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Abstract
We study the derived categories of coherent sheaves on some singular projective
curves and give a complete description of indecomposable objects using the technique
of matrix problems.
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1. Introduction
This paper is, in particular, motivated by the recent research in homological mirror
symmetry (see [18], [24]). It is well known that any object of the derived category
of coherent sheaves on a smooth elliptic curve is isomorphic to a direct sum of shifts
of vector bundles and skyscraper sheaves. Indecomposable vector bundles on elliptic
curves were classified in the paper of Atiyah [1] (see also [22] and [24] for a descrip-
tion via étale coverings). An essential feature of this description is that an indecom-
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posable vector bundle is described by two discrete parameters, rank r and degree d ,
and one continuous parameter, a point of the curve. Suppose now that a family of
elliptic curves degenerates into a cycle of projective lines. A natural question is, what
happens with the derived category of coherent sheaves under this degeneration?

As we shall see, the derived category of coherent sheaves on a cycle of projective
lines resembles the situation in the smooth case. There are three types of indecom-
posable objects: shifts of skyscraper sheaves at a smooth point of the curve, and the
so-called bands B(w, m, λ) and strings S (w). A band B(w, m, λ) depends on one
continuous parameter λ ∈ k∗, on a natural number m ∈ N (which can be interpreted as
a “thickening” of an object), and on a quite complicated discrete parameter w. Strings
S (w) can be viewed as degenerations of bands. For example, all vector bundles are
bands. Torsion-free sheaves, which are not vector bundles, are strings. In fact, strings
are exactly indecomposable complexes from D−(CohX ) of infinite homological di-
mension.

Suppose that a family of elliptic curves degenerates to a cuspidal curve. It was
shown in [11] that the category of vector bundles on a cuspidal curve “explodes”:
for any natural number n ∈ N, there are families of indecomposable vector bundles
depending on n continuous parameters. In the language of representation theory, it
means that the category of vector bundles is wild. The category of skyscraper sheaves
at the singular point is also wild (see [9]). It agrees with the fact that the category
of semistable torsion-free sheaves of degree zero is equivalent, via Fourier-Mukai
transform, to the category of torsion sheaves (see [13], [27]).

In the case of a smooth curve, knowing vector bundles, one also knows all co-
herent sheaves; they are just direct sums of vector bundles and of skyscraper sheaves
Ox/m

k
x , where O is the structure sheaf, x is a (closed) point, and mx is the Ox -ideal

of functions vanishing at x . The situation is quite different in the case when a curve
is no longer smooth. Then first there are indecomposable sheaves that are “mixed”
(neither torsion-free nor skyscraper); second, the structure of skyscraper sheaves is
much more complicated (cf. [15], [19]).

The aim of this paper is to describe all coherent sheaves in this case. Moreover,
we describe all indecomposable objects in the derived categories of coherent sheaves
over tame curves.

2. Vector bundles on cycles of projective lines
Recall some facts about the classification of vector bundles on projective curves. As a
rule, it is a wild problem in the sense that it contains the description of representations
of all finitely generated algebras. The cases when it is not so are the following:
• projective line P1 (see [16]) and configurations of projective lines with

transversal intersection and with the intersection graph of type A (a chain of
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lines); in this case, indecomposable vector bundles have rank 1 and are classi-
fied by their (multi)degree (see Fig. 1);

Figure 1

• elliptic curves (smooth curves of genus 1) (see [1]);
• rational curve with one node (see Fig. 2);

Figure 2

• configurations of projective lines of type Ã (a cycle) (see Fig. 3).

Figure 3

Let us briefly recall the description of vector bundles on cycles of projective lines
(see [11]). Let X = Xs be a cycle of s projective lines (in the case of s = 1, it is
just a rational curve with one simple node), O = OX . Then we have Ext1O(O, O) =

H1(O) = k. Hence we have a unique nonsplit extension

0 −→ O −→ F2 −→ O −→ 0.

Repeating the arguments of [1], we obtain that the subcategory consisting of iterated
extensions of the structure sheaf O consists of direct sums of O = F1, F2, . . . , where
each Fm is inductively defined by an extension

0 −→ F1 −→ Fm −→ Fm−1 −→ 0, m ≥ 2.
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The bundles Fm, m ≥ 1, are called unipotent.
Let us note that a line bundle on a cycle of projective lines is determined by its

multidegree d and continuous parameter λ ∈ k∗.

THEOREM 2.1 ([11, Th. 2.12]; see also [6])
Suppose that char(k) = 0. Let Xs be a cycle of s lines, let

pn : Xns −→ Xs

be an étale covering of degree n, and let

d = d1d2 · · · dsds+1ds+2 · · · d2s · · · d(n−1)s+1d(n−1)s+2 · · · dns,

di ∈ Z, i = 1, . . . , ns, be any nonperiodic sequence of integers. Nonperiodicity
means that d[t] 6= d for all t = 1, . . . , n − 1, where

d[1] = ds+1ds+2 · · · d2s · · · d(n−1)s+1d(n−1)s+2 · · · dnsd1d2 · · · ds,

d[t] = (d[t − 1])[1]. Let L = L (d, λ) be a line bundle on Xns of multidegree d.
Then

B(d, m, λ) = pn∗(L ) ⊗ Fm

is an indecomposable vector bundle of rank mn on the curve Xs . Moreover, each
indecomposable vector bundle on the curve Xs is isomorphic to some vector bundle
B(d, m, λ). For the sake of convenience, we denote B(0, m, 1) = Fm .

The construction via étale coverings has the disadvantage that it does not work in the
case of char(k) = p > 0. We now give the description, which does not depend on the
characteristic of k.

Let X be a cycle of projective lines, let π : X̃ −→ X be its normalization, let
Õ = π∗(OX̃ ), and let J = AnnO(Õ/O) be the conductor.

Let E be a vector bundle on X . Denote Ẽ = π∗π
∗(E ); then we have a canonical

inclusion E −→ Ẽ , which induces an inclusion i : E ⊗O O/J −→ Ẽ ⊗Õ Õ/J .

It was shown in [11] that a vector bundle on a cycle of projective lines is completely
determined by its normalization Ẽ and inclusion i .

Example 2.2
Let char(k) = 0, let X = X1 be a rational curve with one node, and let π3 : X3 −→

X1 be an étale covering of degree 3. Let L = L ((1, 1, 0), λ) be a line bundle on
X3; the degree of L is 1 on components with number 1 and 2, and 0 on the third
component, and λ glues fibers of L at the point of intersection of the first and third
components. Let

E = B
(
(1, 1, 0), m, λ

)
= π3∗(L ) ⊗O B(0, m, 1).
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Then
Ẽ ∼= Õ(1)2m

⊕ Õm .

The map i is just a k-linear map of a k-module into a (k × k)-module; hence it is
given by the two matrices i(0 : 1) and i(1 : 0). Doing basis transformation, we can
reduce them to the form of Figure 4.

Im

Im

Im

i(0 W 1)

1

1

0

Im

Im

J
m

(�)

i(1 W 0)

Figure 4

It turns out that we can define our bundles B(d, m, λ) by means of these gluing
matrices i . This description is independent of the characteristic of the field k.

Remark 2.3
Let char(k) = 0, let Xs be a cycle of s lines, and let d = d1d2 · · · dns be periodic; that
is, let d = ee · · · e (k times), where k|n and e is a sequence on Xsn/k . Then we can
still consider a locally free sheaf

B(d, 1, λ) = pn∗L (d, λ),

where pn : Xns −→ Xs is an étale covering of degree n. However, it decomposes into
a direct sum

B(d, 1, λ) =

k⊕
i=1

B(e, 1, ξi ),

where ξ1, ξ2, . . . , ξk are all kth roots of λ.

3. Description of indecomposable complexes
Let X = Xs be a cycle of s lines. In order to describe indecomposable complexes of
the derived category D−(CohX ), we define the following combinatorial data.

Definition 3.1
(1) The alphabet A consists of the following symbols (letters):

(a) nk , where n, k ∈ Z (we call them 0-letters);
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(b) xn
k , yn

k , where n ∈ N, k ∈ Z (we call them, resp., x-letters and y-
letters).

We write i(a) = k, where a is one of the letters above.
(2) The set of active indices of a letter a is defined as follows:

(a) if a = nk , it is {k};
(b) if a = xn

k or yn
k , it is {k, k + 1}.

