GENERAL PROPERTIES OF SURFACE SINGULARITIES

YURIY DROZD

CONTENTS

1.	Intersection theory	2
2.	Minimal resolutions	6
3.	Fundamental cycle	9
4.	Cohomological cycle	11
5.	Examples	13
References		17

We fix $S = \text{Spec } \mathbf{A}$, where \mathbf{A} is a local normal ring of Krull dimension 2 (a "normal surface singularity"). Moreover, for the sake of simplicity we suppose that \mathbf{A} is an algebra over an algebraically closed field \mathbf{k} and $\mathbf{A}/\mathfrak{m} \simeq \mathbf{k}$, where \mathfrak{m} denotes the maximal ideal of \mathbf{A} . Sometimes it is important that \mathbf{A} be complete (or henselian), but we shall try to specify such places properly. We denote by p the unique closed point of \mathbf{A} (corresponding to the maximal ideal \mathfrak{m}).

A resolution of S is, by definition, a projective morphism $X \to S$, where X is smooth, which induces an isomorphism $X \setminus \pi^{-1}(p) \to$ $S \setminus \{p\}$. In particular, π is birational. It is known, due to Zariski and Abhyankar (cf. $[Lip, \S 2]$), that every surface singularity has a resolution; moreover, it can be obtained by a sequence of monoidal transformations (blowing up closed singular points) and normalizations. Some examples of calculations are presented in Section 5. For such a resolution, we denote by E the *reduced* pre-image $\pi^{-1}(p)_{red}$, which is a projective curve over \mathbf{k} (it might be singular and reducible). We call E the exceptional curve of the resolution π and denote by E_i (i = 1, ..., s) its irreducible components. Remind that E is always *connected* (it follows from Zariski's Main Theorem [Ha, Corollary III.11.4). We say that the resolution is *transversal* if E_i are smooth, pairwise transversal, and neither three of them have a common point. Especially, all singular points of E (if exist) are in this case ordinary double points (nodes).

An exceptional cycle (or simply cycle, or an exceptional divisor) of such a resolution is a divisor C on X with supp $C \subseteq E$. It means that $C = \sum_{i=1}^{s} c_i E_i$. If $c_i \ge 0$ and $C \ne 0$, call C an effective cycle. Then C is identified with the closed sub-scheme of X defined by the ideal sheaf $\mathcal{O}_X(-C) \subset \mathcal{O}_X$. We also denote by ω_X the *canonical* (or *dualizing*) line bundle over X and by K_X a *canonical divisor* of X; thus $\omega_X \simeq \mathcal{O}_X(K_X)$. Then for any effective cycle C there is a canonical (dualizing) line bundle

$$\omega_C = \mathcal{E}xt^1(\mathcal{O}_C, \omega_X) \simeq \mathcal{O}_C \otimes \omega_X(C)$$

(we always write \otimes for $\otimes_{\mathcal{O}_X}$, if it not very ambiguous). It establishes the *Serre's duality* for any coherent sheaf \mathcal{F} on C:

(SD)
$$\operatorname{Ext}^{i}(\mathcal{F}, \omega_{C}) \simeq \operatorname{DH}^{1-i}(C, \mathcal{F}) \quad (i = 0, 1)$$

[Ha, Theorem III.7.6], or, if \mathcal{F} is a vector bundle (locally free sheaf),

$$\mathrm{DH}^{i}(C,\mathcal{F})\simeq \mathrm{H}^{1-i}(C,\mathcal{F}^{\vee}\otimes\omega_{C}).$$

Here DV denotes the dual vector space $\operatorname{Hom}_{\mathbf{k}}(V, \mathbf{k})$ and \mathcal{F}^{\vee} denotes the dual vector bundle $\mathcal{H}om_{\mathcal{O}_C}(\mathcal{F}, \mathcal{O}_C)$.

1. INTERSECTION THEORY

Let C be a projective curve (possibly non-reduced); for instance, it may be an effective cycle of a resolution. For any locally free sheaf \mathcal{F} of rank n on C define its degree deg \mathcal{F} (or deg_C \mathcal{F}) as

$$\deg \mathcal{F} = \chi(\mathcal{F}) - n\chi(\mathcal{O}_C),$$

where χ is the Euler–Poincaré characteristic: $\chi(\mathcal{F}) = h^0(\mathcal{F}) - h^1(\mathcal{F})$. If C is an irreducible curve and $\mathcal{F} = \mathcal{O}_C(D)$, where D is a divisor supported on the set of regular points of C, the Riemann–Roch theorem gives deg $\mathcal{F} = \deg D$, the usual degree of a divisor (cf. [Ser] or [Ha, Theorem IV.1.3 and Exercise IV.1.9]). This definition enjoys most properties of "usual" degree, which we collect in the following proposition. We write $\mathcal{F} \stackrel{g}{\sim} \mathcal{E}$ and say that the sheaves \mathcal{F} and \mathcal{E} are generically isomorphic, if $\mathcal{F}|U \simeq \mathcal{E}|U$ for an open dense subset $U \subseteq C$.

Proposition 1.1. (1) If $\mathcal{F}_1 \stackrel{g}{\sim} \mathcal{F}_2$ and \mathcal{E} is locally free of rank m, then

$$\chi(\mathcal{E}\otimes\mathcal{F}_1)-\chi(\mathcal{F}'\otimes\mathcal{F}_2)=m(\chi(\mathcal{F}_1)-\chi(\mathcal{F}_2)).$$

Especially if $\mathcal{F}_1, \mathcal{F}_2$ are also locally free, the same holds for their degrees.

(2) If \mathcal{E}, \mathcal{F} are locally free of ranks, respectively, m, n, then

$$\deg(\mathcal{E}\otimes\mathcal{F})=n\deg\mathcal{E}+m\deg\mathcal{F}.$$

(3) If $f: D \to C$ is a proper morphism of curves such that $f_*\mathcal{O}_D \approx m\mathcal{O}_C$ and \mathcal{F} is a locally free sheaf on C, deg $f^*\mathcal{F} = m \deg \mathcal{F}$.

Proof. (1) Let $\mathcal{F}_1|U \simeq \mathcal{F}_2|U$, where U is open dense, $i: U \to X$ be the embedding. Then $\mathcal{F} = i^*i_*\mathcal{F}_1 \simeq i^*i_*\mathcal{F}_2$ and there is an exact sequence

$$0 \longrightarrow \mathcal{S}_{i1} \longrightarrow \mathcal{F}_i \longrightarrow \mathcal{F} \longrightarrow \mathcal{S}_{i2} \longrightarrow 0 \qquad (i = 1, 2),$$

where supp $S_{ij} \subseteq X \setminus U$, so it is 0-dimensional. Therefore $\chi(S_{ij}) = h^0(S_{ij})$ and $\chi(\mathcal{E} \otimes S_{ij}) = m\chi(S_{ij})$. As $\chi(\mathcal{F}_i) = \chi(\mathcal{F}) + \chi(S_{i1}) - \chi(S_{i2})$, it implies the necessary formula.

