hy

Ys 0 Z/2 7/2 0 0 z Z 0
vp z % zpezi OF z/2 0 Z/2 Z)20Z Z Z
Yp 0 Z/2 /207 Z 7/2 z z z
YP 0 Z/20Z/2 Z/)20Z/2 O 0 z Z 0
H > P 5L mwmeZ/2, H — I3 « Ho®Z/24® T2 @ZL/2
Ys 0 0 Z)2 z 5 Z)2 — 00 Z/2
y y
Pz 2z % Z)2 z YUY zn202/2 Z/240 72
(z,y) (z,y)
v (0,2) (v,1)
Yy z =z 9% zpeziz z 9 z/120z2 «  z/202202)2
Yy 7 2z 20 zpez2 oz U z/M022 «  Z/2402/202)2

(z +122,2) (z,y,2)

Using these objects of SF* corresponding to Y3, Y, Yy, Yy it is an easy but in-
evitable calculation to obtain the conditions on 7, in (1)...(23) above. For example
if we consider maps Y5¥ — Y’ we obtain n, = (ng,n1,n4) such that the following
diagrams commute (these diagrams describe a morphism A(Y;?) — A(Yy) in SF*).

0o — z2 S%zpezr sz 212 % Z 1z, Z

I L R T

z 2 zpez2 %Y 22 o0 —z2 2 200z 5z, Z

(w;1)

Z=7 — > )20 L)% z N, 7211207)2 «—— 7/2402/20Z)2
"Ol l l(nhﬂ) "4l lnoGBnl no@(nho)l
7522 — % & 7)2 z N, z21207/2 «——  Z/2402)2

The first diagram shows ng = 0(2) and the last diagram shows 11 = n4(2) and
now = ngv(12). If n, = (ng, n1, n4) satisfies these conditions then « and § = 0 can
be chosen such that the diagrams commute.

Homology homomorphisms (4.10) are realizable if and only if they satisfy these
conditions. This proves (4.6) and (4.7) by checking that the conditions (1)...(23)
correspond exactly to the assumptions used in the definition of a proper automor-
phism in (3.12) and (3.14).
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§ 5 SIMPLIFICATION OF PROPER AUTOMORPHISMS

The condition describing a proper automorphism in (3.12) can be considerably
simplified as follows.

(5.1) Proposition. An automorphism M of W is proper if and only if with respect
to the decomposition

W=VieWheVeU'eU?eU3aU'teUeUaV,® Vs

the matriz M is a matriz of the form

(1222222221212\
111 1 1 1 1 1 1 12 6
1 211 1 1 1 1 1 1|12 12
1 2|12 % 2 % 2 % 2|12 12
1 212 1 % 1 2 1 |12 12
1 2|12 % 2 % 2 % 2|12 12
1 2|11 1 1 1 % 1 1|12 12
1 2|12 % 2 % 2 % 2|12 12
1 212 1 % 1 2 1 |12 12
000 0 0 0 0 0 0 1 1
\0 00 0 0 0 0 0 0 0 1)

Here an integer m at some place of a matrixz means that the corresponding block
equals ma where a can be any integral matriz. Moreover % means that this block
with respect to the decomposition

U'=U7/0U; U3
is a matriz of the form

*:

DO =
DN = DD
—_

Remark. If all U® with 4 € {1,...,6} are trivial then the square in the matrix of
(5.1) shrinks to a 1 x 1-matrix and in this case we get the matrix problem for F*
which was solved in [BD2].

Proof. The necessity of this condition follows readily from the definition of a proper
automorphism. To prove sufficiency consider the submatrix N of M corresponding
to the direct summand W3 = Va@U. The submatrix N is indicated by the rectangle
in the matrix M above. Using the notation UY = V3 the matrix N has blocks
N;j : U7 — U* given with respect to the decomposition

Ws=U0U'a U’ U3 U U’ o US.

