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VECTOR BUNDLES OVER NONCOMMUTATIVE

NODAL CURVES

YURIY A. DROZD AND DENYS E. VOLOSHYN

Abstract. We describe vector bundles over a class of noncommu-
tative curves, namely, over noncommutative nodal curves of string
type and of almost string type. We also prove that in other cases
the classification of vector bundles over a noncommutative curve
is a wild problem.

Описано векторнi розшарування над деяким класом некомута-
тивних кривих, а саме, над нодальними некомутативними кри-
вими струнного та майже струнного типу. Встановлено також,
що в iнших випадках класифiкацiя векторних розшарувань над
некомутативною кривою є дикою задачею.

Classification of vector bundles over algebraic curves is a popular
topic in modern mathematical literature. It is due to their importance
for many branches of mathematics and mathematical physics. Vector
bundles over the projective line were described by Birkhoff [2] and
Grothendieck [11], vector bundles over elliptic curves were classified by
Atiyah [1]. In the paper [9] Greuel and the first author described vector
bundles over a class of singular curves (line configurations of types A
and Ã) and showed that in all other cases a complete classification of
vector bundles is a “wild problem” in the sense of representation theory
of algebras.

This paper is devoted to analogous questions for noncommutative

curves. Perhaps, the first results in this direction were obtained by
Geigle and Lenzing [10] who considered the so called weighted pro-

jective lines. Though the original definition of this paper was in the
frames of “usual” (commutative) algebraic geometry, these curves are
actually of noncommutative nature. They can be considered as such
noncommutative curves that the underlying algebraic curve is a pro-
jective line and all localizations of the structure sheaf are hereditary.
In some sense, it is the simplest example of noncommutative curves,
though their theory is far from being simple.

We consider the “next step,” namely the case when the localizations
of the structure sheaf are nodal in the sense of [5]. In particular, this
class contains all line configurations in the sense of [9]. We reduce the
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description of vector bundles over such curves to the study of a bimod-
ule category in the sense of [8, 9]. Using this reduction, we describe
vector bundles in two cases: string type and almost string type, see
Sections 3 and 4. Note that the string type is an immediate general-
ization of line configurations of types A and Ã. The main tool in this
description is a special sort of bimodule problems, namely, the so called
bunches of chains. Fortunately, these problems are well elaborated and
a good description of representations is given in [4]. We also show that
in all other cases the classification of vector bundles is a wild problem
(Section 5). Thus, in some sense, the question about the “represen-
tation type” of the category of vector bundles over noncommutative
curves is completely solved.

1. Noncommutative curves, vector bundles

and categories of triples

We call a noncommutative variety a pair (X,A), where X is an alge-
braic variety over an algebraically closed field k (reduced, but maybe
reducible) and A is a sheaf of OX -algebras which is coherent as a sheaf
of OX -modules. We often speak about a “noncommutative variety A”
not mentioning explicitly the underlying variety X. We denote by KX

(or K) the sheaf of total rings of fractions of OX (it is locally constant)
and set K(A) = A ⊗OX

KX . Without loss of generality we may (and
usually will) suppose that A is central, i.e. OX,x = center(Ax) for each
x ∈ X. Otherwise we can replace X by the variety X ′ = spec C, where
C = center(A). We define a noncommutative curve as a noncommuta-
tive variety (X,A) such that X is a curve (that is all its components
are 1-dimensional) and A is reduced, that is has no nilpotent ideals.
A coherent sheaf of A-modules F is said to be a vector bundle over
(X,A) if it is locally projective, i.e. the Ax-module Fx is projective for
every x ∈ X. We denote by VB(X,A) or by VB(A) the category of
vector bundles over (X,A).

We call a noncommutative curve (X,A) normal if, for every point
x ∈ X, the algebra Ax is a maximal OX,x-order, that is there is no
OX,x-subalgebra Ax ⊂ A′ ⊂ Kx which is also finitely generated as

OX,x-module. Since A is reduced, there is a normal curve X̃ = (X, Ã)

such that A ⊆ Ã ⊂ KX . Moreover, Ax = Ãx for almost all x ∈ X (it
follows from [7]). We call (X, Ã) a normalization of X and denote by

sgA the set of all points x ∈ X such that Ax 6= Ãx. Note that such a
normalization is, as a rule, not unique, though sgA does not depend on
the choice of normalization. Let C̃ = center(Ã), X̃ = spec C̃. We can

(and will) consider Ã as a sheaf of central OX̃-algebras, hence consider
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the normalization as the noncommutative curve (X̃, Ã). The natural

morphism of ringed spaces π : (X̃, Ã) → (X,A) is defined. We also de-
note by s̃gA the set-theoretical preimage π−1(sgA). If X̃1, X̃2, . . . , X̃s

are the irreducible components of X̃, we set Ãi = Ã|X̃i
, so consider

the noncommutative curves (X̃i, Ãi). We also set s̃gi A = s̃gA ∩ X̃i.
Let Xi = π(X̃i). Certainly, each Xi is an irreducible component of X,
but these components need not be different. We set Ki(A) = K(A)|X̃i

.
It is a constant sheaf of central KXi

-gebras. Since k is algebraically
closed, the Brauer group of the field Ki = KXi

is trivial [13, Chapter
II, § 3], so Ki(A) ≃ Mat(ni,Ki) for some ni. We call a noncommutative

curve (X,A) rational if so is the curve X, i.e. all components of X̃ are
isomorphic to the projective line P1.

