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We fix S = SpecA , where A is a local normal ring of Krull di-
mension 2 (a “normal surface singularity”). Moreover, for the sake
of simplicity we suppose that A is an algebra over an algebraically
closed field k and A/m ' k , where m denotes the maximal ideal
of A . Sometimes it is important that A be complete (or henselian),
but we shall try to specify such places properly. We denote by p the
unique closed point of A (corresponding to the maximal ideal m ).

A resolution of S is, by definition, a projective morphism X → S ,
where X is smooth, which induces an isomorphism X \ π−1(p) →
S \ { p } . In particular, π is birational. It is known, due to Zariski
and Abhyankar (cf. [Lip, § 2]), that every surface singularity has a
resolution; moreover, it can be obtained by a sequence of monoidal
transformations (blowing up closed singular points) and normaliza-
tions. Some examples of calculations are presented in Section 5. For
such a resolution, we denote by E the reduced pre-image π−1(p)red ,
which is a projective curve over k (it might be singular and reducible).
We call E the exceptional curve of the resolution π and denote by
Ei (i = 1, . . . , s) its irreducible components. Remind that E is al-
ways connected (it follows from Zariski’s Main Theorem [Ha, Corollary
III.11.4]). We say that the resolution is transversal if Ei are smooth,
pairwise transversal, and neither three of them have a common point.
Especially, all singular points of E (if exist) are in this case ordinary
double points (nodes).

An exceptional cycle (or simply cycle, or an exceptional divisor) of
such a resolution is a divisor C on X with suppC ⊆ E . It means
that C =

∑s
i=1 ciEi . If ci > 0 and C 6= 0 , call C an effective cycle.
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Then C is identified with the closed sub-scheme of X defined by the
ideal sheaf OX(−C) ⊂ OX . We also denote by ωX the canonical
(or dualizing) line bundle over X and by KX a canonical divisor of
X ; thus ωX ' OX(KX) . Then for any effective cycle C there is a
canonical (dualizing) line bundle

ωC = Ext1(OC , ωX) ' OC ⊗ ωX(C)

(we always write ⊗ for ⊗OX
, if it not very ambiguous). It establishes

the Serre’s duality for any coherent sheaf F on C :

(SD) Exti(F , ωC) ' DH1−i(C,F) (i = 0, 1)

[Ha, Theorem III.7.6], or, if F is a vector bundle (locally free sheaf),

DHi(C,F) ' H1−i(C,F∨ ⊗ ωC).

Here DV denotes the dual vector space Homk(V,k) and F∨ denotes
the dual vector bundle HomOC

(F ,OC) .

1. Intersection theory

Let C be a projective curve (possibly non-reduced); for instance, it
may be an effective cycle of a resolution. For any locally free sheaf F
of rank n on C define its degree degF (or degC F ) as

degF = χ(F)− nχ(OC),

where χ is the Euler–Poincaré characteristic: χ(F) = h0(F)−h1(F) .
If C is an irreducible curve and F = OC(D) , where D is a divisor
supported on the set of regular points of C , the Riemann–Roch the-
orem gives degF = degD , the usual degree of a divisor (cf. [Ser]
or [Ha, Theorem IV.1.3 and Exercise IV.1.9]). This definition enjoys
most properties of “usual” degree, which we collect in the following

proposition. We write F g∼ E and say that the sheaves F and E
are generically isomorphic, if F|U ' E|U for an open dense subset
U ⊆ C .

Proposition 1.1. (1) If F1
g∼ F2 and E is locally free of rank m ,

then

χ(E ⊗ F1)− χ(F ′ ⊗F2) = m(χ(F1)− χ(F2)).

Especially if F1,F2 are also locally free, the same holds for
their degrees.

(2) If E ,F are locally free of ranks, respectively, m,n , then

deg(E ⊗ F) = n deg E +m degF .

(3) If f : D → C is a proper morphism of curves such that f∗OD
g∼

mOC and F is a locally free sheaf on C , deg f ∗F = m degF .
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Proof. (1) Let F1|U ' F2|U , where U is open dense, i : U → X
be the embedding. Then F = i∗i∗F1 ' i∗i∗F2 and there is an exact
sequence

0 −→ Si1 −→ Fi −→ F −→ Si2 −→ 0 (i = 1, 2),

where suppSij ⊆ X \ U , so it is 0-dimensional. Therefore χ(Sij) =
h0(Sij) and χ(E⊗Sij) = mχ(Sij) . As χ(Fi) = χ(F)+χ(Si1)−χ(Si2) ,
it implies the necessary formula.

(2) Here E g∼ mOC , F
g∼ nOC , so using (1) we get

χ(E ⊗ F)−mnχ(OC) = χ(E ⊗ F)− χ(mOC ⊗F)+

+ χ(mOC ⊗F)− χ(mOC ⊗ nOC) = n(χ(E)−mχ(OC))+

+m(χ(F)− nχ(OC)) = n deg E +m degF .

(3) By definition, Γ(C, f∗M) = Γ(D,M) for any sheaf M on D .
It gives a spectral sequence

Hi(C,Rjf∗M) =⇒ Hp(D,M).

For p = 1 it gives an exact sequence

0→ H1(C, f∗M) −→ H1(D,M) −→ H0(C,R1f∗M)→ 0.