(2) Here $\mathcal{E} \stackrel{g}{\sim} m\mathcal{O}_C$, $\mathcal{F} \stackrel{g}{\sim} n\mathcal{O}_C$, so using (1) we get

$$\chi(\mathcal{E} \otimes \mathcal{F}) - mn\chi(\mathcal{O}_C) = \chi(\mathcal{E} \otimes \mathcal{F}) - \chi(m\mathcal{O}_C \otimes \mathcal{F}) + \chi(m\mathcal{O}_C \otimes \mathcal{F}) - \chi(m\mathcal{O}_C \otimes n\mathcal{O}_C) = n(\chi(\mathcal{E}) - m\chi(\mathcal{O}_C)) + m(\chi(\mathcal{F}) - n\chi(\mathcal{O}_C)) = n \deg \mathcal{E} + m \deg \mathcal{F}.$$

(3) By definition, $\Gamma(C, f_*\mathcal{M}) = \Gamma(D, \mathcal{M})$ for any sheaf \mathcal{M} on D. It gives a spectral sequence

$$\mathrm{H}^{i}(C, R^{j}f_{*}\mathcal{M}) \Longrightarrow \mathrm{H}^{p}(D, \mathcal{M}).$$

For p = 1 it gives an exact sequence

$$0 \to \mathrm{H}^{1}(C, f_{*}\mathcal{M}) \longrightarrow \mathrm{H}^{1}(D, \mathcal{M}) \longrightarrow \mathrm{H}^{0}(C, R^{1}f_{*}\mathcal{M}) \to 0.$$

If $\mathcal{M} = f^*\mathcal{F}$ and \mathcal{F} is locally free of rank n, $f_*f^*\mathcal{F} \simeq f_*\mathcal{O}_D \otimes \mathcal{F}$ and $R^1f_*(f^*\mathcal{F}) \simeq R^1f_*\mathcal{O}_D \otimes \mathcal{F}$ [Ha, Exercise III.8.3]. As $R^1f_*\mathcal{O}_D$ has 0-dimensional support, it implies that $h^0(R^1f_*(f^*\mathcal{F})) = nh^0(R^1f_*\mathcal{O}_D)$ and

$$deg(f^{*}\mathcal{F}) = \chi(f^{*}\mathcal{F}) - n\chi(\mathcal{O}_{D}) =$$

$$= \chi(f_{*}(f^{*}\mathcal{F})) + nh^{0}(r^{1}f_{*}\mathcal{O}_{D}) - n\chi(\mathcal{O}_{D}) =$$

$$= \chi(f_{*}\mathcal{O}_{D} \otimes \mathcal{F}) - n\chi(f_{*}\mathcal{O}_{D}) =$$

$$= \chi(f_{*}\mathcal{O}_{D} \otimes \mathcal{F}) - \chi(m\mathcal{O}_{C} \otimes \mathcal{F}) +$$

$$+ \chi(m\mathcal{O}_{C} \otimes \mathcal{F}) - n\chi(f_{*}\mathcal{O}_{D}) =$$

$$= n\chi(f_{*}\mathcal{O}_{D}) - mn\chi(\mathcal{O}_{C}) +$$

$$+ m\chi(\mathcal{F}) - n\chi(f_{*}\mathcal{O}_{D}) =$$

$$= m deg(\mathcal{F})$$

(equality (*) holds since $f_*\mathcal{O}_D \stackrel{g}{\sim} m\mathcal{O}_C$).

Let now X be a smooth surface (not necessary projective!) and C be an effective divisor on X whose support is a projective curve. For instance, C may be an effective cycle on a resolution of a normal surface singularity. For every divisor D on X define the *intersection* number of D with C as $(D.C) = \deg_C(\mathcal{O}_C(D))$, where, as usually, we set $\mathcal{F}(D) = \mathcal{F} \otimes \mathcal{O}_X(D)$ for any coherent sheaf \mathcal{F} on X. Again we gather the properties of these numbers in the following proposition. We denote $\chi(C) = \chi(\mathcal{O}_C)$.

Proposition 1.2. (1) ((D + D').C) = (D.C) + (D'.C).

- (2) (D.(C+C')) = (D.C) + (D.C').
- (3) If D is effective and supp D contains neither component E_i , then $(D.C) \ge 0$; moreover, (D.C) = 0 if and only if supp $D \cap$ supp $C = \emptyset$.
- (4) If both C and C' are effective divisors with projective supports,

(1.1)
$$(C'.C) = \chi(C') + \chi(C) - \chi(C+C'),$$

in particular (C'.C) = (C.C').

(5) $\chi(C) = -(K + C.C)/2$, where K is a canonical divisor of X ("adjunction formula," cf. [Ha, Proposition V.1.5]).

Proof. (1) is obvious since $\mathcal{O}_X(D+D') = \mathcal{O}_X(D) \otimes \mathcal{O}_X(D')$.

(2) and (4) will be proved simultaneously. Tensoring the exact sequence $0 \to \mathcal{O}_X(-C) \to \mathcal{O}_X \to \mathcal{O}_C \to 0$ with $\mathcal{O}_X(-C')$ we get

$$0 \to \mathcal{O}_X(-C - C') \longrightarrow \mathcal{O}_X(-C') \longrightarrow \mathcal{O}_C(-C') \to 0.$$

Thus there is an exact sequence

(1.2)
$$0 \to \mathcal{O}_C(-C') \longrightarrow \mathcal{O}_{C+C'} \longrightarrow \mathcal{O}_{C'} \to 0$$

and all these sheaves are actually coherent sheaves on C + C'. So if \mathcal{L} is an invertible sheaf on C + C', we get, using Proposition 1.1(1) and denoting $\mathcal{L}_C = \mathcal{L} \otimes \mathcal{O}_C$,

(1.3)
$$(C'.C) = \deg_C(\mathcal{O}_C(C')) = \chi(\mathcal{O}_C(C')) - \chi(\mathcal{O}_C) =$$
$$= \chi(\mathcal{L}_C) - \chi(\mathcal{L}_C(-C')) = \chi(\mathcal{L}_C) + \chi(\mathcal{L}_{C'}) - \chi(\mathcal{L})$$

(to get the last equality, just tensor (1.2) by \mathcal{L}). If $\mathcal{L} = \mathcal{O}_{C+C'}$, it gives (1.1). Subtracting (1.1) from (1.3) gives $\deg_{C+C'}(\mathcal{L}) = \deg_C(\mathcal{L}_C) + \deg_{C'}(\mathcal{L}_{C'})$. Taking $\mathcal{L} = \mathcal{O}_{C+C'}(D)$ we get the assertion (2).