For calculation of vector bundles over noncommutative curves one
can use the “sandwich procedure,” just as it has been done in [9] in

the commutative case. Let π : (X̃, Ã) → (X,A) be a normalization
of a noncommutative curve (X,A). We denote by J the conductor

of Ã in A, that is the maximal sheaf of Ã-ideals contained in A. We
consider the noncommutative varieties (sgA,S) and (s̃gA, S̃), where
S = A/J and S̃ = Ã/J . These varieties are 0-dimensional and usually

not reduced. We denote by π̄ : (s̃gA, S̃) → (sgA,S) the restriction
of π onto (s̃gA, S̃) and by ι and ι̃, respectively, the closed embeddings

(sgA,S) → (X,A) and (s̃gA, S̃) → (X̃, Ã). So we have a commutative
diagram of morphisms of noncommutative varieties

(s̃gA, S̃)
ι̃

//

π̄
��

(X̃, Ã)

π
��

(sgA,S)
ι

// (X̃, Ã)

Since (sgA,S) and (s̃gA, S̃) are 0-dimensional, coherent sheaves on
them can be identified with finitely generated modules over the alge-
bras, respectively,

S =
∏

x∈sgA

Ax/Jx and S̃ =
∏

y∈s̃gA

Ãy/Jy.

Following [5, 6], we introduce the category of triples T (A) as follows.

• The objects of T (A) are triples (G, P, θ), where
– G is a vector bundle over Ã,
– P is a vector bundle over S, or, the same, a finitely gener-

ated projective S-module,
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– θ is an isomorphism π̄∗P → ι̃∗G, or, the same, an isomor-
phism of S̃-modules S̃⊗S P →

∏
y∈s̃gA Gy/JyGy.

• A morphism (G, P, θ) → (G ′, P ′, θ′) is a pair (Φ, φ), where Φ ∈
HomÃ(G,G

′) and φ ∈ HomS(P, P
′) such that the induced dia-

gram

π̄∗P
π̄∗φ

//

θ
��

π̄∗P ′

θ′
��

ι̃∗G
ι̃∗Φ

// ι̃∗G ′

is commutative.

One easily sees that T (A) is indeed a full subcategory of a bimod-

ule category in the sense of [8], namely, the category defined by the

VB(S)-VB(Ã)-bimodule HomS̃(π̄
∗P, ι̃∗G). It can also be considered as

the push-out of the categories VB(Ã) and VB(S) over the category

VB(S̃) with respect to the functors ι̃∗ and π̄∗. So it is an analogue of
Milnor’s construction of projective modules from [12, § 2].

We define the functor F : VB(A) → T (A), which maps a vector
bundle F to the triple (π∗F , ι∗F , θF), where θF is the natural isomor-
phism π̄∗ι∗F → ι̃∗π∗F . The same considerations as in [6, 9] give the
following result.

Theorem 1.1. The functor F induces an equivalence of the categories

VB(A)
∼
→ T (A). The inverse functor G : T (A) → VB(A) maps a

triple (G, P, θ) to the preimage in G of the S-submodule θ(1⊗P ) ⊆ ι̃∗G.

2. Nodal curves

Definition 2.1. (1) An algebra R over a local commutative ring
O of Krull dimension 1, which is finitely generated and torsion
free as O-module, is said to be nodal [5, 14] if the following
conditions hold:
(a) EndR(radR) = H is hereditary.
(b) radH = radR (under the natural embedding of R into H).
(c) lengthR(H ⊗R U) ≤ 2 for every simple R-module U .

Note that a nodal algebra never has nilpotent ideals, since it
holds for any hereditary O-algebra.

(2) A noncommutative curve (X,A) is said to be nodal if every
algebra Ax (x ∈ X) is a nodal OX,x-algebra.

If A = OX , so we deal with a “usual” (commutative) curve, it means
that all singular points of X are nodes (ordinary double points).
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We recall the construction of nodal algebras over the ring O = k[[t]]
from [14]. Up to Morita equivalence such algebra is given by a tu-
ple N = (s;n1, n2, . . . , ns;∼), where s and n1, n2, . . . , ns are positive
integers, while ∼ is a symmetric relation on the set of pairs I =
{ (k, i) | 1 ≤ k ≤ s, 1 ≤ i ≤ nk } satisfying the following conditions:

(N1) # { (l, j) ∈ I | (l, j) ∼ (k, i) } ≤ 1 for each pair (k, i) ∈ I.
(N2) If (k, i) ∼ (k, i), then i < nk and (k, i + 1) 6∼ (l, j) for any

(l, j) ∈ I.