If M = f ∗F and F is locally free of rank n , f∗f
∗F ' f∗OD⊗F and

R1f∗(f
∗F) ' R1f∗OD ⊗ F [Ha, Exercise III.8.3]. As R1f∗OD has

0-dimensional support, it implies that h0(R1f∗(f
∗F)) = nh0(R1f∗OD)

and

deg(f ∗F) = χ(f ∗F)− nχ(OD) =

= χ(f∗(f
∗F)) + nh0(r1f∗OD)− nχ(OD) =

= χ(f∗OD ⊗F)− nχ(f∗OD) =

= χ(f∗OD ⊗F)− χ(mOC ⊗F)+

+ χ(mOC ⊗F)− nχ(f∗OD) =

= nχ(f∗OD)−mnχ(OC)+(*)

+mχ(F)− nχ(f∗OD) =

= m deg(F)

(equality (*) holds since f∗OD
g∼ mOC ). �

Let now X be a smooth surface (not necessary projective!) and
C be an effective divisor on X whose support is a projective curve.
For instance, C may be an effective cycle on a resolution of a normal
surface singularity. For every divisor D on X define the intersection
number of D with C as (D.C) = degC(OC(D)) , where, as usually,
we set F(D) = F ⊗ OX(D) for any coherent sheaf F on X . Again
we gather the properties of these numbers in the following proposition.
We denote χ(C) = χ(OC) .
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Proposition 1.2. (1) ((D +D′).C) = (D.C) + (D′.C) .
(2) (D.(C + C ′)) = (D.C) + (D.C ′) .
(3) If D is effective and suppD contains neither component Ei ,

then (D.C) > 0 ; moreover, (D.C) = 0 if and only if suppD∩
suppC = ∅ .

(4) If both C and C ′ are effective divisors with projective supports,

(1.1) (C ′.C) = χ(C ′) + χ(C)− χ(C + C ′),

in particular (C ′.C) = (C.C ′) .
(5) χ(C) = −(K +C.C)/2 , where K is a canonical divisor of X

(“adjunction formula,” cf. [Ha, Proposition V.1.5]).

Proof. (1) is obvious since OX(D +D′) = OX(D)⊗OX(D′) .
(2) and (4) will be proved simultaneously. Tensoring the exact se-

quence 0→ OX(−C)→ OX → OC → 0 with OX(−C ′) we get

0→ OX(−C − C ′) −→ OX(−C ′) −→ OC(−C ′)→ 0.

Thus there is an exact sequence

(1.2) 0→ OC(−C ′) −→ OC+C′ −→ OC′ → 0

and all these sheaves are actually coherent sheaves on C + C ′ . So if
L is an invertible sheaf on C + C ′ , we get, using Proposition 1.1(1)
and denoting LC = L ⊗OC ,

(1.3) (C ′.C) = degC(OC(C ′)) = χ(OC(C ′))− χ(OC) =

= χ(LC)− χ(LC(−C ′)) = χ(LC) + χ(LC′)− χ(L)

(to get the last equality, just tensor (1.2) by L ). If L = OC+C′ , it gives
(1.1). Subtracting (1.1) from (1.3) gives degC+C′(L) = degC(LC) +
degC′(LC′) . Taking L = OC+C′(D) we get the assertion (2).

(3) If D is effective, tensoring the exact sequence 0→ OX(−D)→
OX → OD → 0 with OC gives

0→ Tor 1(OC ,OD)→ OC(−D)→ OC → OC ⊗OD → 0.

As supp Tor 1(OC ,OD) ⊆ C ∩ D , it is a sky-scraper sheaf, so can-
not be embedded into OC(−D) , which is locally free on C . Hence
Tor 1(OC ,OD) = 0 and

(D.C) = χ(OC)− χ(OC(−D)) = χ(OC ⊗OD).

The latter sheaf is also skyscraper, so (D.C) = h0(OC ⊗ OD) > 0 .
Moreover, if suppC ∩ suppD = ∅ , also OC ⊗OD = 0 . On the other
hand, if x ∈ suppC ∩ suppD , the residue field k(x) is a factor of
both OC and OD , hence of their tensor product, so OC ⊗ OD 6= 0
and (D.C) 6= 0 .

(5) Remind that ωC = ωX(C) ⊗ OC ' OX(K + C) ⊗ OC and,
by Serre’s duality, χ(C) = −χ(ωC) , so degC(ωC) = −2χ(C) . But
degC(ωC) = degC(OX(K + C)⊗OC) = (K + C.C) . �
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The main result of this intersection theory is

Theorem 1.3. For every non-zero exceptional cycle C , (C.C) < 0 .

First prove the following

Lemma 1.4. Let ( . ) be a symmetric bilinear form on Zn . Suppose
that there is a basis e1, e2, . . . , en such that

(1) (ei.ej) > 0 for i 6= j ,
(2) there is a vector z =

∑n
k=1 zkek with all zk > 0 such that

(z.ei) 6 0 for all i ,
(3) for each i there is j 6= i such that (ei.ej) 6= 0 .

Then ( . ) is negative semi-definite. If, moreover, (z.z) < 0 , it is
negative definite.