(3) A word is a mapping w : Z → A such that
(a) if all 0-letters are omitted, x-letters and y-letters alternate;
(b) any two neighbor letters have a common active index, and every active

index of a letter is also an active index of one of its neighbors.
(4) We define the functions δw and jw, both Z → Z/sZ, by the following rules:

(a) if there is m′ > m such that w(m′) is a y-letter and all w(m′′) with
m < m′′ < m′ are 0-letters, then δw(m) = −1; otherwise, δw(m) = 1;

(b) jw(0) = 0 and jw(m + 1) = jw(m) + δw(m) for every m.
If s = 1, then both functions jw and δw are trivial.

(5) A string S (w) is given by a word w satisfying the following conditions:
(a) there is an integer K such that i(w(m)) ≥ K for all m ∈ Z;
(b) for every integer k, the set {m ∈ Z | i(w(m)) = m} is finite.

(6) If l ∈ N, we define the l-shift wl of a word l setting wl(m) = w(m+l), m ∈ Z.
We call this shift admissible if jw(0) = jw(l).

(7) A cycle is a word w such that wl
= w for some admissible shift. The smallest

l with this property is called the period of the cycle w. Evidently a cycle of
period l is completely defined by its segment w(0)w(1) · · · w(l − 1), and we
often identify them. Note only that if s > 1, not every finite word defines a
cycle; the condition jw(0) = jw(l) is rather restrictive.

(8) A band B = B(w, d, λ) is given by a triple (w, d, λ), where d ∈ N, λ ∈

k∗
= k \ {0}, and w is a cycle.

(9) We denote by w◦ the opposite word; that is, w◦(m) = w(−m).
(10) We call two strings S (v), S (w) equivalent if there is an admissible shift vl

such that vl
= w or vl

= w◦.
(11) We call two bands B(w, d, λ), B(v, d, µ) equivalent if there is an admissible

shift vl such that either w = vl and µ = λ, or w◦
= vl (not all letters in w are

0-letters) and µ = λ−1.

The functions jw and δw have the following interpretation: jw(0) indicates the compo-
nent of X we start with (i.e., w(0) is supported on the jw(0)th component); δw shows
the direction of “jumping” from a component of X to one of its neighbors; jw(m) is
the number of the component, where w(m) is supported.
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THEOREM 3.2
There is a one-to-one correspondence between isomorphism classes of indecompos-
able objects of the derived category D−(CohX ) and equivalence classes of strings
and bands.

This theorem is proved in the following sections. Nearby we show how one can con-
struct a complex corresponding to a string or band. For the sake of simplicity, we
consider only the case of an irreducible curve. Then s = 1, so the function jw plays
no role; in particular, any shift is admissible. (In the general case, one only has to place
each bundle over X̃ on the corresponding irreducible component). To explain the rule,
note that in [11] vector bundles over X were encoded by bands such that corresponding
cycles contain only 0-words with k = 0 (so we omit this index). If n0, n1, . . . , nl−1

defines such a cycle, the vector bundle corresponding to it can be described as a gluing
of vector bundles over the normalization. Namely, take

⊕l−1
i=0 Õ(ni )

d , choose its local
trivializations, which give bases of fibres at every point, and identify the fibres at zero
with the fibres at ∞ in the following way (for details, cf. [11, Th. 2.12], especially
Figs. 2 and 3 after it):
• if 0 ≤ i < l − 1, the basis at ∞ of Õ(ni )

d is identified with the basis at zero
of Õ(ni+1)

d ;
• the basis at ∞ of Õ(nl−1)

d is identified with the twisted basis at zero of
Õ(n0)

d , where the twist is given by the d×d Jordan cell Jd(λ) with eigenvalue
λ.

Quite analogous gluing can be done for the derived category. Indeed, let
w(0)w(1) · · · w(l − 1) define a cycle w. Replace
• every 0-letter nk by the kth shift of the vector bundle Õ(n)d over X̃ ;
• every x-word xn

k by the kth shift of the complex (Õ(−n)
xn

→ Õ)d ;

• every x-word yn
k by the kth shift of the complex (Õ(−n)

yn

→ Õ)d .

Here Õ(−n)
xn

→ Õ and Õ(−n)
yn

→ Õ are locally free resolutions, respectively, of the
skyscrapers Õ/mn

0 and Õ/mn
∞. Take the direct sum of all these complexes, fix local

trivializations, and identify the fibres at zero and at ∞. Namely, let i be the common
active index of w(m) and w(m +1) (note that w(l) = w(0)), and let δ = δw(m). Then
follow these rules.
(1) If δ = 1, glue the basis at ∞ of the i th component of the mth complex defined

above with the basis at zero of the i th component of the (m + 1)st complex
(twisted by the Jd(λ) if m = l − 1).

(2) If δ = −1, glue the basis at zero of the i th component of the mth complex
with the basis at ∞ of the i th component of the (m + 1)st complex (twisted by
the Jd(λ) if m = l − 1).
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(3) Glue the remaining bases at zero (originating from y-letters) with the remain-
ing bases at ∞ (originating from x-letters) in any way, keeping only the “par-
allelogram rule,” which means that if you glue bases of two complexes corre-
sponding to the letters xn

k and yr
k at the kth component, then the same must be

done at the (k + 1)st, too. The alternating condition (3.a) from Definition 3.1
guarantees that such gluing is always possible.

Remark 3.3
This construction should be modified in the case when X = Xs , s ≥ 3. In order to
get a complex of locally free sheaves on X , we should add some trivial complexes of

Õ-modules Õ
id

−→ Õ to the gluing data. See Section 6 for further details.

One can easily see that as a result we obtain in each component a vector bundle over
X , and the differential of the complex over X̃ induces homomorphisms between these
bundles; so we get a complex of vector bundles over X which defines an object of the
derived category.

Here are some examples. Consider the band B(w, 1, λ), where w = 30x2
0 y1

1 -
22x3

1 y1
0 . The corresponding complex is in Figure 5. In Figure 5 (as well as in the

λ •
3

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+ •

o o o o o o o

•

NNNNNNNN ◦ 2 // • ◦

◦ • 1 // ◦ •

•
−2

ooooooo •

o o o o o o o

• ◦ 3 // •

NNNNNNN ◦

◦ • 1 // ◦ •

Figure 5

next ones) solid lines show the line bundles on the normalization; their left (resp.,
right) ends symbolize the fibres at zero (resp., at ∞). The superscripts show the de-
grees. Vector bundles in the same column correspond to the fixed component of the
complex. (In this example the very right is the 0-component, and the very left is the
2-component.) Horizontal arrows show the differential: it is given by xn (resp., by yn)
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if the left ends (resp., the right ends) of the corresponding lines are bullets. Note that
the absolute degrees of these line bundles play no role: only their difference n (shown
by the inserted number) matters. The twist by λ is shown near the corresponding end.
Dashed lines show the mandatory gluing according to rules (1) and (2) above; dotted
lines show the arbitrary parallel gluing of “free” ends according to rule (3). These
ends are encircled.

One can easily see that this complex does not correspond to any coherent sheaf.
Indeed, it has nontrivial cohomologies in degrees 0 and 2 corresponding to the lone
solid lines on the first and fourth levels. We can also write down a locally free repre-
sentative of this complex,

B
(
(−2, 0, 0), 1, 1

)
−→ B

(
(0, 0, 1, 3), 1, 1

)
−→ B

(
(3, 1, 2), 1, λ

)
,

and differentials are those as it is shown in Figure 5.

Remark 3.4
Let E and F be two locally free O-modules, and let Ẽ and F̃ be corresponding
Õ-modules. We have a canonical embedding

HomO(E , F ) −→ HomÕ(Ẽ , F̃ ).

Differentials in the figures are homomorphisms of Õ-modules. They lie in the image
of the normalization map and hence define homomorphisms of O-modules.