Namely, define R(N) as the subring of M(N) =
∏s

k=1Mat(nk, O) con-
sisting of such collections of matrices (A1, A2, . . . , As), where Ak =
(akij) ∈ Mat(nk, O), that

akij ≡ 0 (mod t) if i > j or i = j − 1 and (k, i) ∼ (k, i),(2.1)

akii ≡ aljj (mod t) if (k, i) ∼ (l, j).(2.2)

Theorem 2.2 ([14]). (1) Every ring R(N) is a nodal O-algebra.

(2) Every nodal O-algebra is Morita equivalent to one of the rings

R(N).
(3) radR(N) consists of such collections (A1, A2, . . . , Ak) that the

condition (2.1) holds and also akii ≡ 0 (mod t) for all k, i.
(4) The hereditary algebra H(N) = EndR(N)(radR(N)) consists of

such collections (A1, A2, . . . , Ak) that

akij ≡ 0 (mod t) if i > j, except the case when

i = j − 1 and (k, i) ∼ (k, i).

(5) M(N) is a maximal order containing R(N) such that J(N) =
radM(N) is the conductor of M(N) both in R(N) and in H(N),
and J(N) ⊆ radR(N).

(6) R(N)/J(N) is the subring of M/J(N) =
∏s

k=1Mat(nk,k) con-

sisting of such collections of matrices (A1, A2, . . . , As) that

akij = 0 if i > j or i = j − 1 and (k, i) ∼ (k, i),

akii = aljj if (k, i) ∼ (l, j).

In particular, R(N) is hereditary if and only if the relation ∼ is

empty. (Then we write R = R(s;n1, n2, . . . , ns).)

Actually, to define a ring Morita equivalent to R(N), one only has
to prescribe positive integers m(k, i) for each pair (k, i) ∈ I so that
m(k, i) = m(l, j) if (k, i) ∼ (l, j), and consider akij in the definition
of R(N) not as elements of k, but as matrices from Mat(m(k, i) ×
m(k, j),k), preserving all congruences modulo t. We denote such data
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by (N,m), where m is the function (k, i) 7→ m(k, i), and the corre-
sponding algebra by R(N,m). Note that different data N or (N,m)
can describe isomorphic algebras, even if they do not only differ by a
permutation of indices (k, i). We extend the relation ∼ to an equiv-
alence relation ≈ setting (k, i) ≈ (l, j) if and only if (k, i) = (l, j) or
(k, i) ∼ (l, j).

From the well-known properties of torsion free modules over reduced
rings of Krull dimension 1 (see, for instance, [7]) it follows that, given
a torsion free coherent sheaf F over a noncommutative curve (X,A),
a finite set of closed points x1, x2, . . . , xm ∈ X and a set of coher-
ent Axi

-submodules Gi ⊂ F ⊗kOX
K, there is a unique coherent sheaf

G ⊂ F ⊗kOX
K such that Gxi

= Gi and Gy = Fy if y 6= xi for all i.
In particular, since almost all localizations Ax are maximal, one can
construct a normalization Ã of A locally, choosing arbitrary normaliza-
tions Ãx of Ax for x ∈ sgA. Therefore, given a nodal noncommutative
curve (X,A), we can (and will) suppose that the normalizations of its
local components are chosen as in Theorem 2.2. Thus, if x ∈ sgX,
y ∈ π−1(x) = { y1, y2, . . . , yr }, we identify Ãy with a full matrix ring
Mat(ny,OX̃,y) and suppose that the ring Ax is given by some data
(N,m) as above. In what follows, we write (yk, i) instead of (k, i),

so the local embeddings Ax → Ãx =
∏r

k=1 Ãyk for x ∈ sgA are de-
scribed by the data N(A) consisting of integers ny and m(y, i) for
y ∈ s̃gA, 1 ≤ i ≤ ny, and an equivalence relation ∼ on the set of pairs
(y, i) satisfying the above conditions (N1) and (N2) and such that

(N3) the sum my =
∑ny

i=1m(y, i) is the same for all points y belong-

ing to the same component of X̃.

The last condition just expresses the fact that the sheaf K(Ã) is locally
constant. One easily sees that π(y) = π(y′) if and only if there is at
least one relation (y, i) ∼ (y′, j). Moreover, if we suppose that X is
connected and A is central, the set π−1(x) for each x ∈ sgX must be
connected as the graph defined by the symmetric relation y ∼ y′ which
means that there is at least one pair i, j such that (y, i) ∼ (y′, j).