(3) If D is effective, tensoring the exact sequence $0 \to \mathcal{O}_X(-D) \to \mathcal{O}_X \to \mathcal{O}_D \to 0$ with \mathcal{O}_C gives

$$0 \to \mathcal{T}or_1(\mathcal{O}_C, \mathcal{O}_D) \to \mathcal{O}_C(-D) \to \mathcal{O}_C \to \mathcal{O}_C \otimes \mathcal{O}_D \to 0.$$

As supp $\mathcal{T}or_1(\mathcal{O}_C, \mathcal{O}_D) \subseteq C \cap D$, it is a sky-scraper sheaf, so cannot be embedded into $\mathcal{O}_C(-D)$, which is locally free on C. Hence $\mathcal{T}or_1(\mathcal{O}_C, \mathcal{O}_D) = 0$ and

$$(D.C) = \chi(\mathcal{O}_C) - \chi(\mathcal{O}_C(-D)) = \chi(\mathcal{O}_C \otimes \mathcal{O}_D).$$

The latter sheaf is also skyscraper, so $(D.C) = h^0(\mathcal{O}_C \otimes \mathcal{O}_D) \ge 0$. Moreover, if $\operatorname{supp} C \cap \operatorname{supp} D = \emptyset$, also $\mathcal{O}_C \otimes \mathcal{O}_D = 0$. On the other hand, if $x \in \operatorname{supp} C \cap \operatorname{supp} D$, the residue field $\mathbf{k}(x)$ is a factor of both \mathcal{O}_C and \mathcal{O}_D , hence of their tensor product, so $\mathcal{O}_C \otimes \mathcal{O}_D \neq 0$ and $(D.C) \neq 0$.

(5) Remind that $\omega_C = \omega_X(C) \otimes \mathcal{O}_C \simeq \mathcal{O}_X(K+C) \otimes \mathcal{O}_C$ and, by Serre's duality, $\chi(C) = -\chi(\omega_C)$, so $\deg_C(\omega_C) = -2\chi(C)$. But $\deg_C(\omega_C) = \deg_C(\mathcal{O}_X(K+C) \otimes \mathcal{O}_C) = (K+C.C)$. The main result of this intersection theory is

Theorem 1.3. For every non-zero exceptional cycle C, (C.C) < 0.

First prove the following

Lemma 1.4. Let (\ldots) be a symmetric bilinear form on \mathbb{Z}^n . Suppose that there is a basis e_1, e_2, \ldots, e_n such that

- (1) $(e_i \cdot e_j) \ge 0$ for $i \ne j$,
- (2) there is a vector $z = \sum_{k=1}^{n} z_k e_k$ with all $z_k > 0$ such that $(z.e_i) \leq 0$ for all i,
- (3) for each *i* there is $j \neq i$ such that $(e_i \cdot e_j) \neq 0$.

Then (...) is negative semi-definite. If, moreover, (z.z) < 0, it is negative definite.

Proof. Use induction by n to show that $(v.v) \leq 0$ for each v. If n = 1, it is trivial. Suppose that (v.v) > 0. It follows from (1) that replacing all coordinates of v by their absolute value cannot diminish (v.v), so we may suppose that $v = \sum c_i e_i$ with $c_i \geq 0$. Set $r = \min\{a_i/z_i\}$. Then v - rz has all coordinates non-negative and one of them zero. On the other hand, $(v - rz.v - rz) = (v.v) - (z.2v - rz) \geq (v.v) > 0$ due to the condition (2). In particular, $v \neq rz$. Thus we may suppose that $c_i > 0$ for $1 \leq i \leq l$ and $c_i = 0$ for i > l, where l < n. Consider the vector $z' = \sum_{k=1}^{l} z_k e_k$. If $i \leq l$, $(z'.e_i) \leq (z.e_i) \leq 0$, since $(e_j.e_i) \geq 0$ if j > l. As z' and v belong to a subspace generated by $\{e_1, e_2, \ldots, e_l\}$, $(v.v) \leq 0$ by induction.

Suppose now that (z.z) < 0 and (v.v) = 0 for some v as above. Again we can choose v with at least one coordinate $c_j = 0$ (note that v = rz is impossible since (z.z) < 0). Moreover, the condition (3) implies that we can choose j such that $(v.e_j) \neq 0$, hence $(v.e_j) > 0$. Then $(av + e_j.av + e_j) = 2a(v.e_j) + (e_j.e_j) > 0$ for big enough a. As we have already seen, it is impossible.

Proof of Theorem 1.3. We shall construct an effective cycle Z such that $(Z.E_i) \leq 0$ for all *i* and (Z.Z) < 0. Since E is connected, we can apply lemma 1.4 afterwards, taking into account proposition 1.2(3). Consider a non-zero element $a \in \mathfrak{m}$ and its divisor (a) on X. Note that a has no poles, so (a) is effective. Let $(a) = \sum_{i=1}^{s} z_i E_i + D$, where $E_i \not\subseteq \text{supp } D$. Certainly $z_i > 0$ since $E_i \subseteq \pi^{-1}(p)$ and a(p) = 0. Set $Z = \sum_{i=1}^{s} z_i E_i$. Then $Z \sim (-D)$ as divisor on X, so $(Z.E_i) = -(D.E_i) \leq 0$. On the other hand, since a is non-invertible element of **A**, there is an irreducible curve C on S such that a|C = 0 and $p \in C$. Hence supp D has a component that intersects E, so (D.Z) > 0 by proposition 1.2(3). Thus (Z.Z) = -(D.Z) < 0.

It is known (cf. [Gr, La1]) that the converse holds in *analytic case*: if X is a smooth analytic surface and E is a projective curve on X such that the intersection form is negative definite on cycles with support

in E, there is an analytic surface S, a point $p \in S$ and a proper birational mapping $\pi : X \to S$ such that $E = \pi^{-1}(p)_{\text{red}}$ and the restriction of π on $X \setminus E$ is an isomorphism. I do not know whether it is true in *algebraic situation*. Some results can be found in [Art].

2. MINIMAL RESOLUTIONS

Definition 2.1. A resolution $\pi : X \to S$ is said to be *minimal* if for any other resolution $\phi : Y \to S$ there is a morphism $\psi : Y \to X$ such that $\phi = \pi \circ \psi$.

Note that ψ is uniquely determined since π is dominant, so usual considerations show that a minimal resolution, whenever it exists, is unique up to a canonical isomorphism. To show existence we need some facts about birational transformations, especially about *monoidal* transformations, i.e. blowing up closed points [Ha, Sections II.7, V.3]. The main properties of monoidal transformations are collected in the following

Proposition 2.2. Let X be a smooth 2-dimensional variety, $\tau : X' \to X$ be the blowing up of a closed point x (the monoidal transformation at the point x), and $L = \tau^{-1}(x)$. For any divisor D on X denote by τ^*D its pre-image and by $\tau'D$ its strict transform (for an effective D it is defined as the closure of $\tau^{-1}(D \setminus \{x\})$). Let also m_D be the multiplicity of D at x, defined for an effective D as max $\{m \mid f \in \mathfrak{m}_x^m\}$, where f is a local equation of D in a neighbourhood of x (especially $m_D = 0$ if $x \notin \operatorname{supp} D$).

- (1) $\operatorname{Pic} X' \simeq \operatorname{Pic} X \oplus \mathbb{Z}$, where the latter summand is generated by the class of L.
- (2) $L \simeq \mathbb{P}_1$ and (L.L) = -1.
- (3) $\tau^* D = \tau' D + m_D L$.
- (4) $(\tau^* D. \tau^* C) = (D.C)$ and $(\tau^* D. L) = 0$ for every D.
- (5) $(\tau' D. \tau' C) = (D.C) m_D m_C$.
- (6) $K_{X'} = \tau^* K_X + L$.
- (7) $\chi(\tau'C) = \chi(C) + m_C(m_C 1)/2$.