The following example is the string S (w), where w = · · · y1
3 x1

2 y1
1 xn

0 ym
0 x1

1 y1
2 x1

3 · · · ,

which corresponds to a skyscraper sheaf (to k(p), where p is the singular point if
n = m = 1). The complex defined by this string is in Figure 6. Its locally free

· · · ◦ •

�
�

�
�

� ◦ •

~
~

~
~

~
1 // ◦ •

~
~

~
~

~

· · · • ◦ 1 // • ◦ • ◦ n // • ◦

· · · ◦ • 1 // ◦ •

~
~

~
~

~ ◦ •

~
~

~
~

~
m // ◦ •

=
=

=
=

=

· · · •

�
�

�
�

� ◦ • ◦ 1 // • ◦

Figure 6

representative is

· · · −→ B
(
(1, 0, 0, 1), 1, 1

)
−→ B

(
(1, 0, 0, 1), 1, 1

)
−→ B

(
(n, m), 1, 1

)
.
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The band B(w, 2, λ), where w = -3000 y1
0 x2

0 y4
0 x5

000, defines a mixed coherent
sheaf, that is, one that is neither torsion-free nor skyscraper. The corresponding com-
plex is in Figure 7. Double horizontal lines reflect the fact that each line bundle must

•
−3

OOOOOOO •

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� J2(λ)

•
0

NNNNNNN •

◦ •

q q q q q q q 1 // ◦ •

• ◦ 2 // •

MMMMMMM ◦

◦ •

q q q q q q q 4 // ◦ •

• ◦ 5 // • ◦

•
0

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� •

N N N N N N N

Figure 7

be taken twice. The twist by the Jordan cell is marked at the corresponding place. A
locally free representative of this complex is

B
(
(0, 0), 2, 1

)
⊕ B

(
(0, 0), 2, 1

)
−→ B

(
(−3, 0, 1, 2, 4, 5, 0), 2, λ

)
.

Note that this time we could trace dotted lines another way, joining the first free
end with the last one and the second with the third (see Fig. 8). It gives an isomorphic
object in D−(CohX ),

B
(
(0, 0, 0, 0), 2, 1

)
−→ B

(
(−3, 0, 1, 5, 0), 2, λ

)
⊕ B

(
(2, 4), 2, 1

)
.

The last example is an object of D−(CohX ) which does not belong to Db(CohX ).
It is the string S (w), w = · · · y2

2 x1
1 -21 y3

000x2
0 y2

112 · · · . This string has 0-letters with
all indices, which immediately implies that all cohomologies are nonzero. The corre-
sponding complex is in Figure 9. Its locally free representative is

· · · −→ B
(
(−2, 1, 2, 0, 0), 1, 1

)
−→ B

(
(0, 2, 3), 1, 1

)
.

4. Main construction
In what follows, we denote by the same letter F the derived functor D−(A ) −→

D−(B) induced by a functor F : A −→ B. In particular, ⊗ denotes the derived
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•
−3

OOOOOOO •

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� J2(λ)

•
0

NNNNNNN •

◦ •

q q q q q q q 1 // ◦ •

• ◦ 2 // •

MMMMMMM ◦

◦ •

q q q q q q q 4 // ◦ •

• ◦ 5 // • ◦

•
0

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� •

N N N N N N N

Figure 8

functor induced by the tensor product.
Let X be a projective curve over an algebraically closed field k. We always sup-

pose that X is connected (although it may be reducible). We use the following nota-
tion:
• π : X̃ → X the normalization of X ;
• O = OX and Õ = π∗OX̃ ;
• S = Sing X the set of singular points of X and S̃ = π−1(S);
• F̃• = F• ⊗O Õ , where F• is a complex of locally free O-modules;
• J = AnnO Õ/O , the conductor of Õ in O;
• A = O/J and ˜A = Õ/J ;
• F̄• = F̃• ⊗Õ

˜A , where F̃• is a complex of locally free Õ-modules;
• M̃• = M• ⊗A

˜A , where M• is a complex of locally free A -modules.
Note that A and ˜A are skyscraper sheaves, and note that Supp A = Supp ˜A =

Sing X .
Since the morphism π is affine, we can identify OX̃ -modules and Õ-modules.

We also identify the derived category D−(CohX ) with the category of quotients
K −(VBX )[Q−1

], where VBX is the category of locally free sheaves of O-modules
(or, equivalently, vector bundles over X ), and Q is the set of quasi-isomorphisms.

We have canonical homomorphisms O −→ A −→ ˜A , Õ −→ ˜A . Since the for-
getful functor CohA −→ CohO is exact, it induces an exact functor D−(CohA ) −→
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•
−2

OOOOOOOO •

�
�

�
�

�
�

�
�

�
�

. . . ◦ •

q q q q q q q q ◦ • 3 // ◦ •

q q q q q q q q

. . . • ◦ 1 // • ◦ •
0

•

q q q q q q q q

. . . •

=
=

=
=

=
=

=
=

=
= ◦ •

NNNNNNNN ◦ 2 // • ◦

. . . ◦ • 2 // ◦ •

•
1

ooooooo •

Figure 9

D−(CohO). Its action on objects does not require any choice of special representa-
tives, so we identify objects of D−(CohA ) with their images in D−(CohO).

We have a commutative diagram of functors

D−(CohO) //

��

D−(CohA )

��
D−(CohÕ) // D−(Coh ˜A )

We want to reconstruct a complex F• ∈ D−(CohO) from its images in D−(CohÕ)

and D−(CohA ).

Definition 4.1
Define the category of triples of complexes TCX in the following way.
• Its objects are triples (G̃•, M•, i), where

– G̃• is a (right bounded) complex of locally free Õ-modules;
– M• is a (right bounded) complex of locally free A -modules;
– i is an isomorphism M• ⊗A

˜A → G• ⊗Õ
˜A in the category

D−(Coh ˜A ).
• A morphism (G•, M•, i) → (G ′

•, M ′
•, i ′) is a pair (8, ϕ), where 8 : G• → G ′

•

is a morphism in D−(CohÕ) and ϕ : M• → M ′
• is a morphism in D−(CohA )
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such that the diagram

M• ⊗A
˜A

i
−−−−→ G• ⊗Õ

˜A

ϕ⊗id
y y8⊗id

M ′
• ⊗A

˜A −−−−→
i ′

G ′
• ⊗Õ

˜A

is commutative in D−(Coh ˜A ).
• We define the functor F : D−(CohX ) → TCX which maps a complex F• of

locally free sheaves to the triple (F̃•, F• ⊗O A , iF•
), where iF•

is the natural
isomorphism

(F• ⊗O Õ) ⊗Õ
˜A

∼
→ F• ⊗O

˜A
∼
→ (F• ⊗O A ) ⊗A

˜A .

Note that any quasi-isomorphism of complexes F• → F ′
• in K −(VBX ) in-

duces quasi-isomorphisms F̃• → F̃ ′
• and F• ⊗O A → F ′

• ⊗O A . Therefore
the functor F is well defined on the derived category.

THEOREM 4.2
The functor F is dense (i.e., epimorphic on the set of isoclasses of objects) and reflects
isomorphisms; that is, if FF• ' FF ′

•, then F• ' F ′
•.

Remark 4.3
On the other hand, this functor is not faithful, though it is an equivalence on the full
subcategory of D−(CohX ) consisting of the images of locally free coherent sheaves
under the natural embedding CohX → D−(CohX ).

Proof
The main ingredient of the proof is, given a triple (F̃•, M•, i), how can we recon-
struct F•?

The exact sequence

0 −→ J F̃• −→ F̃• −→ F̃• ⊗Õ
˜A −→ 0

in Coh(CohX ) gives a distinguished triangle

J F̃• −→ F̃• −→ F̃• ⊗Õ
˜A −→ J F̃•[−1]

in D−(CohX ). Let ĩ : M• −→ F̄• be the composition of i with the canonical map
M• −→ M• ⊗A

˜A .
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The properties of triangulated categories imply that there is a morphism of trian-
gles

J F̃•
// F̃•

// F̃• ⊗Õ
˜A // J F̃•[−1]

J F̃•
//

id

OO

F•
//

8

OO

M•
//

ĩ

OO

J F̃•[−1]

id

OO

where F• = cone(M• −→ J F•[−1])[1]. Taking a cone is not a functorial opera-
tion. It gives an intuitive explanation why functor F is not an equivalence.

The properties of triangulated categories imply immediately that the constructed
map (not a functor!)

G : Ob(TCX ) −→ Ob
(
D−(CohX )

)
sends isomorphic objects into isomorphic ones and satisfies GF(F•) ∼= F•. Now we
have to show that FG(F̃•, M•, i) ∼= (F̃•, M•, i).

LEMMA 4.4
For every triple T = (G̃•, M•, i) from TCX there is a triple T ′

= (G̃ ′
•, M ′

•, i ′) such
that i ′ is an isomorphism of complexes and T ' T ′ in TCX .