From now on we fix a connected central noncommutative nodal curve
(X,A) and its normalization π : (X̃, Ã) → (X,A) chosen as de-

scribed above. We write O instead of OX and Õ instead of OX̃ . If

X̃1, X̃2, . . . , X̃s are the irreducible components of X̃, Xk = π(X̃k), we

write Õk = ÕX̃k
, Ãk = Ã|X̃k

, Ok = OXk
and Ak = A|Xk

. Recall that

the sheaves of rings Õk and Ãk are Morita equivalent. Namely, there is
a vector bundle Lk over Ãk such that End Ãk

Lk ≃ Õk, End Õk
Lk ≃ Ãk,

so the functors HomÃk
(Lk,_ ) and Lk ⊗Õk

_ establish an equivalence
6



between Coh(Ãk) and Coh(Õk). We call Lk a basic vector bundle over

Ãk. (Note that it is not uniquely defined.)
Let J be the conductor of Ã in A. If x ∈ sgA, then Jx =⊕
π(y)=x rad Ãy, S̃y = Ãy/Jy ≃ Mat(my,k) and Ly/JyLy ≃ myUy,

where Uy is the unique simple S̃y-module. For any vector bundle G

over Ãi we define its rank : rkG = r if Gy/JyGy ≃ rUy for some (then

for any) y ∈ X̃i.
Every pair (y, i), where π(y) = x, 1 ≤ i ≤ ny, defines a simple

Sx-module Vy,i, where Sx = Ax/Jx, and Vy,i ≃ Vy′,j if and only if
(y, i) ≈ (y′, j). Moreover, Uy ≃

⊕ny

i=1 Vy,i as Sy-module. We denote
by Py,i the projective Sy-module such that Py,i/ radPy,i ≃ Vy,i. In
particular, Py,i ≃ Py′,j if and only if (y, i) ≈ (y′, j).

To describe the category of triples T (A) it is convenient to introduce

new symbols eyij , where 1 ≤ i ≤ j ≤ ny, and the sets Ey,i
y′,j consisting of

all ezi′j′ such that one of the following conditions hold:

• z = y, (y, j′) ∼ (y′, j) and either i = i′ or (y, i) ∼ (y, i′);
• z = y′, (y′, i′) ∼ (y, i) and either j = j′ or (y′, j) ∼ (y′, j′).

We also set eyi =
∑

(z,j)≈(y,i) e
z
jj and consider the copies Ueyii of the

simple modules Uy. Then

S̃ ⊗S Py,i ≃
⊕

(z,j)≈(y,i)

Uz
j e

z
jj,

EndS Py,i ≃





keyi if (y, i) 6∼ (y, j) for any j 6= i,

keyi ⊕ keyij if (y, i) ∼ (y, j) and i < j,

keyi ⊕ keyji if (y, i) ∼ (y, j) and j < i.

and, for (y, i) 6∼ (y′, j),

HomS(Py,i, Py′,j) ≃
⊕

Ey,i

y′,j

kezi′j′.

Under such notations the maps S̃ ⊗S Py,i → S̃ ⊗S Py′,j induced by the
homomorphisms Py,i → Py′,j as well as the multiplication of homomor-
phisms are given by the “matrix multiplication” on the right, i.e. by
the rules:

eyii′e
y′

j′j =

{
0 if y 6= y′ or i′ 6= j′,

eyij if y = y′ and i′ = j′.

Let (G, P, θ) be a triple from T (A). Decompose G and P :

• G =
⊕

k,l gklGkl, where Gkl are nonisomorphic indecomposable

vector bundles over Ãk,
7



• P =
⊕

y,i py,iPy,i.

Set rkl = rkGkl. Then the isomorphism θ : π̄∗P → ι̃∗G is given by
a set Θ = {Θy | y ∈ s̃gA} of invertible block matrices Θy = (Θy,i

kl ),

where y ∈ s̃gk A, the block Θy,i
kl has coefficients from k and is of size

rklgkl × py,i. If another triple (G ′, P ′, θ′) is given by the matrices Θ′
y, a

morphism (G, P, θ) → (G ′, P ′, θ′) is given by block matrices Φk = (Φkl
kl′)

and φy = (φy,i
y,j) such that Φk(y)Θy = Θ′

yφy for every y ∈ s̃gk A, where

the elements of Φkl
kl′ are from HomÃk

(Gkl,Gkl′), elements of φy,i
y,j are from

k, φy,i
y,i = φy′,j

y′,j if (y, i) ∼ (y′, j) and φy,i
y,j = 0 if i > j or i = j−1, (y, i) ∼

(y, i). This morphism is an isomorphism if and only if all “diagonal”
blocks Φkl

kl and φy,i
y,i are invertible.

Let N (A) be the ideal in T (A) consisting of all morphisms (Φ, φ)
such that all values Φk(y), where y ∈ s̃gk A, are zero. In the matrix
presentation it means that Φkl

kl′(y) = 0 for all possible triples (k, l, l′)

and all y ∈ X̃k. Denote T (A) = T (A)/N (A). These categories have
the same objects and the natural functor T (A) → T (A) is full (not
faithful), maps nonisomorphic objects to nonisomorphic and indecom-
posable objects to indecomposable. Therefore, to obtain a classifica-
tion of vector bundles, we actually have to study the category T (A).
Nevertheless, passing from T to T we can lose some information. It
is important, for instance, if we are looking for stable vector bundles
(see, for instance, [3]).