Since M is invertible also NV is invertible modulo 2. Hence the following submatrices
of N are also invertible modulo 2.
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Ny Ny
Naa Nag
N> =
2 <N62 N66>

Consider the ring Ry of integral matrices of the form

By = Boo  Bos
3By By
where B,,, has the same size as Ny, and By4 has the form %. Then we get
R0/2R0 = Mat (’I’L, IF2)
where n is the number of rows in Ny. As GL(n,Fy) = SL(n,Fy) is generated by
elementary matrices the natural homomorphism
R(>)< — GL(’I’I,, IFQ)

is surjective. In particular, there exists an invertible matrix By € Ry such that
By = No(mod 2). Moreover the matrix Baq is invertible modulo 3.
Next let R be the ring of all matrices of the form %. Then

R/3R = Mat (r,Fs)

The group GL(r,F3) is generated by elementary matrices and the matrix diag (—1, 1,
., 1). Hence the natural homomorphism

R* — GL(’I‘, IF3)

is also surjective; in particular, there exists an invertible matrix A44 € R such that
A44 = B44(Hl0d 3)
Similar observations show that tere exist invertible matrices

By = (Bzz 3326>
Bs> Bee

Bi1 3Bi13 Bis
By =\ B31 B33 DBss
Bsy 3Bs3 DBss

where all blocks B,,, are of the form s and for which in addition By = Na (mod 2)
and By = N; (mod2). Now put

Bi1 Bis 5Bis
Bll = 3B31 B33 3B35
9Bs1 5Bs3 Bss

so that
22



I 0 0 I 0 0
Bi=|0 3 0]B [0 3I 0 (mod 12)
0 0 57 0 0 51

and det B} = det B; = +1(mod 12). Therefore just as above there is an invertible
matrix

Air Az BAgs
A = | 3431 Asz 3Ass
5As1 5Asz  Ass

such that A; = Bj(mod12). Moreover this implies that all blocks A, have the
form ¥%.

On the other hand as B, is invertible its conjugate

(I © I 0\ [ By By
Az = (0 31) Bz (0 %I) - (3362 Bes
is also invertible. Put A, = By, for v,w € {2,6}.
We are now ready to define Hy and H4 associated to M such that the properties

in (3.12) hold. This proves that M is proper and hence completes the proof of (5.1).
Let H4 be the matrix

(Boo Bo1 Bo2 Boz Bos Bos BOG\
0 By 0 3Bi3 0 Bjs 0
0 | Ba1 Bas 3Bas 0 By B
Ha = 0 Bjq 0 Bjs 0 Bss 0
3By | Bss Biaz 3Bss Bi Bss 3BS
0 Bsq 0 3Bs3 0 Bss 0
\ 0 | Ber Bs2 Bes 0 Bes BGG)

Here all blocks B, which have not yet been defined coincide with N,,,. Then H4
is invertible and H4 = N (mod 2). Next let

Al 1 O A13 O 5A15 O
2421 Az 2433 0 2455 A
Ho = 3A3; 0 Asz 0 3Ass 0
0 4A41 2A40 4Ass Agn 4Ass 2A4s
5As51 0 5As3 0 Ass 0
6461 3Ae2 2463 0 6Ags Ass

where all blocks A, which have not yet been defined coincide with B,,. Then
A is also invertible and, in fact, A is Z/12-related to the lower rigth part of #4
corresponding to the direct summand U and indicated by the rectangle in H4 above.
Hence this proves that M is proper; compare (3.12). g.e.d.
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§ 6 PROOF OF THE DECOMPOSITION THEOREM (2.5)

Let A be the ring of all integral (23 x 23)-matrices of the form (5.1) whose
rows and columns are numbered by the indexes i = 1,...,5 and pairs (;’) with
v=1,...,6;5=1,...,3. Let

U = 7,/24

Us =Us = z,{(y) =7Z/12
J

Uy = U5 = Z/2

Then the direct sum

is in the obvious way a A — Z-bimodule denoted by U = Uy. Recall that a matriz
over U is by definition (cf. [D]) an element of P ®, U ® H* where P and H are
finitely generated right projective modules over A and Z respectively. It is more
convenient to identify this tensor product with

U(H, P) = Hom (H,P ®, U).

Two matrices u € U(H, P),u’ € U(H', P') are isomorphic if there are isomorphisms
a:H — H' and 8: P — P’ such that fu = v/a.