Proof. Use induction by n to show that (v.v) 6 0 for each v . If
n = 1 , it is trivial. Suppose that (v.v) > 0 . It follows from (1) that
replacing all coordinates of v by their absolute value cannot diminish
(v.v) , so we may suppose that v =

∑
ciei with ci > 0 . Set r =

min { ai/zi } . Then v− rz has all coordinates non-negative and one of
them zero. On the other hand, (v− rz.v− rz) = (v.v)− (z.2v− rz) >
(v.v) > 0 due to the condition (2). In particular, v 6= rz . Thus we may
suppose that ci > 0 for 1 6 i 6 l and ci = 0 for i > l , where l < n .
Consider the vector z′ =

∑l
k=1 zkek . If i 6 l , (z′.ei) 6 (z.ei) 6 0 ,

since (ej.ei) > 0 if j > l . As z′ and v belong to a subspace generated
by { e1, e2, . . . , el } , (v.v) 6 0 by induction.

Suppose now that (z.z) < 0 and (v.v) = 0 for some v as above.
Again we can choose v with at least one coordinate cj = 0 (note that
v = rz is impossible since (z.z) < 0 ). Moreover, the condition (3)
implies that we can choose j such that (v.ej) 6= 0 , hence (v.ej) > 0 .
Then (av + ej.av + ej) = 2a(v.ej) + (ej.ej) > 0 for big enough a . As
we have already seen, it is impossible. �

Proof of Theorem 1.3. We shall construct an effective cycle Z such
that (Z.Ei) 6 0 for all i and (Z.Z) < 0 . Since E is connected, we
can apply lemma 1.4 afterwards, taking into account proposition 1.2(3).
Consider a non-zero element a ∈ m and its divisor (a) on X . Note
that a has no poles, so (a) is effective. Let (a) =

∑s
i=1 ziEi+D , where

Ei 6⊆ suppD . Certainly zi > 0 since Ei ⊆ π−1(p) and a(p) = 0 . Set
Z =

∑s
i=1 ziEi . Then Z ∼ (−D) as divisor on X, so (Z.Ei) =

−(D.Ei) 6 0 . On the other hand, since a is non-invertible element of
A , there is an irreducible curve C on S such that a|C = 0 and p ∈ C .
Hence suppD has a component that intersects E , so (D.Z) > 0 by
proposition 1.2(3). Thus (Z.Z) = −(D.Z) < 0 . �

It is known (cf. [Gr, La1]) that the converse holds in analytic case: if
X is a smooth analytic surface and E is a projective curve on X such
that the intersection form is negative definite on cycles with support
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in E , there is an analytic surface S , a point p ∈ S and a proper
birational mapping π : X → S such that E = π−1(p)red and the
restriction of π on X \ E is an isomorphism. I do not know whether
it is true in algebraic situation. Some results can be found in [Art].

2. Minimal resolutions

Definition 2.1. A resolution π : X → S is said to be minimal if for
any other resolution φ : Y → S there is a morphism ψ : Y → X such
that φ = π ◦ ψ .

Note that ψ is uniquely determined since π is dominant, so usual
considerations show that a minimal resolution, whenever it exists, is
unique up to a canonical isomorphism. To show existence we need
some facts about birational transformations, especially about monoidal
transformations, i.e. blowing up closed points [Ha, Sections II.7, V.3].
The main properties of monoidal transformations are collected in the
following

Proposition 2.2. Let X be a smooth 2-dimensional variety, τ : X ′ →
X be the blowing up of a closed point x (the monoidal transformation
at the point x ), and L = τ−1(x) . For any divisor D on X denote by
τ ∗D its pre-image and by τ ′D its strict transform (for an effective D
it is defined as the closure of τ−1(D \{x }) ). Let also mD be the mul-
tiplicity of D at x , defined for an effective D as max {m | f ∈ mm

x } ,
where f is a local equation of D in a neighbourhood of x (especially
mD = 0 if x /∈ suppD ).

(1) PicX ′ ' PicX ⊕Z , where the latter summand is generated by
the class of L .

(2) L ' P1 and (L.L) = −1 .
(3) τ ∗D = τ ′D +mDL .
(4) (τ ∗D.τ ∗C) = (D.C) and (τ ∗D.L) = 0 for every D .
(5) (τ ′D.τ ′C) = (D.C)−mDmC .
(6) KX′ = τ ∗KX + L .
(7) χ(τ ′C) = χ(C) +mC(mC − 1)/2 .

In these formulas C denotes a projective curve on X and intersection
numbers are defined in the preceding section.

For the proofs, see [Ha, Section V.3]. Though it is supposed there
that X is a projective surface, all these proofs are in fact local, so
they remain valid in our situation. The last formula for χ(τ ′C) fol-
lows immediately from the preceding ones and the adjunction formula
χ(C) = −(K + C.C)/2 from Proposition 1.2(5).

We call a curve C on a smooth surface X a contractible line if
C ' P1 and (C.C) = −1 . The sense of this notion is clarified by the
classical Castelnuovo theorem [Ha, Theorem III.5.7]. We formulate it
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in a bit more general form, though the proof essentially remains the
same.

Theorem 2.3 (Castelnuovo). Let A be an affine variety, φ : X → A
be a projective morphism, where X is a smooth surface, and C be a
contractible line on X . There is a projective morphism ψ : Y → A ,
where Y is also a smooth surface, a monoidal transformation τ : Y ′ →
Y at a point y, and an isomorphism η : X → Y ′ such that φ = ψ◦τ◦η
and η(C) = ψ−1(y) .

We always use the isomorphism η from this theorem to identify X
with Y ′ and C with τ−1(y) , and say that Y is obtained from X by
contracting C .