Proof
Note that coherent sheaves of A -modules can be identified with modules over the
finite-dimensional algebra A =

∏
x∈S Ax , and also note that coherent sheaves of ˜A -

modules can be identified with modules over Ã =
⊕

x∈S
˜Ax . Moreover, considering

D−(CohA ) and D−(Coh ˜A ), we can (and shall) always consider complexes of projec-
tive modules. Denote by J and J̃, respectively, the radicals of the rings A and Ã. We
call such a complex M• of A-modules (or the corresponding complex of A -sheaves)
minimal if Im dn ⊆ JMn−1 for each n; this is the same terminology we use for com-
plexes of Ã-modules and ˜A -sheaves. Since these algebras are commutative, J ⊆ J̃;
hence if M• is minimal, so is M̃• = M• ⊗A Ã. It follows easily from [2] that each
complex M• ∈ D−(CohA ) is a direct sum M m

• ⊕ M t
• , where M m

• is a minimal
complex and M t

• is a trivial one, that is, a direct sum of short trivial complexes of the

form · · · → 0 → M
∼=

−→ M → 0 → · · · . We call M m
• and M t

• , respectively, the
minimal and the trivial part of the complex M•.

One can easily see that
• the embedding M m

• → M• is a quasi-isomorphism;
• any quasi-isomorphism of minimal complexes is indeed an isomorphism.

It is easy to see that (F̃•, M•, i) is isomorphic to (F̃•, M m
• , im), where im

:

M̃ m
• → F̄ m

• is the component of i : M̃• → F̄•. By what was said above, im is an
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isomorphism of complexes. Now observe that complexes F̄•, M m are locally free.

Hence F̄ t
• is locally free, too. So it is a direct sum of complexes of type ˜A n

x
∼=

−→ ˜A n
x .

Lift each of them to A n
x

id
−→ A n

x . Thus we can assume i : M̃• → F̄• to be an
isomorphism of complexes.

Consider the pullback diagram in the abelian category Com(CohX ):

0 // J F̃•
//

id
��

F•

9 //

8

��

M•
//

ĩ
��

0

0 // J F̃•
// F̃•

π // F̄•
// 0

Just as in [11], establish that
(1) F• is a complex of locally free O-modules;
(2) (8̃, 9̃) : (F• ⊗O Õ, F• ⊗O A , iF•

) −→ (F̃•, M•, i) is an isomorphism in
the category of triples.

The following example shows that F is not faithful. Let

E•[−1] = · · · −→ 0 −→ E︸︷︷︸
1

−→ 0 −→ · · ·

and
F• = · · · −→ 0 −→ F︸︷︷︸

0

−→ 0 · · ·

be two complexes (F and E are vector bundles). We have Hom(F•, E•[1]) =

Ext1(F , E ). The map

HomD−(CohX )(F•, E•[1]) = Ext1OX
(F , E ) −→ Ext1

ÕX
(F̃ , Ẽ )

= HomT CX

(
F(F ), F(G )

)
is not always a monomorphism: for instance, Ext1(OP1, OP1) = H1(P1, OP1) = 0,
but H1(X, OX ) = 1 for curves of arithmetic genus 1. So our functor is not faithful.

5. Coherent sheaves on a rational curve with one node
Let us consider first the case of the rational curve with one simple node. Suppose that
its equation is zy2

− x3
− x2z = 0. Then its normalization is X̃ = P1 and we may

suppose that the preimages of the singular point are (0 : 1) = 0 and (1 : 0) = ∞ (see
Fig. 10).

What does the result of Section 4 mean? As a data structure, a complex F• from
the derived category D−(CohX ) is uniquely defined by some triple (F̃•, M•, i).
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(1:0)

π

(0:1)

Figure 10

What is F̃•? The category CohP1 has global dimension 1. It means (see [7]) that
indecomposable objects of D−(CohP1) are

En[r ] : · · · −→ 0 −→ OP1(n)︸ ︷︷ ︸
r

−→ 0 −→ 0 −→ · · ·

and
Tkx [s] : · · · −→ 0 −→ OP1(−kx) ↪→ OP1︸︷︷︸

s

−→ 0 −→ · · · .

A complex F̃• is just a direct sum

F̃•
∼=

⊕ (
(En[r ]

Nn,r ) ⊕ (Tkx [s]Mx,k,s )
)
.

Now let us explain what M• and i are. A is a skyscraper sheaf kp (with the stalk k
at the singular point p), and ˜A = (k × k)p. This means that the categories Coh ˜A

and CohA are semisimple. So M• ⊗A
˜A ∼= (H•(M̃•), 0) and we get, moreover, a

commutative diagram

M̃•

i //

��

F̄•

��
H•(M̃•)

H•(i) // H•(F̄•)

The map Hk(i) : Hk(M̃•) −→ Hk(F̄•) is simply a map of two (k × k)-modules.
This implies that Hk(i) is given by two matrices Hk(i |0) and Hk(i |∞) (intuitively,
one corresponds to the point zero, the other to ∞). Moreover, both of these matrices
have the same size and are nondegenerate.

Consider the images of the complexes E [n] and Tkx [n] after applying
⊗

Õ
˜A :

Õ(n) ⊗Õ
˜A = k0 ⊕ k∞.
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Let x = 0 = (0 : 1). Then

Tkx ⊗Õ
˜A =

(
OP1(−kx) ↪→ OP1

)
⊗Õ

˜A =

(
k0 ⊕ k∞

(
0 0
0 1

)
−−−→ k0 ⊕ k∞

)
.

This complex is quasi-isomorphic to

k0
0

−→ k0.

Let x = ∞ = (1 : 0). In the same way, we obtain

Tkx ⊗Õ
˜A ∼= k∞

0
−→ k∞.

All other skyscraper sheaves vanish after tensoring with
⊗

Õ
˜A :

(
OP1(−kx) ↪→ OP1

)
⊗Õ

˜A =

(
k0 ⊕ k∞

(
1 0
0 1

)
−−−→ k0 ⊕ k∞

)
∼= 0.

Let us consider morphisms in the derived category Db(CohÕ) = Db(CohP1).

(1) Let n < m. Then we have a morphism Õ(n)
p

−→ Õ(m), given by a homo-
geneous form p = p(x0, x1) of degree m − n. The induced map modulo the
conductor is

k0 ⊕ k∞

diag(a,b)
−−−−−→ k0 ⊕ k∞,

where a = p(0 : 1), b = p(1 : 0).
(2) Let n < m. Then we have a morphism Tm0 −→ Tn0:

Õ(−m)
xm

0 //

x (m−n)
0 p

��

Õ

p

��
Õ(−n)

xn
0 // Õ

where p is a homogeneous form of degree m − n, which induces

k0
0 //

0
��

k0

λ
��

k0
0 // k0

where λ = p(0 : 1).
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(3) Let n < m. We also have a morphism Tn0 −→ Tm0:

Õ(−m)
xm

0 // Õ

Õ(−m)
xn

0 //

p

OO

��

Õ(n − m)

x (m−n)
0 p

OO

��
Õ(−n)

xn
0 // Õ

where this map is a composition of an inverse to a quasi-isomorphism and a
map of complexes. It induces

k0
0 // k0

k0
0 //

λ

OO

k0

0

OO

where λ = p(0 : 1).
(4) In the same way, we can consider all other cases. Let n2 < n1, m1 > m2

be natural numbers, and let k2 < k1 be integers. Then we have a chain of
morphisms, which induce nonzero maps modulo the conductor:

Tn10[1] −→ Tn20[1] −→ Õ(k2) −→ Õ(k1) −→ Tm10 −→ Tm20 :

Õ(k2)
x

n2
0 //

��

Õ(n2 + k2)

��
Õ(k2)

x
n1
0 //

��

Õ(n1 + k2)

Õ(k2)

��
Õ(k1)

��
Õ(−m1)

x
m1
0 //

��

Õ

��
Õ(−m2)

x
m2
0 // Õ
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(5) The same holds, of course, at the point (1 : 0) = ∞.
(6) Finally, let us consider the case of endomorphisms of indecomposable objects

of Db(CohÕ). An endomorphism of Õ(n) is scalar and hence induces

k0 ⊕ k∞

diag(a,a)
−−−−−→ k0 ⊕ k∞, a ∈ k.

An endomorphism of (OP1(−k0) ↪→ OP1) always induces a map of the type

k0
0 //

λ
��

k0

λ
��

k0
0 // k0

Remark 5.1
Let

F̃•
∼=

⊕(
(En[r ]

Nn,r ) ⊕ (Tkx [s]Mx,k,s )
)

be a direct sum decomposition of an object F̃• ∈ Ob(Db(CohÕ)). An endomorphism
8 : F̃• −→ F̃• is an isomorphism if and only if the induced endomorphism of each
component En[r ]

Nn,r and Tkx [s]Mx,k,s is an isomorphism.