3. String case

Definition 3.1. A noncommutative nodal curve (X,A) is said to be
of string type if it is rational and every set s̃gk A contains at most 2
points.

If (X,A) is of string type, we identify all components X̃k with P1

and fix an affine part A1 ⊂ X̃k containing s̃gk A .

In this case the category of triples T (A) can be treated as the cate-
gory of representations of a certain bunch of chains B(A) in the sense
of [5, Appendix B].1 Namely, if Lk is a basic vector bundle over Ãk, then

every indecomposable vector bundle over Ãk is isomorphic to Lk(d) for
some d, which is called the degree of Lk(d).

2 Moreover,

HomÃ(Lk(d),Lk(d
′)) ≃

{
0 if d > d′,

k[t]d′−d if d ≤ d′,

1 Or a bundle of semi-chains in the terms of [4].
2 Note that it is not the degree of Lk(d) as of Õk-sheaf; the latter equals dnk.
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where k[t]m denotes the set of polynomials f(t) such that deg f(t) ≤ m.

Therefore, in the decomposition of a vector bundle Gk over Ãk we can
suppose that Gkl = Lk(l). Then the elements of the matrices Φkl

kl′ can
be considered as the polynomials of degree l′ − l if l′ ≥ l; they are zero
if l′ < l. If y 6= y′ are two points from s̃gk A and l′ > l, we can always
choose a polynomial f(t) ∈ k[t]l′−l such that f(y) = a, f(y′) = b for any
prescribed values a, b ∈ k. It means that the values of the matrices Φkl

kl′

at the points y and y′ can be prescribed arbitrary. Therefore, the rule
Φk(y)Θy = Θ′

yφy from the matrix description of morphisms in T (A)
can be rewritten as F (y)Θy = Θ′

yφy, where F (y) is an arbitrary lower

block triangular matrix F (y) = (F (y)klkl′) (F (y)klkl′ = 0 if l < l′) over the
field k and the only restrictions for these blocks is that F (y)klkl = F (y′)klkl
if y and y′ are in the same component X̃k.

Thus we define the bunch of chains B(A) as follows. We consider
s̃gA as the index set of this bunch and for every y ∈ s̃gA set

Ey = { (y, i) | 1 ≤ i ≤ ny } \ { (y, i) | (y, i− 1) ∼ (y, i− 1) } ,

Fy = { (d, y) | d ∈ Z } ,

(y, i) < (y, j) if i < j,

(d, y) < (d′, y) if d < d′,

(y, i) ∼ (y′, j) if and only if they are so in the nodal data N(A),

(d, y) ∼ (d′, z) if and only if d = d′, y 6= z but y and z belong

to the same component X̃k.

Recall [4, 5] that a representation M of this bunch of chains is given by

a set of block matrices My = (Myi
dy), where y ∈ s̃gA, 1 ≤ i ≤ ny, M

yi
dy ∈

Mat(mdy × nyi,k) for some integers mdy, nyi such that mdy = mdy′ if
(d, y) ∼ (d, y′) and nyi = ny′j if (y, i) ∼ (y′, j). Here we identify the
symbols (y, i)′ and (y, i)′′ from [5, Definition B.1], where (y, i) ∼ (y, i),
with the pairs (y, i) and (y, i+ 1). A morphism α : M → M ′ given by

a set of block matrices α′
y, α

′′
y , where y ∈ s̃gA, α′

y = (αdy
d′y), α

′′
y = (αyi

yi′),
9



such that

αdy
d′y ∈ Mat(md′y ×mdy,k),

αyi
yi′ ∈ Mat(myi′ ×myi,k),

αdy
d′y = 0 if d > d′,

αyi
yi′ = 0 if i > i′ or i′ = i+ 1 and (y, i) ∼ (y, i),

αdy
dy = αdy′

dy′ if (d, y) ∼ (d, y′),

αyi
yi = αy′j

y′j if (y, i) ∼ (y′, j),

and

α′
yMy = M ′

yα
′′
y for all y ∈ s̃gA.

The matrix presentations described above imply the following fact.

Proposition 3.2. Let the noncommutative nodal curve (X,A) is of

string type, B = B(A). Then the category T (A) is equivalent to the

full subcategory rep0(B) of the category of representations of the bunch

of chains B consisting of such representations M that all matrices My

are invertible.

In particular, the category T (A) and hence the category VB(A) are
tame in the sense that they have at most 1-parameter families of inde-
composable objects. Moreover, from the description of representations
of a bunch of chains given in [4] one can deduce a description of vector
bundles over a noncommutative nodal curve of string type. For the
corresponding combinatorics we use the terminology from [5] adopted
to our situation.