The next important fact on birational transformations of surfaces is

Theorem 2.4. Let X and Y be smooth surfaces, projective over some
affine variety A , φ : Y → X be a birational morphism (over A ).
Then φ decomposes into a product of monoidal transformations, i.e.
there is a morphism ψ : Y ′ → X that is a product of monoidal trans-
formations and an isomorphism η : Y → Y ′ such that φ = ψ ◦ η .
Moreover, the number of monoidal factors in φ equals the number of
irreducible curves C on Y such that φ(C) is a closed point.

Again the proof from [Ha, Section V.5] can be applied with no
changes in this situation, and we shall always identify Y with Y ′

and φ with ψ .
Now we are able to show that a minimal resolution always exists.

Theorem 2.5. For any surface singularity S there is a minimal reso-
lution. Namely, any resolution π : X → S such that π−1(p) contains
no contractible lines are minimal.

Proof. Consider any resolution ψ : Z → S and its exceptional curve
E . If E has a component Ei that is a contractible line, we can
decompose ψ = τ ◦ψ′ , where τ : Z → Z ′ is a monoidal transformation
and ψ′ is again a resolution. Moreover, since τ(Ei) is a point, the
exceptional curve of ψ′ has less irreducible components. Therefore
we can find a resolution π : X → S such that its exceptional curve
contains no contractible lines. We shall prove that this resolution is
minimal.

Indeed, consider any other resolution ψ : Y → S . Let P = X×S Y .
It is again a surface, though not necessarily smooth. Nevertheless, we
can construct a resolution Z → P , thus obtaining a commutative
diagram of birational morphisms

Z
α−−−→ X

β

y yφ

Y −−−→
ψ

S
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Moreover, we can choose Z minimal in the sense that there is no
birational morphism θ : Z → Z ′ , which is not an isomorphism, but
α = α′ ◦ θ and β = β′ ◦ θ for some α′ : Z ′ → X and β′ : Z ′ →
Y . Suppose that β is not isomorphism. Then it decomposes into a
product of monoidal transformations. In particular, there is a monoidal
transformation τ : Z → Y ′ at some point y ∈ Y ′ such that β = β′◦τ .
Let L = τ−1(y) . It is a contractible line. Set C = α(L) . It is the total
transform of y under the birational transformation α ◦ τ−1 : Y ′ → X ,
which is defined everywhere except maybe y . If it is also defined at y ,
then α factors through Y ′ , in contradiction with the minimality of Z .
Hence dimC = 1 [Ha, Theorem V.5.2], so C is an irreducible curve
and L is the strict transform of C under α . From Proposition 2.2(7)
we know that (C.C) + χ(C) > (L.L) + χ(L) = 0 . As (C.C) 6 −1
and χ(C) 6 1 , necessarily (C.C) = −1 and χ(C) = 0 , so C is a
contractible line, in contradiction with the choice of X . �

Theorem 2.6. For any surface singularity S there is a minimal trans-

versal resolution, i.e. a transversal resolution π̃ : X̃ → S such that
any other transversal resolution factors through π̃ .

Proof. Consider a minimal resolution π : X → S and construct mor-
phisms φk : Xk → X and πk = π ◦ φk : Xk → S recursively. Namely,
set X0 = X and φ0 = Id . If φk : Xk → X and πk : Xk → S
have been constructed, let E(k) = π−1

k (p) and E1, E2, . . . , Es be the
irreducible components of E(k) . Define the set Γk of closed points of
E(k) such that x ∈ Γk if and only if one of the following conditions
hold:

(i) x is a singular point of some Ei ;
(ii) x ∈ Ei ∩ Ej (i 6= j) and Ei, Ej are not transversal at x ;
(iii) x ∈ Ei ∩ Ej ∩ El with i 6= j 6= l 6= i .

Obviously Γk is finite. Define φk : Xk+1 → Xk as the result of
monoidal transformations performed at all points of Γk and πk+1 =
πk◦φk . It is well-known [Ha, Theorem V.3.9] that finally we get l such
that πl is a transversal resolution. We show that it is even a minimal
transversal resolution. Let π′ : X ′ → S be any transversal resolution.
As π is minimal, π′ factors through π . We shall use induction to
show that ψ can be factored through each πk . We already know it
for k = 0 . Suppose that π′ = πk ◦ ψ for k < l , where ψ : X ′ → Xk .
The morphism ψ is a composition of monoidal transformations. Let
x ∈ Γk . If τ : Y ′ → Xk is a monoidal transformation at some point
y 6= x , some neighbourhoods of x and τ−1(x) are isomorphic. Hence
τ−1(x) also has one of the above properties (i–iii). On the other hand,
monoidal transformations at y and at x commute. Therefore, one
may suppose that all monoidal transformations at the points from Γk
are among those that constitute ψ , i.e. ψ factors through φk and π′
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factors through πk+1 . As a result, π′ factors through πl , hence the
latter is indeed a minimal transversal resolution. �

If π : X → S is a minimal transversal resolution, define its dual
graph as a weighed graph Γ = Γ(S) such that:

• the vertices of Γ are the irreducible components of E , the
exceptional curve of this resolution (or further their indices i =
1, . . . , s );
• the edges of Γ are singular points of E ; if x ∈ Ei ∩ Ej , the

corresponding edge joins the vertices i and j ;
• each vertex i has weight (g, d) , where g is the genus of Ei

and d = −(Ei.Ei) ; if g = 0 , i.e. Ei ' P1 , we omit g in this
pair writing d instead of (0, d) .