Choose trivializations of each component of F̃• in neighborhoods of the points zero
and ∞. They induce some basis in H•(F̄•). Choose some basis in Hk(M•). With re-
spect to such a choice, the map H•(i) is given by a collection of matrices in Figure 11.

There are two types of blocks: those which came from vector bundles and those
which came from skyscraper sheaves or, equivalently, from complexes Tk0[s] and
Tk∞[s]. The blocks are numbered by integers and natural numbers, respectively. This
numbering defines some “weights” of the blocks of vertical matrices. Blocks corre-
sponding to the same skyscraper or vector bundle are called conjugate. Conjugate
blocks have the same number of rows. Indeed, all but finitely many blocks of Hk(i |0)

and Hk(i |∞) have zero size. But if one of the conjugate blocks is nonempty, then the
other one is nonempty, too.

Now we should answer the following question: which triples (F̃•, M•, H•(i))
correspond to isomorphic complexes F•? Surely, we have to consider the automor-
phisms of F̃• and M• and look at what they induce in homologies. As a result, we
get the following matrix problem:
(1) we can do any simultaneous elementary transformations of columns of the

matrices Hk(i |0) and Hk(i |∞);
(2) we can do any simultaneous transformations of rows inside conjugate blocks;
(3) we can add a scalar multiple of any row from a block with lower weight to

any row of a block of a higher weight (inside the big matrix, of course); these
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2 2

0 0

2

1

2

1

�2

�1

�2

�1

1

0

�1

1

0

�1

2

1

�2

�1

2

1

�2

�1

1

0

1

0

H2(i j 0) H2(i j 1) H1(i j 0) H1(i j 1) H0(i j 0) H0(i j 1)

Figure 11

transformations can proceed independently inside Hk(i |0) and Hk(i |∞) (see
Sec. 6 for more details).

These types of problems are well known in representation theory. They first
appeared in the work of Nazarova and Roiter [19] about the classification of(
k[[x, y]]/(xy)

)
-modules. They are sometimes called Gelfand problems in honor of

I. M. Gelfand, who formulated a conjecture (at the International Congress of Mathe-
matics in Nice, 1970) about the structure of Harish-Chandra modules at the singular
point of SL2(R) (see [14]). This problem was reduced to a matrix problem of this type
(see [20]).

The strict categorical formulation and then a solution of this type of problem
was done by Nazarova and Roiter [20] and by Bondarenko [4] (see also [21, App.
A]). It means that these matrices correspond to the objects of some category and
that these objects are isomorphic if and only if one matrix can be transformed into
another one by the above set of transformations. Certainly, it is enough to describe the
indecomposable objects.

Let us recall a combinatoric of the answer in this case. There are two types of
indecomposable objects: bands and strings. We give the definitions in Section 6. Here
we want to stress that a band object depends on one continuous parameter and sev-
eral discrete parameters. A string object depends only on discrete parameters. Let us
consider some examples (the same examples we considered in Sec. 3).
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Example 5.2
The data B(w, 1, λ) (band), where w = 30x2

0 y1
1 -22x3

1 y1
0 , define an object of the

bounded category Db(CohX ) which is not a coherent sheaf. The corresponding triple
(F̃•, M•, i) is

F̃• = E−2[−2] ⊕ T30[−1] ⊕ T1∞[−1] ⊕ T20 ⊕ T1∞ ⊕ E3,

M• = k2 0
−→ k2 0

−→ k2,

and i is given by matrices in Figure 12.

E�2[�2] 1 1

T11[�1] 1 1

T30[�1] 1 1

T11 1 1

T20 1 1

E3 � 1

(0 W 1) (1 W 0) (0 W 1) (1 W 0) (0 W 1) (1 W 0)

2 1 0

Figure 12

Example 5.3
The data S (w) (string), where w = · · · y1

3 x1
2 y1

1 xn
0 ym

0 x1
1 y1

2 x1
3 · · · , define the

skyscraper sheaf at a singular point. The corresponding triple (F̃•, M•, i) is

F̃• =

∞⊕
i=1

(T10[−i] ⊕ T1∞[−i]) ⊕ Tn0 ⊕ Tm∞,

M• = · · · −→ k2 0
−→ k2 0

−→ k,

and matrices defining i are in Figure 13.

Example 5.4
The data B(w, 2, λ) (band), where w = -3000 y1

0 x2
0 y4

0 x5
000, define a mixed sheaf
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T11[�3] 1 1

T10[�3] 1 1

T11[�2] 1 1

T10[�2] 1 1

T11[�1] 1 1

T10[�1] 1 1

Tm1 1 1

Tn0 1 1

(0 W 1) (1 W 0) (0 W 1) (1 W 0) (0 W 1) (1 W 0) (0 W 1) (1 W 0) (0 W 1)(1 W 0)

4 3 2 1 0

Figure 13

(sheaf that is neither torsion nor torsion-free):

F̃• = T20 ⊕ T50 ⊕ T1∞ ⊕ T4∞ ⊕ E−3 ⊕ E 2
0 ,

M• = k2 0
−→ k5,

and matrices are in Figure 14.

Example 5.5
The data S (w) (string), where w = · · · y2

2 x1
1 -21 y3

000x2
0 y2

112 · · · , define an object
of the category D−(CohX ) which is not an object of the bounded derived category
Db(CohX ):

F̃• = · · · −→ E1[−2] ⊕ T10[−1] ⊕ T2∞[−1] ⊕ E−2[−1] ⊕ T20 ⊕ T3∞ ⊕ E0,

M• = · · · −→ k3 0
−→ k3 0

−→ k2,

and matrices are in Figure 15 on page 212.

Let us now consider a general case.

6. Reduction to the matrix problem
Consider the case when X is a configuration of projective lines of type Ãn (n ≥ 1); if
n = 1, then X is just an irreducible rational curve with one simple node. At the end
of this section we explain the difference that occurs in the case of An (which is a bit
simpler).
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T41 I2 I2

T11 I2 I2

T05 I2 I2

T02 I2 I2

E0

1 I2 I2

2 I2 I2

E�3 I2 J2(�)

(0 W 1) (1 W 0) (0 W 1) (1 W 0)

1 0

Figure 14

We keep the notation of Section 3; in particular, π : X̃ → X is the normaliza-
tion, and S is the set of singular points of X . X̃ consists of n irreducible components
X̃1, X̃2, . . . , X̃n . We identify them with irreducible components X1, X2, . . . , Xn of
X . The set S consists of n points x1, x2, . . . , xn . These points and components can be
arranged so that, for any i < j ,

X i ∩ X j =


xi if j = i + 1,

xn if i = 1, j = n,

∅ in all other cases.

For any integer k, we set xn+k = xk, Xn+k = Xk, X̃n+k = X̃k . Set also π−1(xi ) ={
x ′

i , x ′′

i
}

so that x ′

i ∈ X̃ i , x ′′

i ∈ X̃ i+1.
The category CohX̃ is equivalent to

∏n
i=1 CohX̃ i

, and the same is true of their
derived categories.

Choose the coordinates on each line X i in such a way that the preimages of the
singular points are either (0 : 1) or (1 : 0). We can interpret coherent Õi -modules
just as CohP1 . By Ji we denote the restriction of the conductor J onto X i . Then
Ji is just the ideal sheaf of points (0 : 1) and (1 : 0). Both A and ˜A are skyscraper
sheaves with support in the singular points of X . The canonical morphism A −→ ˜A

is then the diagonal morphism

k × k × · · · × k −→ (k × k) × (k × k) × · · · × (k × k).
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T

T21[�2] 1

E1[�2] 1 1

T10[�1] 1 1

T21[�1] 1 1

E�2[�1] 1 1

T20 1 1

T31 1 1

E0 1 1

(0 W 1) (1 W 0) (0 W 1) (1 W 0) (0 W 1) (1 W 0)

2 1 0

Figure 15

Let (F̃•, M•, i) be some triple. Then F̃•
∼= F̃1• ⊕ F̃2• ⊕ · · · ⊕ F̃n•, where

F̃i • ∈ D−(CohX i ) = D−(CohP1).
How do we get a matrix problem in this case? CohP1 has homological dimension

1, which implies that every indecomposable object of D−(CohP1) is isomorphic to
some object of the type

· · · −→ 0 −→ F︸︷︷︸
i

−→ 0 −→ · · · ,

where F ∈ Ob(CohP1) is indecomposable. Indecomposable objects of CohP1 are
known: line bundles OP1(n) and skyscraper sheaves OP1,x/m

n
x .