Definition 3.3. (1) Let E =
⋃

y Ey, F =
⋃

y Fy, X = E ∪ F. We

define the symmetric relation − on X setting (d, y)− (y, i) for
all possible d, i, y. We also write ξ ‖ ξ′ if either both ξ and ξ′

belong to E or both of them belong to F, and ξ ⊥ ξ′ if one of
them belongs to E while the other belongs to F.

(2) We define a word (more precisely, an X-word) as a sequence
ξ1r1ξ2r2 . . . ξl−1rl−1ξl such that
(a) ξi ∈ X, ri ∈ {∼,−};
(b) ξiriξi+1 for each 1 ≤ i < l accordingly to the definition of

the relations ∼ and −;
(c) ri 6= ri+1 for all 1 ≤ i < l − 1.

We call l = l(w) the length of the word w and ξ1, ξl the ends of
this word.

(3) We call the word w full if the following conditions hold:
10



(a) either r1 =∼ or ξ1 6∼ ξ′ for any ξ′ 6= ξ1;
(b) either rl−1 =∼ or ξl 6∼ ξ′ for any ξ′ 6= ξl.

(4) We call the word w terminating if it is full and r1 = rl−1 = −.
(5) The end ξ1 (ξl) is said to be special if r1 = − and ξ1 ∼ ξ1

(respectively, ξl ∼ ξl and rl−1 = −). Otherwise it is said to be
usual.

(6) The terminating word w is said to be
• usual if both its ends are usual;
• special if one of its ends, but not both, is special;
• bispecial if both its ends are special.

(7) The word w∗ = ξlrl−1 . . . ξ2r1ξ1 is called inverse to the word w.
(8) We call w symmetric if w = w∗ and quasisymmetric if it can be

presented as v ∼ v∗ ∼ v ∼ · · · ∼ v∗ ∼ v for a shorter word v.
Note that a quasisymmetric word is always bispecial.

(9) The word w is said to be cyclic if r1 = rl−1 =∼ and ξl − ξ1 in
B. Then we set r0 = − and ξi+kl = ξi, ri+kl = ri for any k ∈ Z.

(10) A shift of the cyclic word w is the cyclic word

w[k] = ξk+1rk+1ξk+2 . . . r0ξ1r1 . . . ξk,

where k is even. In this case we set ε(w, k) = (−1)k/2.
(11) The cyclic word w is said to be aperiodic if w[k] 6= w for 0 <

k < l. It is said to be cyclic-symmetric if w∗ = w[k] for some k.
Note that the length of a terminating or cyclic word is always divis-

ible by 4.

Definition 3.4. (1) A usual string is a usual nonsymmetric termi-
nating word.

(2) A special string is a pair (w, δ), where w is a special terminating
word and δ ∈ { 0, 1 }.

(3) A bispecial string is a quadruple (w,m, δ0, δ1), where w is a
bispecial terminating word that is neither symmetric nor qua-
sisymetric, m ∈ N and δi ∈ { 0, 1 } (i = 0, 1).

(4) A band is a triple (w,m, λ), where w is a cyclic word, m ∈ N,
λ ∈ k

× and, if w is cyclic-symmetric, also λ 6= 1.
(5) The following strings are said to be equivalent :

• w and w∗;
• (w, δ) and (w∗, δ);
• (w,m, δ0, δ1) and (w∗, m, δ1, δ0).

(6) Two bands are said to be equivalent if they can be obtained from
one another by a sequence of the following transformations:

• replacing (w,m, λ) by (w[k], m, λε(w,k));
• replacing (w,m, λ) by (w∗, m, λ−1).

11



Note that if w∗ = w[k], then k ≡ 2 (mod 4), so ε(w, k) = −1.

Now the results of [4] imply the following theorem.

Theorem 3.5. The isomorphism classes of indecomposable vector bun-

dles over a noncommutative nodal curve curve of string type (X,A) are

in one-to-one correspondence with the equivalence classes of strings

and bands for the bunch of chains B(A). The rank of the vector bun-

dle corresponding to a string or a band equals l/4, where l is the length

of the word w entering into this string or band.

We refer to [4] for an explicit construction of representations corre-
sponding to strings and bands, hence of vector bundles over noncom-
mutative nodal curves of string type.

Note that it can so happen that there are no strings or no bands. For
instance, if all localizations Ax are hereditary, there are no bands as well
as no special and bispecial strings. Then there are only finitely many
isomorphism classes of indecomposable vector bundles up to twist, i.e.
up to change of degrees d in the pairs (d, y) occurring in a word. On
the other hand, if each s̃gk A consists of 2 points and for every pair
(y, i) there is another pair (z, j) 6= (y, i) such that (z, j) ∼ (y, i), then
there are no terminating strings.

Actually, one can easily deduce the following criterion of finiteness.

Corollary 3.6. The following conditions for a noncommutative nodal

curve of string type (X,A) are equivalent:

(1) There are only finitely many isomorphism classes of indecom-

posable vector bundles over A up to twist.