Note that there can be multiple edges between two vertices i, j in Γ :
it just means that Ei and Ej have several intersection points.

3. Fundamental cycle

Consider a resolution π : X → S of a normal surface singularity.
Let E1, E2, . . . , Es be irreducible components of the exceptional curve
E . As we have already seen, there is an effective cycle Z =

∑s
i=1 ziEi

such that (Z.Ei) 6 0 for all i . If Z ′ =
∑s

i=1 z
′
iEi is another such

cycle, one can easily see that min {Z,Z ′ } =
∑s

i=1 min { zi, z′i }Ei also
has this property. Hence there is the smallest effective cycle Z such
that (Z.Ei) 6 0 for all i . It is called the fundamental cycle of this
resolution. Of course, if the exceptional curve E is irreducible, Z = E ,
but it is not the case in general situation (cf. Example 5.3).

There is a recursive procedure to calculate the fundamental cycle
due to Laufer [La2]. It also gives information about the cohomologies
of this cycle.

Proposition 3.1. Define the cycles Zk recursively:

• Z0 = 0 ,
• Z1 = Ei0 for some (arbitrary) i0 ,
• Zk+1 = Zk+Eik for some (arbitrary) ik such that (Zk.Eik) > 0

(if it exists).

Then there is l such that Zl = Z is a fundamental cycle. Moreover,
for each k = 1, . . . , l

h0(OZk
) = 1,(i)

p(Zk) =
k−1∑
j=0

h1(OEij
(−Zj)),(ii)

where p(C) = h1(OC) is the arithmetic genus of a curve C .

Proof. For the first assertion it is enough to verify that Zk 6 Z for
all k such that Zk can be constructed. It is so for k = 1 . Let
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Z =
∑s

i=1 ziEi, Zk =
∑s

i=1 ciEi with ci 6 zi , and Zk+1 can be
constructed. If ci = zi , then (Zk.Ei) 6 (Z.Ci) , because (Ej.Ei) > 0
for j 6= i . Hence cik < zik , so Zk+1 6 Z .

Now the exact sequence (1.2) for C ′ = Zk, C = Eik (thus C+C ′ =
Zk+1 ) gives

0→ OEik
(−Zk) −→ OZk+1

−→ OZk
→ 0,

and h0(OEik
(−Zk)) = 0 since (Zk.Eik) > 0 . So the exact sequence of

cohomologies is

(3.1) 0→ H0(OZk+1
) −→ H0(OZk

) −→
−→ H1(OEik

(−Ck)) −→ H1(OZk+1
) −→ H1(OZk

)→ 0.

As Z1 is an irreducible reduced curve, h0(Z1) = 1 , hence h0(Zk) = 0
for all k and the first mapping in (3.1) is an isomorphism. Thus
h1(OZk+1

) = h1(OZk
) + h1(OEik

(−Ck)) , wherefrom (ii) follows. �

Remark 3.2. Note that OC(−C ′) ' OX(−C)/OX(−C − C ′) , so the
formula (ii) above can be rewritten as

p(Zk) =
k−1∑
j=0

h1(OX(−Zj)/OX(−Zj+1)).

Moreover,

h1(OEij
(−Zj)) = −χ(OEij

(−Zj)) =

= − degEj
OEij

(−Zj)− χ(Eij) =

= (Zj.Eij)− 1 + p(Eij)

for j > 0 . Thus

(3.2) p(Zk) =
k−1∑
j=0

(p(Eij) + (Zj.Eij))− k + 1.

In particular, this rule shows that p(Z) only depends on genera p(Ei)
and intersection numbers (Ei.Ej), and if Z =

∑s
i=1 ziEi , then p(Z) >∑s

i=1 zip(Ei) .

Proposition 3.3. Let π : X → S be a resolution with fundamental
cycle Z , φ : Y → X be a birational projective morphism. Then
Z∗ = φ∗Z is the fundamental cycle of the resolution π ◦ φ : Y → S .

Proof. We only have to consider the case when φ is a monoidal trans-
formation at a point x . We use the notations and assertions of Propo-
sition 2.2. Let Ei be the components of the exceptional curve on X .
The components of the exceptional curve on Y are E ′

i (strict trans-
forms of Ei ) and L = φ−1(x) . Let mi be the multiplicity of x on
Ei , n be its multiplicity on Z . Then (Z∗.E ′

i) = (Z∗.E ′
i + miL) =

(Z∗.E∗
i ) = (Z.Ei) 6 0 . On the contrary, we can write any effective
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cycle D on Y as a sum C ′ + lL , where C ′ is the strict transform of
an effective cycle C on X . Then (D.L) = (C∗+(l−m)L.L) = m− l ,
where m is the multiplicity of x on C , so (D.L) 6 0 implies l > m .
Now (D.E ′

i) = (C∗ +(l−m)L.E ′
i) = (C∗.E ′

i)+ (l−m)mi = (C∗.E∗
i )+

(l − m)mi > (C.Ei) . Hence (D.E ′
i) 6 0 implies that D > C∗ and

(C.Ei) 6 0 , i.e. C > Z and D > Z∗ . So Z∗ is indeed the fundamen-
tal cycle on Y . �

4. Cohomological cycle

We study cohomological properties of the resolution π : X → S ,
especially R1π∗OX . As S is affine, we may (and shall) identify any
coherent sheaf F on S with A-module Γ(S,F) . In particular, we
identify R1π∗OX with Γ(S,R1π∗OX) . But this module is isomorphic
to H1(X,OX) , since Γ(S, π∗F) ' Γ(X,F) for every F and the func-
tor Γ(S, ) is exact. It so happens that H1(X,OX) can be calculated
from some effective cycle.