In these formulas C denotes a projective curve on X and intersection numbers are defined in the preceding section.

For the proofs, see [Ha, Section V.3]. Though it is supposed there that X is a projective surface, all these proofs are in fact local, so they remain valid in our situation. The last formula for $\chi(\tau'C)$ follows immediately from the preceding ones and the adjunction formula $\chi(C) = -(K + C.C)/2$ from Proposition 1.2(5).

We call a curve C on a smooth surface X a *contractible line* if $C \simeq \mathbb{P}^1$ and (C.C) = -1. The sense of this notion is clarified by the classical Castelnuovo theorem [Ha, Theorem III.5.7]. We formulate it

in a bit more general form, though the proof essentially remains the same.

Theorem 2.3 (Castelnuovo). Let A be an affine variety, $\phi : X \to A$ be a projective morphism, where X is a smooth surface, and C be a contractible line on X. There is a projective morphism $\psi : Y \to A$, where Y is also a smooth surface, a monoidal transformation $\tau : Y' \to$ Y at a point y, and an isomorphism $\eta : X \to Y'$ such that $\phi = \psi \circ \tau \circ \eta$ and $\eta(C) = \psi^{-1}(y)$.

We always use the isomorphism η from this theorem to identify X with Y' and C with $\tau^{-1}(y)$, and say that Y is obtained from X by contracting C.

The next important fact on birational transformations of surfaces is

Theorem 2.4. Let X and Y be smooth surfaces, projective over some affine variety A, $\phi : Y \to X$ be a birational morphism (over A). Then ϕ decomposes into a product of monoidal transformations, i.e. there is a morphism $\psi : Y' \to X$ that is a product of monoidal transformations and an isomorphism $\eta : Y \to Y'$ such that $\phi = \psi \circ \eta$. Moreover, the number of monoidal factors in ϕ equals the number of irreducible curves C on Y such that $\phi(C)$ is a closed point.

Again the proof from [Ha, Section V.5] can be applied with no changes in this situation, and we shall always identify Y with Y' and ϕ with ψ .

Now we are able to show that a minimal resolution always exists.

Theorem 2.5. For any surface singularity S there is a minimal resolution. Namely, any resolution $\pi: X \to S$ such that $\pi^{-1}(p)$ contains no contractible lines are minimal.

Proof. Consider any resolution $\psi : Z \to S$ and its exceptional curve E. If E has a component E_i that is a contractible line, we can decompose $\psi = \tau \circ \psi'$, where $\tau : Z \to Z'$ is a monoidal transformation and ψ' is again a resolution. Moreover, since $\tau(E_i)$ is a point, the exceptional curve of ψ' has less irreducible components. Therefore we can find a resolution $\pi : X \to S$ such that its exceptional curve contains no contractible lines. We shall prove that this resolution is minimal.

Indeed, consider any other resolution $\psi: Y \to S$. Let $P = X \times_S Y$. It is again a surface, though not necessarily smooth. Nevertheless, we can construct a resolution $Z \to P$, thus obtaining a commutative diagram of birational morphisms

$$\begin{array}{cccc} Z & \stackrel{\alpha}{\longrightarrow} & X \\ \beta \downarrow & & \downarrow \phi \\ Y & \stackrel{\psi}{\longrightarrow} & S \end{array}$$

Moreover, we can choose Z minimal in the sense that there is no birational morphism $\theta: Z \to Z'$, which is not an isomorphism, but $\alpha \,=\, \alpha' \circ \theta \ \text{ and } \ \beta \,=\, \beta' \circ \theta \ \text{ for some } \ \alpha' \,:\, Z' \,\to\, X \ \text{ and } \ \beta' \,:\, Z' \,\to\,$ Y. Suppose that β is not isomorphism. Then it decomposes into a product of monoidal transformations. In particular, there is a monoidal transformation $\tau: Z \to Y'$ at some point $y \in Y'$ such that $\beta = \beta' \circ \tau$. Let $L = \tau^{-1}(y)$. It is a contractible line. Set $C = \alpha(L)$. It is the total transform of y under the birational transformation $\alpha \circ \tau^{-1}: Y' \to X$, which is defined everywhere except maybe y. If it is also defined at y, then α factors through Y', in contradiction with the minimality of Z. Hence dim C = 1 [Ha, Theorem V.5.2], so C is an irreducible curve and L is the strict transform of C under α . From Proposition 2.2(7) we know that $(C.C) + \chi(C) \ge (L.L) + \chi(L) = 0$. As $(C.C) \le -1$ and $\chi(C) \leq 1$, necessarily (C.C) = -1 and $\chi(C) = 0$, so C is a contractible line, in contradiction with the choice of X.

Theorem 2.6. For any surface singularity S there is a minimal transversal resolution, i.e. a transversal resolution $\tilde{\pi} : \tilde{X} \to S$ such that any other transversal resolution factors through $\tilde{\pi}$.

Proof. Consider a minimal resolution $\pi : X \to S$ and construct morphisms $\phi_k : X_k \to X$ and $\pi_k = \pi \circ \phi_k : X_k \to S$ recursively. Namely, set $X_0 = X$ and $\phi_0 = \text{Id}$. If $\phi_k : X_k \to X$ and $\pi_k : X_k \to S$ have been constructed, let $E^{(k)} = \pi_k^{-1}(p)$ and E_1, E_2, \ldots, E_s be the irreducible components of $E^{(k)}$. Define the set Γ_k of closed points of $E^{(k)}$ such that $x \in \Gamma_k$ if and only if one of the following conditions hold:

- (i) x is a singular point of some E_i ;
- (ii) $x \in E_i \cap E_j \ (i \neq j)$ and E_i, E_j are not transversal at x;
- (iii) $x \in E_i \cap E_j \cap E_l$ with $i \neq j \neq l \neq i$.

Obviously Γ_k is finite. Define $\phi_k : X_{k+1} \to X_k$ as the result of monoidal transformations performed at all points of Γ_k and $\pi_{k+1} = \pi_k \circ \phi_k$. It is well-known [Ha, Theorem V.3.9] that finally we get l such that π_l is a transversal resolution. We show that it is even a minimal transversal resolution. Let $\pi' : X' \to S$ be any transversal resolution. As π is minimal, π' factors through π . We shall use induction to show that ψ can be factored through each π_k . We already know it for k = 0. Suppose that $\pi' = \pi_k \circ \psi$ for k < l, where $\psi : X' \to X_k$. The morphism ψ is a composition of monoidal transformations. Let $x \in \Gamma_k$. If $\tau : Y' \to X_k$ is a monoidal transformation at some point $y \neq x$, some neighbourhoods of x and $\tau^{-1}(x)$ are isomorphic. Hence $\tau^{-1}(x)$ also has one of the above properties (i–iii). On the other hand, monoidal transformations at y and at x commute. Therefore, one may suppose that all monoidal transformations at the points from Γ_k are among those that constitute ψ , i.e. ψ factors through ϕ_k and π' factors through π_{k+1} . As a result, π' factors through π_l , hence the latter is indeed a minimal transversal resolution. \square

If $\pi : X \to S$ is a minimal transversal resolution, define its dual graph as a weighed graph $\Gamma = \Gamma(S)$ such that:

- the vertices of Γ are the irreducible components of E, the exceptional curve of this resolution (or further their indices i = $1, \ldots, s$);
- the edges of Γ are singular points of E; if $x \in E_i \cap E_j$, the corresponding edge joins the vertices i and j;
- each vertex i has weight (g, d), where g is the genus of E_i and $d = -(E_i \cdot E_i)$; if g = 0, i.e. $E_i \simeq \mathbb{P}^1$, we omit g in this pair writing d instead of (0, d).