(2) There are no cycles for the bunch of chains B(A).
(3) There are no sequences of points y1, y2, . . . , yn, yn+1 = y1 from

s̃gA such that, for 1 ≤ k ≤ n,

• if k is odd, then the points yk and yk+1 are different and

belong to the same component of X̃;

• if k is even, there are indices i, j such that (yk, i) ∼ (yk+1, j)
(possibly yk = yk+1).

4. Almost string case

We consider one more case when there is a good description of vector
bundles.

Definition 4.1. A noncommutative nodal curve (X,A) is said to be of
almost string type if every set s̃gk A contains at most 3 point, and if it
contains three points then for 2 of them the algebra Aπ(y) is hereditary

12



and Morita equivalent to the algebra R(1; 2) from Theorem 2.2 (with
the empty relation ∼).

Note that if Aπ(y) is hereditary, y is the unique point of s̃gA with

the image π(y). Hence, if X is connected, either X̃ consists of a unique
component or there must be another point z on the same component
of X̃ such that Aπ(z) is not hereditary.

Let s̃gk A = { y0, y1, y2 } so that Aπ(y1) and Aπ(y2) are Morita equiva-
lent to R(1; 2). In this case we call y1, y2 extra points and y0 a marked

point. Then the horizontal stripes of the matrices Θy1 ,Θy2 correspond-
ing to the vector bundle Lk(d) can be reduced to the form

(4.1) Θy1,1
kd =




0 0
I 0
0 0
0 I



, Θy1,2

kd =




I 0
0 0
0 I
0 0



, Θy2,1

kd =




0 0
0 0
I 0
0 I



, Θy2,2

kd =




I 0
0 I
0 0
0 0



,

where I denote identity matrices of some sizes (equal if they are in the
same row). From now on we only consider the objects from T (A) such
that these matrices have the form (4.1), calling them precanonical. If
(Φ, φ) is a morphism between precanonical objects, then the matrix
Φkd

kd must be of the 4× 4 block form

Φkd
kd =




∗ 0 0 0
∗ ∗ 0 0
∗ 0 ∗ 0
∗ ∗ ∗ ∗


,

where stars denote arbitrary matrices of appropriate sizes. Moreover, if
we consider Φk,d−1

kd also as a 4×4 block matrix (fab) (a, b ∈ { 1, 2, 3, 4 }),
where the blocks fab consist of linear polynomials, then f14(y1) =
f14(y2) = 0, so f14 = 0. Note that the values fab(y0) can be chosen
arbitrary for (ab) 6= (14), as well as the values of Φkd′

kd for d′ < d − 1.
Therefore, the full subcategory of T (A) consisting of precanonical ob-
jects can again be treated as the category of representations of a bunch
of chains B′ = B′(A). Namely, let exA be the set of all extra points.
The index set for the bunch B′ is s̃gA \ exA. If a point y is not
marked, the sets Ey and Fy are defined just as in Section 3 (page 9). If
y is marked, the set Fy is also defined as in Section 3, but the set Ey

consists of the triples (d, y, α), where α ∈ { 0, 1 }, such that

• (d′, y, α′) < (d, y, α) if and only if either d′ < d or d′ = d and
α′ < α;

• (d, y, α) ∼ (d, y, α) for all d, α.
13



Actually the element (d, y, 0) represents in this bunch the first horizon-
tal row of the stripe (d, y) and the fourth horizontal row of the stripe
(d − 1, y) in the precanonical form (4.1), while the element (d, y, 1)
represents the second and the third horizontal rows of the stripe (d, y).

The preceding observations imply

Theorem 4.2. Let (X,A) be a noncommutative nodal curve of almost

string type. The category T (A) is equivalent to the full subcategory of

the category of representations of the bunch of chains B′(A) consisting

of such representations M that all matrices My are invertible.

Just as in Section 3, these representations (hence, vector bundles
over A) correspond to terminating strings and bands. In particular,
the category of vector bundles over a noncommutative nodal curve of
almost string type is also tame.

Corollary 4.3. The following conditions for a noncommutative nodal

curve of almost string type (X,A) are equivalent:

(1) There are only finitely many isomorphism classes of indecom-

posable vector bundles over A up to twist.

(2) There are no cycles for the bunch of chains B′(A).
(3) There are no sequences of points y1, y2, . . . , yn, yn+1 = y1 from

s̃gA \ exA such that, for 1 ≤ k ≤ n,

• if k is odd, then either the points yk and yk+1 are different

and belong to the same component of X̃ or yk = yk+1 is a

marked point;

• if k is even, there are indices i, j such that (yk, i) ∼ (yk+1, j)
(possibly yk = yk+1).