Theorem 4.1. There is an effective cycle Zh such that:

(1) h1(OZh
) > h1(OC) for every effective cycle C .

(2) Zh is the smallest effective cycle with this property.
(3) H1(X,OX) ' H1(OZh

) .

The cycle Zh is called the cohomological cycle of the resolution π :
X → S .

Proof. We start from the

Lemma 4.2. Suppose that a symmetric bilinear form satisfies condi-
tions of Lemma 1.4. Given any integers ci , there is a vector v such
that (v.ei) 6 ci for all i .

Proof. Use induction. For s = 1 the claim is obvious, and we have
seen in the proof of lemma 1.4 that the conditions remain valid for
the restriction of the form onto the subgroup generated by a part of
basic elements. Find i such that (z.ei) < 0 , let it be i = s . We may
suppose that there is u ∈ 〈 e1, e2, . . . , es−1 〉 such that (u.ei) 6 ci for
i < s . Then (u+ kz.ei) 6 (u.ei) 6 ci for i < s , and (u+ kz.es) 6 cs
for big enough k . �

Find now an effective cycle D such that (D.Ei) 6 −(KX .Ei) , so
(KX +D.Ei) 6 0 . For any positive cycle C the exact sequence

0→ OC(−D) −→ OD+C −→ OD → 0

induces the exact sequence

H1(OC(−D)) −→ H1(OD+C) −→ OD → 0.

Moreover, by Serre’s duality, H1(OC(−D)) ' DH0(OC(K + C +D)) ,
since ωC ' OC ⊗ ωX(C) ' OC(K + D) . But (K + C + D.C) 6
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(C.C) < 0 , so H0(OC(K + C + D)) = 0 and H1(OD+C) ' H1(OD) .
Thus h1(OD) is the maximal possible.

Let now C also have this property, M = min {C,D } , C = M +
A, D = M + B , where A,B are effective cycles without common
components. Set N = A + B + M . Then we have a commutative
diagram

0 −−−→ OA(−D) −−−→ ON −−−→ OD −−−→ 0y y y
0 −−−→ OC(−M) −−−→ OC −−−→ OM −−−→ 0y y

0 0

The morphism in the first column is a monomorphism with cokernel
isomorphic to the skyscraper sheaf OA ⊗OB . As H1(OA ⊗OB) = 0 ,
we get a commutative diagram of cohomologies

H1(OA(−D) −−−→ H1(ON) −−−→ H1(OD) −−−→ 0y y y
H1(OC(−M) −−−→ H1(OC) −−−→ H1(OM) −−−→ 0y y y

0 0 0

It induces an exact sequence

H1(ON) −→ H1(OC)⊕ H1(OD) −→ H1(OM)→ 0.

Thus h1(OM) > h1(OC)+h1(OD)−h1(ON) > h1(OD) , since h1(OC) =
h1(OD) > h1(ON) . Therefore h1(OM) = h1(OD) . It evidently implies
that the smallest divisor Zh with this property exists.

By the theorem on formal functions [Ha, Theorem III.11.1] R̂1π∗OX '
lim←−D H1(OD) , where D runs through effective cycles. But the map-

pings H1(OD) → H1(OC) are bijective for D > C > Zh , hence
R1π∗OX ' H1(OZh

) . (Since it is finite dimensional, no completion
is needed.) �

Remark 4.3. It is possible that H1(X,OX) = 0 ; such singularities are
called rational. Then Zh = 0 . The Laufer procedure (Proposition 3.1)
shows that it is only possible if all components Ei are projective lines,
i.e. p(Ei) = 0 , and (Zj.Eij) = 1 for all steps of this algorithm, in
particular (Ei.Ej) 6 1 for all i 6= j . On the other hand, if these
conditions hold, H1(OZ) = 0 . If, moreover, the resolution is minimal,
so (Ei.Ei) 6 −2 , the adjunction formula (Proposition 1.2(5)) gives
(K.Ei) > 0 . Thus (Z.Ei) 6 0 6 (K.Ei) , so the proof of Theorem 4.1
shows that Zh 6 Z and H1(OX) = H1(OZ) = 0 , i.e. the singularity
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is rational. Note that Proposition 3.1(6) together with Proposition 3.3
shows that the value χ(Z) = −(K + Z.Z)/2 does not change under a
monoidal transformation, thus holds for each resolution if it holds for
one of them. So a singularity is rational if and only if p(Z) = 0 for
the fundamental cycle of some (then of any) resolution.

5. Examples

We consider several examples of surface singularities. All of them
are indeed hypersurface singularities, i.e. those of surfaces embedded
in A3 , hence given by one equation F (x1, x2, x3) = 0 . We always
suppose that F (0, 0, 0) = 0 and take for A the local ring of the point
p = (0, 0, 0) . It is always Cohen–Macaulay [Ha, Proposition II.8.23],
so it is normal if and only if p is an isolated singularity. Note that p
is a singular point if and only if F contains no linear terms. We also
suppose that chark = 0 . Remind that the monoidal transformation
at the point p replace S = SpecA by the closure Y ⊂ S × P2 of the

sub-scheme Ỹ ⊆ U × P2, where U = S \ { p } and Ỹ is given by the
equations ξixj = ξjxi , (ξ1 : ξ2 : ξ3) being homogeneous coordinates
in P3. Actually Y is covered by three affine sheets Yj (j = 1, 2, 3)
respectively to three copies of A2 covering P3. Namely, Yj is the

closure in S×A2 of the sub-scheme Ỹj ⊆ U×A2 given by the equations
xi = λixj , where i ∈ { 1, 2, 3 } , i 6= j . Note that here U can be given
by one inequality xj 6= 0 . The pre-image of p is given on the sheet
Yj by the equation xj = 0 . If S was an isolated singularity, all
singularities of Y are sitting on this curve.