Note that there can be *multiple edges* between two vertices i, j in Γ : it just means that E_i and E_j have several intersection points.

3. Fundamental cycle

Consider a resolution $\pi: X \to S$ of a normal surface singularity. Let E_1, E_2, \ldots, E_s be irreducible components of the exceptional curve *E*. As we have already seen, there is an effective cycle $Z = \sum_{i=1}^{s} z_i E_i$ such that $(Z.E_i) \leq 0$ for all *i*. If $Z' = \sum_{i=1}^{s} z'_i E_i$ is another such cycle, one can easily see that $\min \{Z, Z'\} = \sum_{i=1}^{s} \min \{z_i, z'_i\} E_i$ also has this property. Hence there is the smallest effective cycle Z such that $(Z.E_i) \leq 0$ for all i. It is called the fundamental cycle of this resolution. Of course, if the exceptional curve E is irreducible, Z = E, but it is not the case in general situation (cf. Example 5.3).

There is a recursive procedure to calculate the fundamental cycle due to Laufer [La2]. It also gives information about the cohomologies of this cycle.

Proposition 3.1. Define the cycles Z_k recursively:

- $Z_0 = 0$,
- $Z_1 = E_{i_0}$ for some (arbitrary) i_0 , $Z_{k+1} = Z_k + E_{i_k}$ for some (arbitrary) i_k such that $(Z_k \cdot E_{i_k}) > 0$ (if it exists).

Then there is l such that $Z_l = Z$ is a fundamental cycle. Moreover, for each $k = 1, \ldots, l$

(i)
$$h^0(\mathcal{O}_{Z_k}) = 1,$$

(ii)
$$p(Z_k) = \sum_{j=0}^{k-1} h^1(\mathcal{O}_{E_{i_j}}(-Z_j)),$$

where $p(C) = h^1(\mathcal{O}_C)$ is the arithmetic genus of a curve C.

Proof. For the first assertion it is enough to verify that $Z_k \leq Z$ for all k such that Z_k can be constructed. It is so for k = 1. Let $Z = \sum_{i=1}^{s} z_i E_i, \ Z_k = \sum_{i=1}^{s} c_i E_i \text{ with } c_i \leq z_i, \text{ and } Z_{k+1} \text{ can be constructed. If } c_i = z_i, \text{ then } (Z_k.E_i) \leq (Z.C_i), \text{ because } (E_j.E_i) \geq 0$ for $j \neq i$. Hence $c_{i_k} < z_{i_k}$, so $Z_{k+1} \leq Z$. Now the exact sequence (1.2) for $C' = Z_k, \ C = E_{i_k}$ (thus C + C' =

Now the exact sequence (1.2) for $C' = Z_k$, $C = E_{i_k}$ (thus $C + C' = Z_{k+1}$) gives

$$0 \to \mathcal{O}_{E_{i_k}}(-Z_k) \longrightarrow \mathcal{O}_{Z_{k+1}} \longrightarrow \mathcal{O}_{Z_k} \to 0,$$

and $h^0(\mathcal{O}_{E_{i_k}}(-Z_k)) = 0$ since $(Z_k.E_{i_k}) > 0$. So the exact sequence of cohomologies is

$$(3.1) \quad 0 \to \mathrm{H}^{0}(\mathcal{O}_{Z_{k+1}}) \longrightarrow \mathrm{H}^{0}(\mathcal{O}_{Z_{k}}) \longrightarrow \\ \longrightarrow \mathrm{H}^{1}(\mathcal{O}_{E_{i_{k}}}(-C_{k})) \longrightarrow \mathrm{H}^{1}(\mathcal{O}_{Z_{k+1}}) \longrightarrow \mathrm{H}^{1}(\mathcal{O}_{Z_{k}}) \to 0.$$

As Z_1 is an irreducible reduced curve, $h^0(Z_1) = 1$, hence $h^0(Z_k) = 0$ for all k and the first mapping in (3.1) is an isomorphism. Thus $h^1(\mathcal{O}_{Z_{k+1}}) = h^1(\mathcal{O}_{Z_k}) + h^1(\mathcal{O}_{E_{i_k}}(-C_k))$, wherefrom (ii) follows. \Box

Remark 3.2. Note that $\mathcal{O}_C(-C') \simeq \mathcal{O}_X(-C)/\mathcal{O}_X(-C-C')$, so the formula (ii) above can be rewritten as

$$p(Z_k) = \sum_{j=0}^{k-1} h^1(\mathcal{O}_X(-Z_j)/\mathcal{O}_X(-Z_{j+1})).$$

Moreover,

$$h^{1}(\mathcal{O}_{E_{i_{j}}}(-Z_{j})) = -\chi(\mathcal{O}_{E_{i_{j}}}(-Z_{j})) =$$

= $-\deg_{E_{j}}\mathcal{O}_{E_{i_{j}}}(-Z_{j}) - \chi(E_{i_{j}}) =$
= $(Z_{j}.E_{i_{j}}) - 1 + p(E_{i_{j}})$

for j > 0. Thus

(3.2)
$$p(Z_k) = \sum_{j=0}^{k-1} (p(E_{i_j}) + (Z_j \cdot E_{i_j})) - k + 1.$$

In particular, this rule shows that p(Z) only depends on genera $p(E_i)$ and intersection numbers $(E_i.E_j)$, and if $Z = \sum_{i=1}^s z_i E_i$, then $p(Z) \ge \sum_{i=1}^s z_i p(E_i)$.

Proposition 3.3. Let $\pi : X \to S$ be a resolution with fundamental cycle Z, $\phi : Y \to X$ be a birational projective morphism. Then $Z^* = \phi^* Z$ is the fundamental cycle of the resolution $\pi \circ \phi : Y \to S$.

Proof. We only have to consider the case when ϕ is a monoidal transformation at a point x. We use the notations and assertions of Proposition 2.2. Let E_i be the components of the exceptional curve on X. The components of the exceptional curve on Y are E'_i (strict transforms of E_i) and $L = \phi^{-1}(x)$. Let m_i be the multiplicity of x on E_i , n be its multiplicity on Z. Then $(Z^*.E'_i) = (Z^*.E'_i + m_iL) = (Z^*.E^*_i) = (Z.E_i) \leq 0$. On the contrary, we can write any effective

cycle D on Y as a sum C' + lL, where C' is the strict transform of an effective cycle C on X. Then $(D.L) = (C^* + (l-m)L.L) = m-l$, where m is the multiplicity of x on C, so $(D.L) \leq 0$ implies $l \geq m$. Now $(D.E'_i) = (C^* + (l-m)L.E'_i) = (C^*.E'_i) + (l-m)m_i = (C^*.E^*_i) + (l-m)m_i \geq (C.E_i)$. Hence $(D.E'_i) \leq 0$ implies that $D \geq C^*$ and $(C.E_i) \leq 0$, i.e. $C \geq Z$ and $D \geq Z^*$. So Z^* is indeed the fundamental cycle on Y.