Let ¢; = e; and e(;) = e(?)(;) be matrix units and

Then P can be uniquely decomposed as

P= (@%@B)@@@U;’@@P(;)

v=1 j=1

for some free abelian groups V;, U;. Therefore

5 6 3
PerU=PVioteDPU; o Uy
i=1

v=1 j=1

This shows that isomorphism classes of matrices 4 above are in 1-1 correspondence
with homotopy types in F® (for this we use (3.11) and (5.1)).

We shall write the elements of U/(H, P) as families of matrices (u;, u}) with wu;
being of size d; X cs and ug of size d}‘ X c¢g if

H=17*
Vi = 2%
Uy =172%

as in (3.5) and (3.8). The entries of u;,u? are in the corresponding groups U; and

Z/{(y) respectively. The matrices M € A define the “admissible transformations” of
J

rows in these matrices. For instance, as we have as; in M we can add any multiple
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of a row of the matrix u; to any row of the matrix us. On the other hand, as we
have 2a,5 in M, we can add only even multiples of rows of us to the rows of uq,
etc.

We point out that the ring A can be “Morita-reduced” since A is Morita-
equivalent to the following ring A’. The ring A’ consists of all matrices of the
same form as in A for which rows and columns, however, correspond only to the in-
dexes i =1,...,5 and pairs (;’) with j =1,2,3 and v € {3, 4,6} except (). Hence
the restriction of the bimodule U/ to A’ yields the A’ — Z-bimodule Y’ =5 Uy. The
categories of U-matrices and U’-matrices are equivalent.

Moreover U’ is also a A — Z-bimodule with Z = 7Z/24 and A = A’/24 which we
denote by U =z U;. The elements of & and U are the same and also the matrices
from U(P, H) coincide with those from U(P, H) with P = P/24 and H = H/24,
but non-isopmorphic #-matrices might be isomorphic as U-matrices.

Consider the 2-primary part U of U and let A be the ring of matrices with
entries in Z/8 satisfying the same conditions as matrices in A’ above (i.e., in the
corresponding congruences we replace (mod24) by (mod8), (mod12) by (mod 4)
and (mod 6) by (mod2). Then f is a A — Z/8-bimodule Y = =4 Uz /s

Now denote by z; (resp. z()) the image of z € Z in U; (resp, in Z/N{(v)) For
J J

elements u, v € U we write u < v if there exists a € A with au = v. Then, in fact,
all 2-primary elements from U; (resp. Z/{(y)) are linearly ordered as follows:
J

@ <1e <l <le <o <1l
<lz < 1(‘;) < 1(;) < 14
SPLIR) <2) <2) <P0 <P0 <%
<23 < 2@) < 2(;) < 29 < 44

On the other hand 15 < 14 < 4; and 15 < 25 and there are no other relations
< between 2-primary elements. Therefore we can procede as in [BD2] and [D] to
obtain the following list of indecomposable /-matrices:

(a1) witha =1, 2,4.
(a;) withi = 2,3anda =1, 2.
(1;) withs = 4, 5.

e )witha = 1,2 and (%) satistyingv € {3,4,6}, j = 1,2, 3 except (3).

1g

(%

If we consider the 3-part of Z{-matrices the answer is easy. There is only one non-
trivial indecomposable matrix (1;) (isomorphic to (1;) and (].(v)) for all possible
J

)
i >w1tha_1 2andi = 1,2,3and k = 4, 5 except (f )
5
)Wltha— 1,2and k = 4,5and (?) satisfying v € {3, 4,6}

and j € {1,2, 3} except (3).

values of i,v,5). The Chinese remainder theorem implies that we can glue any
2-primary element from U(P, H) with any 3-primary element with the same values
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of P and H. This gives us the following indecomposable U-matrices (taking into
account those “crossed out” under Morita-reduction).

(wy) withw =1,...,12.

with:i =2,3andw =1,... ,6.
withv =1,...,6andj =1,2,3andw=1,...,6

(1s) and (15)
(wi>with7;=1,3andw=1,...,6.
14
<w1(§)>withv= ,...,6andj=1,2,3andw=1,...,6
4
<w2>withw:1,2,3
15
(11"i>with7;=1,3andw=1,...,6.
5
<w1(§)>withv= ....6andj=1,2,3andw=1,...,6.
5
<w2>withw:1,2,3.
14

These indecomposables are in 1-1 correspondence with all elements in L5 — L4 —
{S5°}. The correspondence is given as follows; compare the list of graphs following
(1.1). The correspondence is easily deduced from the notation in (3.3) since the
matrices describe the attaching map of the top cell.