Example 5.1. The simplest surface singularity is the ordinary double
point x2

1 + x2
2 + x2

3 = 0 . Perform the monoidal transformation at the
point p . It gives:

Ỹ1 : x2 = λ2x1, x3 = λ3x1, x
2
1 + λ2x2

1 + λ3x
2
1, x1 6= 0,

hence

Y1 : λ2
2 + λ2

3 + 1 = 0 (embedded in A3 with coordinates x1, λ2, λ3 ).

So Y1 is a quadratic cylinder and has no singular points. The same is
for Yj , j = 2, 3 . Thus τ : Y → S is a (minimal) resolution of this
singularity. The exceptional curve E (its part in Y1 ) is given by the
equation x1 = 0 ; it is a conic.

To calculate the intersection number (E.E) we use a simple property
of the definitions from Section 1.

Proposition 5.2. Let X be a smooth surface, f ∈ K(X) be a rational
function, (f) be its divisor, and E be a projective curve on X . Then
((f).E) = 0 .
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Proof. By definition, ((f).E) = degE(OX((f)) ⊗ OE) = degE(OE) =
0 , because OX((f)) ' OX . �

In our example each of the functions xj has a zero of the first degree
on E . But, say, x3 has two more zeros given on Y1 by the equation
λ3 = 0 , or λ2 = ±

√
−1 . Hence (x3) = E + C1 + C2 . Moreover,

C1∩C2 = ∅ and both of them intersect E transversally at one point. So
((x3).E) = (E.E)+(C1.E)+(C2.E) = (E.E)+2 = 0 and (E.E) = −2 .
Since E ' P1 , the dual graph of our singularity is just

•
2

As Z = E and p(E) = 0 , this singularity is rational.

Example 5.3. The singularity of type D4 is given by the equation
x2

1 = x3
2 − x2x

2
3 . Performing the monoidal transformation, get

Y1 : 1 = x1(λ
3
2 − λ2λ

2
3), τ−1(p) ∩ Y1 = ∅,

Y2 : λ2
1 = x2(1− λ2

3), τ−1(p) ∩ Y2 : x2 = λ1 = 0,

Y3 : λ2
1 = x3(λ

3
2 − λ2), τ−1(p) ∩ Y3 : x3 = λ1 = 0.

In particular, Y1 is smooth; the singular points on Y3 are p1 =
(0, 0, 0), p2 = (0, 0, 1), p3 = (0, 0,−1) ; the singular points on Y2 are
the same p2, p3 (in a different presentation, of course). The pre-image
of p consists of one component E0 isomorphic to P1 .

In a neighbourhood of p1 we can consider y1 = λ1, y2 = λ3
2−λ2, y3 =

λ3 as local coordinates on Y3 . So its equation becomes y2
1 = y2y3 , that

of an ordinary double point. Therefore a monoidal transformation at
p1 resolves it. The same is the case with the points p2, p3 . If we per-
form all three monoidal transformation, we get a (minimal) resolution
of our singularity. Each of them gives a new component Ek of the
exceptional curve ( k = 1, 2, 3 ). For instance, the equations of E1 on
the second sheet are y2 = 0, λ2

1 = λ3, (the latter is the equation of this
sheet itself). The equations of the pre-image of E0 on the same sheet
are λ1 = λ3 = 0 , so it intersects E1 transversally. The same is true
for E2, E3 .

To calculate self-intersection numbers, consider the divisor (x1) . On
Y it has zeros at E0 and on the curves Ck (k = 1, 2, 3) that have
on Y3 the equations λ1 = 0 and, respectively, λ2 = 0, 1,−1 . They
intersect E0 transversally at the points, respectively, pk . Hence after
monoidal transformations at pk the (strict) pre-images of E0 and Ck
do not meet at all, but both of them intersect Ek transversally. As
x1 becomes y1y3 on Y3 , it has a zero of order 1 on each Ck . On
the second sheet of he monoidal transformation at p1 , x1 becomes
λ1λ3y

2
2 = λ3

1y2 , so it has a zero of order 2 on E1 and a zero of order
3 on E0 . Thus (x1) = 3E0 + 2(E1 + E2 + E3) + (C1 + C2 + C3) ,
wherefrom one easily gets (Ek.Ek) = −2 for k = 0, 1, 2, 3 . Therefore
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the dual graph of this singularity is

•

• • •
with all weights equal 2 .

Find the fundamental cycle Z of this resolution using the Laufer
procedure. Starting from Z1 = E0 , we get

Z2 = Z1 + E1, Z3 = Z2 + E2, Z4 = Z3 + E3, Z5 = Z4 + E0,

and Z = Z5 = 2E0 + E1 + E2 + E3 (in particular, Z 6= E and is
not reduced). Moreover, the formula (3.2) gives p(Z) = 0 . So this
singularity is also rational.