4. Cohomological cycle

We study cohomological properties of the resolution $\pi : X \to S$, especially $R^1\pi_*\mathcal{O}_X$. As S is affine, we may (and shall) identify any coherent sheaf \mathcal{F} on S with **A**-module $\Gamma(S, \mathcal{F})$. In particular, we identify $R^1\pi_*\mathcal{O}_X$ with $\Gamma(S, R^1\pi_*\mathcal{O}_X)$. But this module is isomorphic to $H^1(X, \mathcal{O}_X)$, since $\Gamma(S, \pi_*\mathcal{F}) \simeq \Gamma(X, \mathcal{F})$ for every \mathcal{F} and the functor $\Gamma(S, _)$ is exact. It so happens that $H^1(X, \mathcal{O}_X)$ can be calculated from some effective cycle.

Theorem 4.1. There is an effective cycle Z_h such that:

- (1) $h^1(\mathcal{O}_{Z_h}) \ge h^1(\mathcal{O}_C)$ for every effective cycle C.
- (2) Z_h is the smallest effective cycle with this property.
- (3) $\mathrm{H}^1(X, \mathcal{O}_X) \simeq \mathrm{H}^1(\mathcal{O}_{Z_h})$.

The cycle Z_h is called the *cohomological cycle* of the resolution $\pi: X \to S$.

Proof. We start from the

Lemma 4.2. Suppose that a symmetric bilinear form satisfies conditions of Lemma 1.4. Given any integers c_i , there is a vector v such that $(v.e_i) \leq c_i$ for all i.

Proof. Use induction. For s = 1 the claim is obvious, and we have seen in the proof of lemma 1.4 that the conditions remain valid for the restriction of the form onto the subgroup generated by a part of basic elements. Find i such that $(z.e_i) < 0$, let it be i = s. We may suppose that there is $u \in \langle e_1, e_2, \ldots, e_{s-1} \rangle$ such that $(u.e_i) \leq c_i$ for i < s. Then $(u + kz.e_i) \leq (u.e_i) \leq c_i$ for i < s, and $(u + kz.e_s) \leq c_s$ for big enough k.

Find now an effective cycle D such that $(D.E_i) \leq -(K_X.E_i)$, so $(K_X + D.E_i) \leq 0$. For any positive cycle C the exact sequence

$$0 \to \mathcal{O}_C(-D) \longrightarrow \mathcal{O}_{D+C} \longrightarrow \mathcal{O}_D \to 0$$

induces the exact sequence

$$\mathrm{H}^{1}(\mathcal{O}_{C}(-D)) \longrightarrow \mathrm{H}^{1}(\mathcal{O}_{D+C}) \longrightarrow \mathcal{O}_{D} \to 0.$$

Moreover, by Serre's duality, $\mathrm{H}^{1}(\mathcal{O}_{C}(-D)) \simeq \mathrm{DH}^{0}(\mathcal{O}_{C}(K+C+D))$, since $\omega_{C} \simeq \mathcal{O}_{C} \otimes \omega_{X}(C) \simeq \mathcal{O}_{C}(K+D)$. But $(K+C+D.C) \leq 11$ (C.C) < 0, so $\mathrm{H}^{0}(\mathcal{O}_{C}(K + C + D)) = 0$ and $\mathrm{H}^{1}(\mathcal{O}_{D+C}) \simeq \mathrm{H}^{1}(\mathcal{O}_{D})$. Thus $\mathrm{h}^{1}(\mathcal{O}_{D})$ is the maximal possible.

Let now C also have this property, $M = \min\{C, D\}$, C = M + A, D = M + B, where A, B are effective cycles without common components. Set N = A + B + M. Then we have a commutative diagram

The morphism in the first column is a monomorphism with cokernel isomorphic to the skyscraper sheaf $\mathcal{O}_A \otimes \mathcal{O}_B$. As $\mathrm{H}^1(\mathcal{O}_A \otimes \mathcal{O}_B) = 0$, we get a commutative diagram of cohomologies

It induces an exact sequence

$$\mathrm{H}^{1}(\mathcal{O}_{N}) \longrightarrow \mathrm{H}^{1}(\mathcal{O}_{C}) \oplus \mathrm{H}^{1}(\mathcal{O}_{D}) \longrightarrow \mathrm{H}^{1}(\mathcal{O}_{M}) \to 0.$$

Thus $h^1(\mathcal{O}_M) \ge h^1(\mathcal{O}_C) + h^1(\mathcal{O}_D) - h^1(\mathcal{O}_N) \ge h^1(\mathcal{O}_D)$, since $h^1(\mathcal{O}_C) = h^1(\mathcal{O}_D) \ge h^1(\mathcal{O}_N)$. Therefore $h^1(\mathcal{O}_M) = h^1(\mathcal{O}_D)$. It evidently implies that the smallest divisor Z_h with this property exists.

By the theorem on formal functions [**Ha**, Theorem III.11.1] $R^1 \pi_* \mathcal{O}_X \simeq \lim_{D \to D} H^1(\mathcal{O}_D)$, where D runs through effective cycles. But the mappings $H^1(\mathcal{O}_D) \to H^1(\mathcal{O}_C)$ are bijective for $D > C \ge Z_h$, hence $R^1 \pi_* \mathcal{O}_X \simeq H^1(\mathcal{O}_{Z_h})$. (Since it is finite dimensional, no completion is needed.)

Remark 4.3. It is possible that $\mathrm{H}^1(X, \mathcal{O}_X) = 0$; such singularities are called *rational*. Then $Z_h = 0$. The Laufer procedure (Proposition 3.1) shows that it is only possible if all components E_i are projective lines, i.e. $p(E_i) = 0$, and $(Z_j.E_{i_j}) = 1$ for all steps of this algorithm, in particular $(E_i.E_j) \leq 1$ for all $i \neq j$. On the other hand, if these conditions hold, $\mathrm{H}^1(\mathcal{O}_Z) = 0$. If, moreover, the resolution is minimal, so $(E_i.E_i) \leq -2$, the adjunction formula (Proposition 1.2(5)) gives $(K.E_i) \geq 0$. Thus $(Z.E_i) \leq 0 \leq (K.E_i)$, so the proof of Theorem 4.1 shows that $Z_h \leq Z$ and $\mathrm{H}^1(\mathcal{O}_X) = \mathrm{H}^1(\mathcal{O}_Z) = 0$, i.e. the singularity is rational. Note that Proposition 3.1(6) together with Proposition 3.3 shows that the value $\chi(Z) = -(K + Z.Z)/2$ does not change under a monoidal transformation, thus holds for each resolution if it holds for one of them. So a singularity is rational if and only if p(Z) = 0 for the fundamental cycle of some (then of any) resolution.