The skyscraper sheaf OP1,x/m
n
x has a locally free resolution

0 −→ OP1(−n) −→ OP1 −→ OP1,x/m
n
x −→ 0,

which means that, in the derived category, (OP1(−n) −→ OP1) ∼= Ox/m
n
x holds.

Choose trivializations in neighborhoods of singular points of each component of
the complex F̃ . The map Hk(i) : Hk(M̃•) −→ Hk(F̄•) is given by n matrices,
corresponding to singular points of X . Each of these matrices itself consists of two
nondegenerate components of the same size.

The question is, which transformations can we do with the matrices defining the
homology. From the definition of the category of triples, it follows that we have to



COHERENT SHEAVES ON RATIONAL CURVES 213

consider automorphisms 8 : F̃• −→ F̃• and ϕ : M• −→ M• which make the
diagram

H•(M̃•)
H•(i) //

H•(ϕ̃)

��

H•(F̄•)

H•(8̄)

��
H•(M̃•)

H•(i) // H•(F̄•)

commutative.
Since the description of indecomposable objects can be done by ignoring the

shifts, we restrict ourselves to the complexes whose highest nonzero component is a
zero component.

To each configuration of projective lines we can associate a partially ordered set.
Let ω−1 < ω0 < ω1 be three cardinal numbers. (This means that nω−1 < mω0 <

kω1, ∀n, m, k ∈ Z.) The algorithm is now the following: consider the set of pairs
(L , a), where L is a component of X̃ and a ∈ L is some preimage of the singular
point.
(1) To an object

Tna[s] : · · · −→ 0 −→ OP1(−na) ↪→ OP1︸︷︷︸
s

−→ 0 −→ · · ·

we set in correspondence two symbols E(L ,a)(s, nω−1) and E(L ,a)(s +

1, −nω1).
(2) An object

En[r ] : · · · −→ 0 −→ OP1(n)︸ ︷︷ ︸
r

−→ 0 −→ 0 −→ · · ·

corresponds to E(L ,a)(r, nω0).
Note that skyscraper sheaves Tkx [s], where x is not a preimage of a singular

point, do not take part in the “gluing” of complexes. (They become equal to zero after
tensoring with the conductor and taking a homology.)

On the sets E(L ,a)(i) =
⋃

E(L ,a)(i, ∗), we get a total order in the following way:
we say that E1 < E2 if there is a morphism of corresponding objects of the derived
category D−(CohP1) inducing a nonzero evaluation map in a. To each triple (L , a, i)
corresponds also a set F(L ,a)(i) consisting of one element.

Consider the union of all points

E ∪ F =

( ⋃
(L ,a),i

E(L ,a)(i)
)

∪

( ⋃
(L ,a),i

F(L ,a)(i)
)
.

In this set, let us introduce the following equivalence relations:
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(1) E(L ,a)(i, nω−1) ∼ E(L ,a)(i + 1, −nω1), i ≥ 0, n ≥ 1 (which means that the
points are coming from the same skyscraper sheaf);

(2) E(L ,a)(i, mω0) ∼ E(L ′,a)(i, mω0), i ≥ 0, m ∈ Z (which means that the points
are coming from the same vector bundle);

(3) F(L ,a)(i) ∼ F(L ,a′)(i), i ≥ 0.

Example 6.1
We have a rational curve with one node (see Fig. 16).

Figure 16

Example 6.2
We have a transversal intersection of two lines at one point (the A1-case) (see Fig. 17).

Example 6.3
We have a transversal intersection of two lines at two points (the Ã2-case) (see Fig. 18
on page 216).

What we have is called a bunch of chains (see [5]; see also [11]), which encodes a
matrix problem. The number of matrices can be infinite, but this does not disturb the
general theory.

Specifically, the matrix problem is the following.
(1) Each triple (L , a, i) (L is a component of X̃ , a ∈ L , i ≥ 0 the integer num-

ber) corresponds to some matrix M(L , a, i). These matrices are divided into
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Figure 17

horizontal blocks, numbered by the points of E(L ,a)(i). Since F(L ,a) consists
of only one element, we do not have a vertical division in this case. Indeed,
some blocks may have zero size, that is, be empty.

(2) Blocks corresponding to conjugate points from E have an equal number of
rows; blocks corresponding to conjugate points from F have an equal number
of columns.

(3) We have a partial order on the set of points. Let us say that the horizontal
blocks are supplied with some “weights,” and the weight of one block is bigger
than the weight of another block if the point corresponding to the first block is
bigger than the point corresponding to the second one.

(4) We can do the following transformations with our matrices:
(a) simultaneous: elementary transformations with the columns of matri-

ces M(L , a, i) and M(L ′, a, i);
(b) simultaneous: any elementary transformations inside conjugate blocks;
(c) independent: adding a scalar multiple of any row from a block with

lower weight to any row of a block of the higher weight.
In our case, there are some additional restrictions on our matrices.

(1) All big matrices are square and nondegenerate.
(2) If one of the conjugate blocks is nonempty, then the other one is nonempty,

too.
There are two types of indecomposable objects: bands and strings.

(1) Band data B(w, m, λ) are given by two discrete parameters, a word w and a
natural number m, and one continuous parameter λ ∈ k∗. A word w is just
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Figure 18

a sequence of points of E ∪ F, x1 − x2 ∼ x3 − x4 ∼ · · · − xN , connected
by the symbols of two types, − and ∼. The symbol ∼ should stand between
conjugate points, and − only between a point of the type E(L ,a)(∗, i) and a
point F(L ,a)(i). If one link was −, then the next one should be ∼, and vice
versa. In band data a word w should be closed: xN ∼ x1. This means that
it can be written as a cycle. We require that w not be a power of some other
word.

(2) String data S (w) depend only on some full word w. Full means that w con-
tains each point xi the same number of times as its conjugate. In the case of a
cycle of projective lines, a word w must be infinite. We require, however, that
each point xi appear only a finite number of times and that there be k ∈ Z such
that w does not contain any elements from F(L ,a)(i) for i ≥ k.

Let us briefly recall the algorithm, giving a concrete description of matrices, cor-
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responding to band and string data.
(1) Let the band data be B(w, m, λ). We count the entrance of each class of conju-

gate points. Let point xi occur ki times. The block corresponding to xi should
be divided into ki strips. We have a division of a big matrix M(L , a, i) into
smaller blocks. Let us now look at the subwords xi − xi+1. Suppose that we
have the kth appearance of the class [xi ] and the lth appearance of the class
[xi+1]. One of the points xi , xi+1 belongs to E, the other to F. If xi+1 6= xN ,
then we put the identity matrix Im (here our second discrete parameter ap-
pears) in the entry with the coordinates (k, l) (with respect to the subpartition
of the (xi ×xi+1)-submatrix). If xi+1 = xN , then we put, on the corresponding
place, the Jordan block Jm(λ). All other entries are zero.

(2) Let the string data be S (w). The algorithm is basically the same as in the case
of bands. The only difference is that we have to put in the (1 × 1)-matrix 1
instead of Im or Jm(λ).

Example 6.4
Let X = C2 be a cycle of two lines. Let L1, L2 be its irreducible components, and let
a1, a2 be its singular points. Consider the following band B(w, 1, λ):

w = E(L1,a1)(0, 1ω0) − F(L1,a1)(0) ∼ F(L2,a1)(0)

− E(L2,a1)(0, −2ω1) ∼ E(L2,a1)(1, 2ω−1)

− F(L2,a1)(1) ∼ F(L1,a1)(1) − E(L1,a1)(1, 1ω−1) ∼ E(L1,a1)(0, −1ω1)

− F(L1,a1)(0) ∼ F(L2,a1)(0) − E(L2,a1)(0, 0ω0) ∼ E(L2,a2)(0, 0ω0)

− F(L2,a2)(0) ∼ F(L1,a2)(0) − E(L1,a2)(0, 1ω0).

The corresponding triple (F̃•, M•, i) is

F̃• =
(
Õ1(1)

)
⊕

(
Õ1(−1)

x
−→ Õ1(0)

)
⊕ (Õ2) ⊕

(
Õ2(−2)

y2

−→ Õ2(0)
)
,

M• = ka1

0
−→ k2

a1
⊕ ka2,

and i is given by matrices in Figure 19.