Example 5.4. Let S : x3
1+x

3
2+x

3
3 = 0 . The monoidal transformation

at p gives for Y1 the equation λ3
2 + λ3

3 + 1 = 0 . It is smooth, as
well as two other sheets, so Y → S is a minimal resolution. The
exceptional curve E is a plane smooth cubic given by the intersection
of Y1 with x1 = 0 . The same curve we obtain on two other sheets
too. All functions xi have simple zeros on E . Other zeros, say, of x2

on Y1 are λ2 = 0, λ3
3 = −1 . There are three of them, intersecting E

transversally. Hence (E.E) = −3 and the dual graph is

•
(1,3)

Here Z = E , p(E) = 1 and (E + K.E) = −2χ(E) = 0 , thus the
proof of Theorem 4.1 gives Zh = E and h1(OX) = 1 . In particular,
this singularity is not rational.

Example 5.5. Our last example is the singularity of type T237 given by
the equation x2

1 = x3
2+x2

2x
2
3+x7

3 . Blowing up at the point p = (0, 0, 0)
gives nothing on the first sheet. On the second sheet we have

λ2
1 = x2 + x2

2λ
2
3 + x5

2λ
7
3,

so τ−1(p) is x2 = λ1 = 0 , which contains no singular points. On the
third sheet we have

λ2
1 = λ3

2x3 + λ2
2x

2
3 + x5

3,

so τ−1(p) is E1 : x3 = λ1 = 0 . The unique singular point is q =
(0, 0, 0) . Rewrite it in new coordinates as y2

1 = y3
2y3 + y2

2y
2
3 + y5

3 .
Blowing it up gives nothing on the first sheet again. On the second
sheet we get

λ2
1 = y2

2(λ3 + λ2
3 + y2λ

5
3).

Now one can see that thus obtained singularity is not normal: the
function η = λ1/y2 belongs to the integral closure of its coordinate
ring. Adding it, we obtain the equation

η2 = λ3 + λ2
3 + y2λ

5
3.

15



It defines a smooth surface. The strict pre-image of E1 is η = λ3 = 0 ,
and the pre-image of q is E2 : y2 = 0, η2 = λ3 + λ2

3 . They intersect
transversally at the point (0, 0, 0) . There are no singular points on
this sheet.

On the third sheet we obtain

λ2
1 = y2

3(λ
3
2 + λ2

2 + y3),

which is again non-normal. To normalize, add the function ζ = λ1/y3

getting
ζ2 = λ3

2 + λ2
2 + y3.

The exceptional curve, which coincide with E2 , is y3 = 0, λ2
1 = λ3

2 +
λ2

2 . There are no singular points on this sheet too, so we have got a
resolution ψ : Y → S . This time it is neither minimal nor transversal.
Indeed, the curve E2 is not smooth: on the third sheet it has a singular
point λ2 = λ3 = 0 (an ordinary node, or double point). On the other
hand, calculating the divisor (x1) gives (x1) = 3E1 + 3E2 +A , where
A is the curve given, say, on the third sheet after the first blowing up by
the equations y1 = 0 = y3

2 + y2
2y3 + y4

3 . It intersects E1 transversally
at the point q , hence does not intersect it after the second blowing
up. Its equations on the third sheet sheet after normalization become
ζ = 0 = λ3

2 + λ2
2 + y3 , Hence its intersection with E2 consists of two

points (0, 0, 0) and (0,−1, 0) ; the first one being of multiplicity 2.
Thus (E1.E2) = 1, (A.E2) = 3, (A.E1) = 0 , wherefrom (E1.E1) =
−1, (E2.E2) = −2 . So E1 is a contractible line and ψ = π ◦σ , where
π : X → S is a minimal resolution and σ : Y → X is a blowing up
with the exceptional line E1 . Denote by E the image of E2 on X .
Accordingly to Proposition 2.2(5), (E.E) = −1 .

Just as in the preceding example, Z = Zh = E , so h1(OX) = 1 and
this singularity is also non-rational.

To get a minimal transversal resolution, we must blow up the singular
point e of E (one blowing up is enough since it is an ordinary double
point). After such a transformation we get (E ′.E ′) = −5 , where E ′ =
σ′E (again by Proposition 2.2(5)), so the dual graph of our singularity
is

5 • • 1

(the second vertex corresponds to the new exceptional line L , the
pre-image of e ). For this resolution one can easily check that the
fundamental cycle is Z = E ′ + 2L . On the other hand, since p(E ′) =
p(L) = 1 , one can calculate (K.E ′) = 3, (K.L) = −1 . The Laufer
algorithm (Proposition 3.1) shows that h1(E ′ + L) = 1 . Moreover,
(E ′ + L.L) = 1 = −(K.L) and (E ′ + L.E ′) = −3 = −(K.E ′) . Thus
the proof of Theorem 4.1 shows that Zh 6 E ′ + L , where Zh is the
cohomological cycle. As h1(E ′) = h1(L) = 0 , Zh = E ′ + L .

Note that sometimes one allows, on a transversal resolution, ordi-
nary double points not only as intersections of components, but also
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as singular points of components of the exceptional curve, presenting
them at the dual graph as loops. The genus that occurs in weights is
the geometric genus, which equals p(Ei)−δ , where δ is the number of
singular points, and again genus 0 is omitted. Then the minimal res-
olution of our singularity, which satisfies this condition, has the dual
graph

1 •
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