5. Examples

We consider several examples of surface singularities. All of them are indeed hypersurface singularities, i.e. those of surfaces embedded in \mathbb{A}^3 , hence given by one equation $F(x_1, x_2, x_3) = 0$. We always suppose that F(0,0,0) = 0 and take for **A** the local ring of the point p = (0, 0, 0). It is always Cohen-Macaulay [Ha, Proposition II.8.23], so it is normal if and only if p is an isolated singularity. Note that pis a singular point if and only if F contains no linear terms. We also suppose that $\operatorname{char} \mathbf{k} = 0$. Remind that the monoidal transformation at the point p replace $S = \operatorname{Spec} \mathbf{A}$ by the closure $Y \subset S \times \mathbb{P}^2$ of the sub-scheme $\tilde{Y} \subseteq U \times \mathbb{P}^2$, where $U = S \setminus \{p\}$ and \tilde{Y} is given by the equations $\xi_i x_j = \xi_j x_i$, $(\xi_1 : \xi_2 : \xi_3)$ being homogeneous coordinates in \mathbb{P}^3 . Actually Y is covered by three affine sheets Y_j (j = 1, 2, 3)respectively to three copies of \mathbb{A}^2 covering \mathbb{P}^3 . Namely, Y_j is the closure in $S \times \mathbb{A}^2$ of the sub-scheme $\widetilde{Y}_j \subseteq U \times \mathbb{A}^2$ given by the equations $x_i = \lambda_i x_j$, where $i \in \{1, 2, 3\}, i \neq j$. Note that here U can be given by one inequality $x_j \neq 0$. The pre-image of p is given on the sheet Y_j by the equation $x_j = 0$. If S was an isolated singularity, all singularities of Y are sitting on this curve.

Example 5.1. The simplest surface singularity is the *ordinary double* point $x_1^2 + x_2^2 + x_3^2 = 0$. Perform the monoidal transformation at the point p. It gives:

$$Y_1: \quad x_2 = \lambda_2 x_1, \ x_3 = \lambda_3 x_1, \ x_1^2 + \lambda^2 x_1^2 + \lambda_3 x_1^2, \ x_1 \neq 0,$$

hence

 $Y_1: \quad \lambda_2^2 + \lambda_3^2 + 1 = 0 \quad (\text{embedded in } \mathbb{A}^3 \text{ with coordinates } x_1, \lambda_2, \lambda_3).$

So Y_1 is a quadratic cylinder and has no singular points. The same is for Y_j , j = 2,3. Thus $\tau : Y \to S$ is a (minimal) resolution of this singularity. The exceptional curve E (its part in Y_1) is given by the equation $x_1 = 0$; it is a conic.

To calculate the intersection number (E.E) we use a simple property of the definitions from Section 1.

Proposition 5.2. Let X be a smooth surface, $f \in K(X)$ be a rational function, (f) be its divisor, and E be a projective curve on X. Then ((f).E) = 0.

Proof. By definition, $((f).E) = \deg_E(\mathcal{O}_X((f)) \otimes \mathcal{O}_E) = \deg_E(\mathcal{O}_E) = 0$, because $\mathcal{O}_X((f)) \simeq \mathcal{O}_X$.

In our example each of the functions x_j has a zero of the first degree on E. But, say, x_3 has two more zeros given on Y_1 by the equation $\lambda_3 = 0$, or $\lambda_2 = \pm \sqrt{-1}$. Hence $(x_3) = E + C_1 + C_2$. Moreover, $C_1 \cap C_2 = \emptyset$ and both of them intersect E transversally at one point. So $((x_3).E) = (E.E) + (C_1.E) + (C_2.E) = (E.E) + 2 = 0$ and (E.E) = -2. Since $E \simeq \mathbb{P}^1$, the dual graph of our singularity is just

> • 2

As Z = E and p(E) = 0, this singularity is rational.

Example 5.3. The singularity of type D_4 is given by the equation $x_1^2 = x_2^3 - x_2 x_3^2$. Performing the monoidal transformation, get

$$Y_1: \quad 1 = x_1(\lambda_2^3 - \lambda_2\lambda_3^2), \quad \tau^{-1}(p) \cap Y_1 = \emptyset,$$

$$Y_2: \quad \lambda_1^2 = x_2(1 - \lambda_3^2), \quad \tau^{-1}(p) \cap Y_2: \quad x_2 = \lambda_1 = 0,$$

$$Y_3: \quad \lambda_1^2 = x_3(\lambda_2^3 - \lambda_2), \quad \tau^{-1}(p) \cap Y_3: \quad x_3 = \lambda_1 = 0.$$

In particular, Y_1 is smooth; the singular points on Y_3 are $p_1 = (0,0,0), p_2 = (0,0,1), p_3 = (0,0,-1)$; the singular points on Y_2 are the same p_2, p_3 (in a different presentation, of course). The pre-image of p consists of one component E_0 isomorphic to \mathbb{P}^1 .

In a neighbourhood of p_1 we can consider $y_1 = \lambda_1$, $y_2 = \lambda_2^3 - \lambda_2$, $y_3 = \lambda_3$ as local coordinates on Y_3 . So its equation becomes $y_1^2 = y_2 y_3$, that of an ordinary double point. Therefore a monoidal transformation at p_1 resolves it. The same is the case with the points p_2, p_3 . If we perform all three monoidal transformation, we get a (minimal) resolution of our singularity. Each of them gives a new component E_k of the exceptional curve (k = 1, 2, 3). For instance, the equations of E_1 on the second sheet are $y_2 = 0$, $\lambda_1^2 = \lambda_3$, (the latter is the equation of this sheet itself). The equations of the pre-image of E_0 on the same sheet are $\lambda_1 = \lambda_3 = 0$, so it intersects E_1 transversally. The same is true for E_2, E_3 .

To calculate self-intersection numbers, consider the divisor (x_1) . On Y it has zeros at E_0 and on the curves C_k (k = 1, 2, 3) that have on Y_3 the equations $\lambda_1 = 0$ and, respectively, $\lambda_2 = 0, 1, -1$. They intersect E_0 transversally at the points, respectively, p_k . Hence after monoidal transformations at p_k the (strict) pre-images of E_0 and C_k do not meet at all, but both of them intersect E_k transversally. As x_1 becomes y_1y_3 on Y_3 , it has a zero of order 1 on each C_k . On the second sheet of he monoidal transformation at p_1 , x_1 becomes $\lambda_1\lambda_3y_2^2 = \lambda_1^3y_2$, so it has a zero of order 2 on E_1 and a zero of order 3 on E_0 . Thus $(x_1) = 3E_0 + 2(E_1 + E_2 + E_3) + (C_1 + C_2 + C_3)$, wherefrom one easily gets $(E_k.E_k) = -2$ for k = 0, 1, 2, 3. Therefore the dual graph of this singularity is

with all weights equal 2.