Let us mention that we can code our word w in a more economical way. First note
that expression E ′

− F(L ′,a)(i) ∼ F(L ′′,a)(i) − E ′′ just means that local parameters
corresponding to E ′ and E ′′ have to be glued at the point a. Here E ′ (E ′′) belongs
to the i th component of a complex of ÕL ′-modules (ÕL ′′-modules). So the symbols

F(L ,a) can be skipped. We represent a complex ÕL(i)[k] just as ik , (ÕL(− j)
x j

−→
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a1

L1

a2

1 1 1

1 1 1

1 0 �

1 1 2

a1

L2

a2

Figure 19

ÕL)[k] by x j
k , and (ÕL(− j)

y j

−→ ÕL)[k] by y j
k . We can also skip the index L . The

word w from Example 6.4 is transformed to the form

w = 10 y2
0 x1

000,

which is the segment of a cycle in the notation of Section 3. We just have to determine
precisely that 10 lives on the first component. Then we can uniquely reconstruct our
initial word w. In this representation of w, we just get the description of indecompos-
able objects given in Section 3.

Remark 6.5
Let X = Cn, n ≥ 3, let B(w, m, λ) be a band, and let (F̃•, M•, i) be the correspond-
ing triple. It is possible that different components of

F̃• ∈ Ob
(
D−(CohÕ)

)
= Ob

(
D−

( ∏
i

CohÕi

))
have different rank. In order to glue them into a complex of locally free O-modules,

we have to add some trivial complexes Õi
id

−→ Õi and then glue everything using the
“parallelogram rule” from Section 3. The same concerns strings, of course.
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Example 6.6
Let X = C3 be a cycle of projective lines, and let F• = B(w, 1, λ), where w = x2

0 y1
0

( j (x2
0) = 1), be a skyscraper sheaf at a singular point. Then the normalization of F•

is (
Õ1(−2)

x2
−→ Õ1

)
⊕

(
Õ2(−1)

y
−→ Õ2

)
.

We add the trivial complex (Õ3
id

−→ Õ3) and glue everything using the “parallelo-
gram rule.” We get a resolution

B
(
(0, 0, 0), 1, 1

)
−→ B

(
(1, 2, 0), 1, λ

)
.

Remark 6.7
Let X be a chain of projective lines. The only difference with the case of cycles of
projective lines is that we have finite strings in this case (for instance, vector bundles
are finite strings). The combinatoric of the answer remains the same.

THEOREM 6.8 (see [5])
(1) All representations B(w, m, λ), S (w) are indecomposable. Each indecom-

posable representation is isomorphic either to some band representation
B(w, m, λ) or to some string representation S (w).

(2) The only isomorphisms between these objects are
(a) S (w) ∼= S (w◦), where w◦ is the opposite word;
(b) B(w, m, λ) = B(w′, m, λ′), where w = a0 − a1 ∼ a2 − · · · − am ,

w′
= a2k − a2k+2 ∼ a2k+3 − · · · − a2k−1 is a cyclic permutation of w,

and λ′
= λ for k even and λ′

= λ−1 for k odd;
(c) B(w◦, m, λ) = B(w, m, λ−1), where w◦ is the inverse word.

So the main result of this paper can be formulated as the following.

THEOREM 6.9
Let X be a cycle of projective lines. Then there are the following types of indecompos-
able objects in D−(CohX ):
• shifts of skyscraper sheaves Ox/m

n
x , where x is a regular point of X ,

• bands B(w, m, λ), where w is a closed noncyclic word, m is a natural number,
and λ ∈ k∗,

• strings S (w), where w is a full word, with properties described above.

We now want to illustrate the convenience of our description of the complexes in
the derived category D−(CohX ). Let F• and G• be two objects, given by triples
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(F̃•, M•, i) and (G̃•, N•, j). We can ask which triple corresponds to the tensor prod-
uct of complexes F•⊗G•. As one can easily see, it should be (F̃•⊗G̃•, M•⊗N•, i ⊗
j).

By the Künneth formula, we have a functorial isomorphism (since the homolog-
ical dimension is zero)⊕

k+l=n

(
Hk(M•) ⊗ Hl(N•)

) ⊕
(Hk(i)⊗Hl ( j))

−−−−−−−−−−→ Hn(M• ⊗ N•).

This means that we can compute the matrices corresponding to the tensor product
of complexes.

7. Description of coherent sheaves, vector bundles, torsion-free sheaves,
mixed sheaves, and skyscraper sheaves

Now we want to show what corresponds to coherent sheaves. Let complex F• be
given by a triple (F̃•, M•, i). We have to write the conditions Hi (F•) = 0 (i ≥ 1)

in the language of matrices. Recall that we have the following diagram:

J F̃•
// F̃•

// F̄•
// J F̃•[−1]

J F̃•
//

id

OO

F•
//

8

OO

M•
//

ĩ

OO

J F̃•[−1]

id

OO

Write the long exact sequence of homologies associated with this morphism of
triangles:

0 H0(F̄•)
oo H0(F̃•)

oo H0(J F̃•)oo H1(F̄•)
oo . . .oo

0 H0(M•)oo

H0(ĩ)

OO

H0(F•)oo

OO

H0(J F̃•)oo

id

OO

H1(M•)oo

H1(ĩ)

OO

. . .oo

We get that Hi (F•) = 0 (i ≥ 1) is equivalent to the following two conditions:
(1) composition H1(M•) −→ H1(F̄•) −→ H0(J F̃•) is a monomorphism;
(2) composition Hk+1(M•) −→ Hk+1(F̄•) −→ Hk(J F̃•) is an isomorphism

for k > 0.
Let us give a combinatorical interpretation of these conditions (for both bands

and strings). Let w be a parameter either of B(w, m, λ) or of S (w). These conditions
imply the following:
(1) a word w does not contain any nk , k ≥ 1, n ∈ Z;
(2) w does not contain any xn

k , yn
k , k ≥ 2, n ∈ N;

(3) a word w does not contain any subword of type x1
k y1

k , y1
k x1

k , k ≥ 2.
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This gives us the following description of coherent sheaves:
(1) all the bands B(w, m, λ) such that the word w does not contain letters nk , x i

k ,
y j

k with k ≥ 1;
(2) strings S (w) with the following properties:

(a) there are no letters xn
k , yn

k , k ≥ 2, n ∈ N;
(b) w does not contain any subword of type x1

k y1
k , y1

k x1
k , k ≥ 2; note that

the condition of fullness of w together with the restrictions above im-
ply that w is infinite and looks like · · · x1

3 y1
2 x1

1uy1
1 x1

2 y1
3 · · · , where the

subword u contains only letters a with i(a) = 0.
In a similar way, we can describe the bounded derived category Db(CohX ); the

conditions Hi (F•), i � 0, can also be described in a similar way.
In particular, we get a description of

(1) vector bundles (we get just the matrix problem from the work of Drozd and
Greuel [11]): bands B(w, m, λ) with w not containing x l

i , ym
i (i ≥ 1), l, m

arbitrary;
(2) skyscraper sheaves: bands and strings defining a coherent sheaf and not con-

taining ni , i ≥ 0, n ∈ Z. (This follows from the observation that F and
F ⊗O Õ have the same support.)

We see that for a coherent sheaf F either we have T or i
O(F , A ) = 0 for i > 1

or it is nonzero for all i ≥ 2. As a corollary, we see that the homological dimension
of an object of CohX is either 0 or 1 or ∞ (which coincides with the result of the
Auslander-Buchsbaum formula).

We are going to do the last step in our classification: we describe, among all
coherent sheaves, torsion-free sheaves. Those that are not vector bundles have infinite
homological dimension, and hence we should look for them among strings. Let F

be a coherent sheaf on X . It is torsion-free if and only if all its localizations Fx

are torsion-free OX,x -modules. At regular points, this condition is obvious. But we go
further; Fx is a torsion-free OX,x -module if and only if its completion F̂x is a torsion-
free ÔX,x -module. But in our case, if x is singular, then ÔX,x = k[[x, y]]/(xy). The
indecomposable torsion-free modules are known in this case; they are either k[[x]] or
k[[y]] or the regular module k[[x, y]]/(xy) (see [3]).

Now, let us mention that in the same way we have dealt with curves, we
can deal with the local ring k[[x, y]]/(xy). Namely, we consider its normalization
k[[x]] × k[[y]] and the conductor J = (x, y), and we just repeat the construction of
the category of triples. As a result, we get the matrix problem in Figure 20 (see also
the appendix).