(Is) =m3,  (1a) =(mm)2,  (w1) =wy,

Wo wsg w3
= nuwnn, = nmwinm, = nnwa1,
15 14 15

w2 w1
( 14 ) =nuinn,  (w2) = i, ( 1 ) = wnm,
w
(w3) = nwq, ( 1 ! ) = w11, (w(v)) = Yonnw,
5 3

_ wey Y
= nuonmwL, 1)) = mvonrn,

(%)
(wl(s) ) =vonmuwin,  (w(y)) = nuonmws,
(%)

= YonMwW117, (wvy) = mmuonmwy,
(1)

14
W (o W (o
() ) = nmuonwL, () ) = nvonmwn,
15 14
This completes the proof of the decomposition theorem (2.5). g.e.d.
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§ 6 ON THE REPRESENTATION TYPE OF F®

Since we classified above the indecomposable homotopy types of F° we can pro-
ceed to classify the homotopy types in F®. The method is similar to the computation
in § 3 for F°. Similarly as in (3.1) (2) we now obtain for X € F® a homomorphism

(6.1) f:HeX — T5(X®)

where we may assume that the skeleton X?° again is given by a homology decompo-
sition of X. Moreover X° is a one point union of indecomposable objects in X (Ls)
by (2.5). Hence we can compute I's(Y) for each object Y in X(L5) in order to
obtain an explicit form of T's(X?®). Then we have to understand the action of the
group of homotopy equivalences of X° on the I's X° and using this action we have
to construct a “normal form” of (6.1).

(6.2) Theorem. ForY € X(Ls) the group I'sY is either given by (3.4) or by the
following list:

’1
(o]
S
S
Il
N
~
O
S
N
~
[a—
)

for g = nmuon, nuonmuwim.
9)=Z/2607/2 for g = nnuo.
[5X(9)=Z/24®Z/2 for g=mnv

The theorem shows that there are exactly 328 elements g € L5 for which I's(g)
is non zero. This shows that the 23 x 23 matrix in (5.1) has to be replaced by a
328 x 328 matrix with the additional complication that various I's(Y') in (6.2) are
given by the direct sum of two cyclic groups. We now consider the special case that
X?® in (6.1) is a one point union of d copies of X (nnuvy) with vg € {1,...,6}. In
this case we get the following problem.

Let H = Z" and V = Z? be finitely generated free abelian groups and consider
homomorphisms

['5X(g)=0 for g = 8° vorm, vonmw1, voymw 7.
I'sX(g) =2Z/24 for g = no, nuonm, muonmwin, NYonNWL .
I'5X(g) = Z/12 for g = vomn, vonmwinm-
I'5X(g) =Z/2 for g = (mm)o, vo, mMuonm, UMW 1, NYVOTW1T.
[5X(g)=2Z/24Z/12 for g = nuon, nuonmwinm.
(9)
(9)

(6.3) L HSVRZ20V QZ/2

Then f is equivalent to f’ if there exist automorphisms ng,n3,ns € Aut(V) and
h € Aut(H) with

(1)

such that f' = (n3®mn4) ® Z/20 foh. Equivalence classes of such homomoprhisms
are in 1-1 correspondence with homotopy types of CW-complexes of the form

vong =vgna (mod12)
ng = ng (mod 2)

(2) X(nmuo) V...V X(mmuo) Use®U...Ued.
d—t?irmes h—times
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(6.4) Proposition. There are infinitely many indecomposable homotopy types in
F¢ and Ko(F®) = 2.

Proof. We consider the decomposition of homotopy types as in (6.3) (2) for vg = 2.
Then (6.3) (1) shows that the 2-primary part of this problem has the representation
type of the well known Kroneker quiver

e 30

which has tame representation type and infinitely many indecomposable represen-
tations over Z/2. q.e.d.

Proposition (6.4) together with theorem (2.5) yields a proof of Theorem B in the
introduction.
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