Find the fundamental cycle Z of this resolution using the Laufer procedure. Starting from $Z_1 = E_0$, we get

 $Z_2 = Z_1 + E_1, \ Z_3 = Z_2 + E_2, \ Z_4 = Z_3 + E_3, \ Z_5 = Z_4 + E_0,$

and $Z = Z_5 = 2E_0 + E_1 + E_2 + E_3$ (in particular, $Z \neq E$ and is not reduced). Moreover, the formula (3.2) gives p(Z) = 0. So this singularity is also rational.

Example 5.4. Let $S: x_1^3 + x_2^3 + x_3^3 = 0$. The monoidal transformation at p gives for Y_1 the equation $\lambda_2^3 + \lambda_3^3 + 1 = 0$. It is smooth, as well as two other sheets, so $Y \to S$ is a minimal resolution. The exceptional curve E is a plane smooth cubic given by the intersection of Y_1 with $x_1 = 0$. The same curve we obtain on two other sheets too. All functions x_i have simple zeros on E. Other zeros, say, of x_2 on Y_1 are $\lambda_2 = 0$, $\lambda_3^3 = -1$. There are three of them, intersecting Etransversally. Hence (E.E) = -3 and the dual graph is

> • (1,3)

Here Z = E, p(E) = 1 and $(E + K.E) = -2\chi(E) = 0$, thus the proof of Theorem 4.1 gives $Z_h = E$ and $h^1(\mathcal{O}_X) = 1$. In particular, this singularity is not rational.

Example 5.5. Our last example is the singularity of type T_{237} given by the equation $x_1^2 = x_2^3 + x_2^2 x_3^2 + x_3^7$. Blowing up at the point p = (0, 0, 0) gives nothing on the first sheet. On the second sheet we have

$$\lambda_1^2 = x_2 + x_2^2 \lambda_3^2 + x_2^5 \lambda_3^7,$$

so $\tau^{-1}(p)$ is $x_2 = \lambda_1 = 0$, which contains no singular points. On the third sheet we have

$$\lambda_1^2 = \lambda_2^3 x_3 + \lambda_2^2 x_3^2 + x_3^5,$$

so $\tau^{-1}(p)$ is $E_1 : x_3 = \lambda_1 = 0$. The unique singular point is q = (0,0,0). Rewrite it in new coordinates as $y_1^2 = y_2^3 y_3 + y_2^2 y_3^2 + y_3^5$. Blowing it up gives nothing on the first sheet again. On the second sheet we get

$$\lambda_1^2 = y_2^2 (\lambda_3 + \lambda_3^2 + y_2 \lambda_3^5)$$

Now one can see that thus obtained singularity is not normal: the function $\eta = \lambda_1/y_2$ belongs to the integral closure of its coordinate ring. Adding it, we obtain the equation

$$\eta^2 = \lambda_3 + \frac{\lambda_3^2}{15} + \frac{y_2 \lambda_3^5}{15}.$$

It defines a smooth surface. The strict pre-image of E_1 is $\eta = \lambda_3 = 0$, and the pre-image of q is E_2 : $y_2 = 0$, $\eta^2 = \lambda_3 + \lambda_3^2$. They intersect transversally at the point (0, 0, 0). There are no singular points on this sheet.

On the third sheet we obtain

$$\lambda_1^2 = y_3^2 (\lambda_2^3 + \lambda_2^2 + y_3),$$

which is again non-normal. To normalize, add the function $\zeta = \lambda_1/y_3$ getting

$$\zeta^2 = \lambda_2^3 + \lambda_2^2 + y_3.$$

The exceptional curve, which coincide with E_2 , is $y_3 = 0$, $\lambda_1^2 = \lambda_2^3 +$ λ_2^2 . There are no singular points on this sheet too, so we have got a resolution $\psi: Y \to S$. This time it is neither minimal nor transversal. Indeed, the curve E_2 is not smooth: on the third sheet it has a singular point $\lambda_2 = \lambda_3 = 0$ (an ordinary node, or double point). On the other hand, calculating the divisor (x_1) gives $(x_1) = 3E_1 + 3E_2 + A$, where A is the curve given, say, on the third sheet after the first blowing up by the equations $y_1 = 0 = y_2^3 + y_2^2 y_3 + y_3^4$. It intersects E_1 transversally at the point q, hence does not intersect it after the second blowing up. Its equations on the third sheet sheet after normalization become $\zeta = 0 = \lambda_2^3 + \lambda_2^2 + y_3$, Hence its intersection with E_2 consists of two points (0,0,0) and (0,-1,0); the first one being of multiplicity 2. Thus $(E_1.E_2) = 1$, $(A.E_2) = 3$, $(A.E_1) = 0$, wherefrom $(E_1.E_1) =$ -1, $(E_2 \cdot E_2) = -2$. So E_1 is a contractible line and $\psi = \pi \circ \sigma$, where $\pi: X \to S$ is a minimal resolution and $\sigma: Y \to X$ is a blowing up with the exceptional line E_1 . Denote by E the image of E_2 on X. Accordingly to Proposition 2.2(5), (E.E) = -1.

Just as in the preceding example, $Z = Z_h = E$, so $h^1(\mathcal{O}_X) = 1$ and this singularity is also non-rational.

To get a minimal transversal resolution, we must blow up the singular point e of E (one blowing up is enough since it is an ordinary double point). After such a transformation we get (E'.E') = -5, where $E' = \sigma' E$ (again by Proposition 2.2(5)), so the dual graph of our singularity is

$$5 \bullet \frown 1$$

(the second vertex corresponds to the new exceptional line L, the pre-image of e). For this resolution one can easily check that the fundamental cycle is Z = E' + 2L. On the other hand, since p(E') = p(L) = 1, one can calculate (K.E') = 3, (K.L) = -1. The Laufer algorithm (Proposition 3.1) shows that $h^1(E' + L) = 1$. Moreover, (E' + L.L) = 1 = -(K.L) and (E' + L.E') = -3 = -(K.E'). Thus the proof of Theorem 4.1 shows that $Z_h \leq E' + L$, where Z_h is the cohomological cycle. As $h^1(E') = h^1(L) = 0$, $Z_h = E' + L$.

Note that sometimes one allows, on a transversal resolution, ordinary double points not only as intersections of components, but also as singular points of components of the exceptional curve, presenting them at the dual graph as *loops*. The genus that occurs in weights is the *geometric genus*, which equals $p(E_i) - \delta$, where δ is the number of singular points, and again genus 0 is omitted. Then the minimal resolution of our singularity, which satisfies this condition, has the dual graph

1

References

- [Art] M. Artin. Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. Math. 84 (1962), 485–496.
- [Gr] H. Grauert. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962), 331–368.
- [Ha] R. Hartschorne. Algebraic Geometry. Springer-Verlag, 1974.
- [La1] H. B. Laufer. Normal Two-Dimensional Singularities. Princeton University Press. 1971.
- [La2] H. B. Laufer. On rational singularities. Amer. J. Math. 94 (1972), 597–608.
- [Lip] J. Lipman. Rational singularities with applications to algebraic varieties and unique factorization. Publ.Math.IHÉS. 36 (1969), 195-279.
- [Ser] J.-P. Serre. Groupes algébriques et corps de classes. Hermann, Paris, 1965.