Let x ∈ X be singular. Consider the functor CohX −→ (OX,x − mod) −→

(k[[x, y]]/(xy) − mod) (composition of the localization and completion). This func-
tor is exact and so induces the functor between the derived categories D−(CohX ) −→



222 BURBAN and DROZD

Figure 20

D−(k[[x, y]]/(xy)−mod). What does it look like on triples? Obviously, (F̃•, M•, i)

is mapped to ((̂F̃•)x , (̂M•)x , ix ). So the image of the triple is described by the same
matrices! But surely there is one important difference: blocks corresponding to vec-
tor bundles are united, and there are no relations between them anymore. But we
know how the modules k[[x]], k[[y]], and k[[x, y]]/(xy) are given in the language of

triples. Let us denote Tnx : k[[x]]
xn

−→ k[[x]], Tny : k[[y]]
yn

−→ k[[y]]. Then k[[x]]

is given by the normalization

k[[x]] ⊕

( ∞⊕
i=0

T1y[−i] ⊕ T1x [−i − 1]

)
and matrices are in Figure 21.

1

T1x [�1] 1 1

T1y 1 1

k[[x]] 1

Figure 21

Hence we can deduce the answer: torsion-free sheaves, which are not vector bun-
dles, are strings S (w), where w does not contain any xk

i , yk
i with i ≥ 1, k ≥ 2.
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Moreover, each x1
i , y1

i can occur in word w at most one time. Hence w looks like

· · · y1
3 x1

2 y1
1ux1

1 y2
2 x3

3 · · · ,

where u contains only letters ni
0, i ∈ Z.

8. Concluding remarks
In a recent paper A. Polishchuk [23] showed a connection between the structure of the
derived category of the coherent sheaves Db(CohX ), where X is a projective curve of
arithmetical genus 1 with nodal singularities, and the trigonometric solutions of the
classical Yang-Baxter equation. The main role in this construction is played by the
so-called spherical objects.

Definition 8.1 ([25, Def. 2.9])
Let D be a triangulated category over a field k such that all spaces Hom(X, Y ) are
finite-dimensional. We have Homi (M, N ) := Hom(M, N [i]). An object M is called
n-spherical if
(1) Homi (M, M) = 0, ∀i 6= 0, n, and Hom0(M, M) ∼= Homn(M, M) ∼= k;
(2) for all F ∈ Ob(D), the composition map Homi (M, F)×Homn−i (F, M) −→

Homn(M, M) ∼= k is nondegenerate.

One can easily show that the skyscraper sheaves Ox/mx (x is regular) and simple
vector bundles are 1-spherical. Simple vector bundles on tame curves were explicitly
described in [6]. An interesting problem is to describe all spherical objects in the
derived category Db(CohX ) (see [23]).

Another interesting problem is to describe the group of exact autoequivalences of
the derived category Db(CohX ).

A. Appendix: Finite-dimensional
(
k[[x, y]]/(xy)

)
-modules

Let R = k[[x, y]]/(xy). We can apply our construction to describe the derived cate-
gory of finitely generated R-modules D−(R − mod). Again, we consider the embed-
ding R −→ R̄, where R̄ = k[[x] × k[[y]] is the normalization of R, J = (x, y).
Then R/J = k, R̄/J = k × k, and the canonical map R/J −→ R̄/J is the diag-
onal embedding. In the same way we dealt with coherent sheaves, we can work with
R-modules. Moreover, the computation of the matrix problem is almost the same, so
we skip it.

An indecomposable complex form D−(R − mod) is a gluing of the complexes

0 −→ k[[x]] −→ 0, 0 −→ k[[y]] −→ 0,

0 −→ k[[x]]
xn

−→ k[[x]] −→ 0, 0 −→ k[[y]]
ym

−→ k[[y]] −→ 0.
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It is convenient to describe a gluing of the complexes using the notation from Fig-
ure 22.

k[[x]]
xn

−→ k[[x]] = • ◦ n // • ◦ ,

k[[y]]
ym

−→ k[[x]] = ◦ • m // ◦ •,

k[[x]] = • ◦ ,

k[[y]] = ◦ •

Figure 22

Example A.1
Consider the gluing diagram in Figure 23. The dashed line shows the “gluing” of

•

1

3
3

3
3

3
3

3
3

3
3

3 ◦ 2 // •
1

NNNNNNN ◦

◦ • 2 // ◦ •

•

1
ppppppp

◦

◦ • 3 // ◦ • ◦ •

•

2
ppppppp

◦ λ 1 // •

2
ppppppp

◦

Figure 23

k[[x]] and k[[y]] into k[[x, y]]/(xy). We can easily write down the corresponding
complex of R-modules:

R

(
x2

y3

)
−→ R ⊕ R

(
y2 0
0 λx

)
−−−−−→ R ⊕ R.

As a consequence of our construction, we get the description of indecomposable
finitely generated

(
k[[x, y]]/(xy)

)
-modules.

(1) We have continuous series M (d, s, λ):

0 −→ Rs N M(d,sλ)
−−−−−→ Rs N

−→ M (d, s, λ) −→ 0,
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where

M(d, s, λ) =


xn1 Is 0 0 · · · ym N Js(λ)

ym1 Is xn2 Is 0 · · · 0
0 ym2 Is xn3 Is · · · 0
...

...
...

. . .
...

0 0 · · · ym N−1 Is xnN Is


and d = (n1m1)(n2m2) · · · (nN m N ) is a nonperiodic sequence. In the case of
N = 1, it should be rewritten in the form

0 −→ Rs (xn Is−ym Js(λ))
−−−−−−−−−→ Rs N

−→ M
(
(n, m), s, λ

)
−→ 0.

(2) We have the first discrete series S (d):

· · · R2

(
x 0
0 y

)
−−−−→ R2


y 0
0 0
...

...
0 x


−−−−→ RN+1 S(d)

−−→ RN
−→ S (d) −→ 0,

where d = (n1m1)(n2m2) · · · (nN m N ),

S(d) =


xn1 ym1 0 0 · · · 0
0 xn2 ym2 0 · · · 0
0 0 xn3 ym3 · · · 0
...

...
...

. . .
. . .

...

0 0 0 · · · xnN ym N

 .

The continuous and first discrete series are finite-dimensional modules. There
are also discrete series of finitely generated R-modules, which are not finite-
dimensional.

(3) We have the second discrete series D(d):

0 −→ RN D(d)
−−−→ RN+1

−→ D(d) −→ 0,

where d = (n1m1)(n2m2) · · · (nN m N ),

D(d) =


xn1 ym1 0 0 · · · 0
0 xn2 ym2 0 · · · 0
0 0 xn3 ym3 · · · 0
...

...
...

. . .
. . .

...

0 0 0 · · · xnN ym N

 .
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(4) There are also discrete series of finitely generated and infinite-dimensional
modules of infinite homological dimension, Ex (d) and Ey(d) (third discrete
series):

· · ·
x

−→ R
y

−→ R


0
0...
0
x


−−−→ RN Ex (d)

−−−→ RN
−→ Ex (d) −→ 0,

where d = (n1m1)(n2m2) · · · (nN−1m N−1)m N ,

Ex (d) =


ym1 0 0 · · · 0
xn1 ym2 0 · · · 0
0 xn2 ym3 · · · 0
...

...
...

. . .
...

0 0 · · · xnN−1 ym N

 ,

and

· · ·
y

−→ R
x

−→ R


0
0...
0
y


−−−→ RN Ey(d)

−−−→ RN
−→ Ey(d) −→ 0,

where d = (n1m1)(n2m2) · · · (nN−1m N−1)nN ,

Ey(d) =


xn1 0 0 · · · 0
ym1 xn2 0 · · · 0
0 ym2 xn3 · · · 0
...

...
...

. . .
...

0 0 · · · ym N−1 xnN

 .

Remark A.2
Let M be a finite-dimensional

(
k[[x, y]]/(xy)

)
-module. Then it is given by a pair

of mutually annihilating nilpotent matrices X and Y . It is not difficult to get these
matrices from the minimal free resolution of a module. For example, let M be given
by its presentation

0 −→ R2

(
x2 λy
y3 x2

)
−−−−−→ R2

−→ M −→ 0.
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Then M as a k-vectorspace is given by a basis(
1̄
0̄

)
,

(
x̄
0̄

)
,

(
x̄2

0̄

)
=

(
0̄

−ȳ3

)
,

(
0̄
1̄

)
,

(
0̄
ȳ

)
,

(
0̄
ȳ2

)
,

(
0̄
x̄

)
,

(
0̄
x̄2

)
=

(
−ȳ
0̄

)
.

The actions of X and Y are just given by multiplication with x and y. Writing down
the matrices, we get an answer in the form obtained in the classical paper of Gelfand
and Ponomarev [15].

Acknowledgment. I. Burban thanks G.-M. Greuel and B. Kreussler for helpful discus-
sions of the results of this paper.
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