5. Wild cases

If a noncommutative curve (X,A) is rational and connected and
all localizations Ax are hereditary, then X ≃ P1 and the category
Coh(A) is equivalent to the category of coherent sheaves over a weighted

projective line C(p,λ) in the sense of [10]. Here λ = { λ1, λ2, . . . , λs } =
sgA and p = (p1, p2, . . . , ps) are the integers such that Aλk

is Morita
equivalent to the hereditary algebra R(1; pk). Then it is known that
VB(A) is of finite type if and only if

∑s
k=1 1/pk > 1 and is tame

if
∑s

k=1 1/pk = 1. If
∑s

k=1 1/pk < 1, it is wild. It means that the
classification of vector bundle over such noncommutative curve contains
the classification of representations of every finitely generated k-algebra
(see [9] for formal definitions). Note also that if (X,A) is normal, then,
just as X itself, it is of finite type if X ≃ P

1, tame if X is an elliptic
14



curve and wild otherwise [9]. So the next theorem completes the answer
to the question about the representation type of VB(A).

Theorem 5.1. In the following cases the category VB(A) is wild:

(1) (X,A) is neither rational nor normal.

(2) At least one of the localizations Ax is not nodal.

(3) (X,A) is nodal, at least one of the localizations Ax is not hered-

itary and (X,A) is neither of string nor of almost string type.

Proof. The cases (1) and (2) are considered quite analogously to the
commutative case [9, Proposition 2.5], so we omit their proofs. The
proof of (3) we shall give in two cases:

(3a) X = P1, sgA = {x, x2, x3 }, Axk
is Morita equivalent to R(1; k)

for k = 2, 3, while, Ax is Morita equivalent to R(1; 2;∼), where
either (1, 1) ∼ (1, 2) or (1, 1) ∼ (1, 1).

(3b) X = X1 ∪ X2 so that X1 ≃ X2 ≃ P
1, X1 ∩ X2 = {x} and

this intersection is transversal (i.e. Ox is nodal), there are two
more singular points x2, x3 ∈ X1 and Axk

is Morita equiva-
lent to R(1; k) for k = 2, 3, while Ax is Morita equivalent to
R(2; 1, 1;∼), where (1, 1) ∼ (2, 1).

All other cases easily reduce to these ones.
In both cases π−1(xk) = {yk} for k = 2, 3 and the d-th horizontal

stripe of the matrices Θyk can be reduced to the form:

Θ2d =




0 0 0 0 I 0
0 0 I 0 0 0
I 0 0 0 0 0
0 0 0 0 0 I
0 0 0 I 0 0
0 I 0 0 0 0



, Θ3d =




0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0



,

where the vertical lines divide these matrices into the stripes corre-
sponding to the projective modules Pki. In the case (3a) we only con-
sider such triples that the 1st, 5th and 6th horizontal rows of these ma-
trices are empty. Then the matrix Θy, where y ∈ s̃g1A and π(y) = x,
is divided into 3 horizontal stripes and if (Φ, φ) is a morphism of such
representations, then

Φ1d
1d =



∗ 0 0
∗ ∗ 0
0 0 ∗


 .

The classification of such triples can be considered as a bimodule prob-
lem (see [8, 9] for definitions and details) so that the corresponding
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Tits form is either

Q1 = 2t21 + z21 + z22 + z1z2 + z23 − 2t1(z1 + z2 + z3)

or

Q2 = t21 + t22 + z21 + z22 + z1z2 + z23 − (t1 + t2)(z1 + z2 + z3),

where ti are the sizes of vertical stripes and zi are the sizes of hori-
zontal stripes (if (1, 1) ∼ (1, 2), then t1 = t2). Since Q1(2, 1, 1, 1) =
Q2(2, 2, 1, 1, 1) = −1, this bimodule is wild, hence so is the category
VB(A). Note that we need to check that t1 + t2 = z1 + z2 + z3, since
the matrix Θy must be invertible.

In the case (3b) we only omit the 1st and the 6th row of the matrices
Θyk . Then the matrix Φ1d

1d will be of the form

Φ1d
1d =




∗ 0 0 0
∗ ∗ 0 0
0 0 ∗ 0
∗ 0 ∗ ∗




We have one more matrix Θz, where z ∈ s̃g2A and π(z) = x. We con-
sider the triples such that G|Y2

=
⊕8

d=1 rdG2d. The matrix Θz reduces
to the form

Θz =




I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I




Then the matrix φy,1
y,1 = φz,1

z,1 from a morphism (Φ, φ) of such triples
must be triangular and we obtain a matrix problem with the Tits form

Q = t21 + t22 + t23 + t24 + t1t2 + t1t4 + t3t4 +
∑

i≤j

rirj −
∑

i,j

tirj.

Now Q(1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1) = −1, so we again obtain a wild
problem. �

6. Example

We consider a simple but typical example. Let (X,A) be defined as
follows.
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• X = X1 ∪X2 , where X1 ≃ X2 ≃ P1, X1 ∩X2 = {x} and the
intersection is transversal;

• sgA = { x, x1, x2 }, where x1 ∈ X1, x2 ∈ X2;
• K(A) = Mat(2,K1)×Mat(2,K2);
• The singular localizations are:

Ax = R(2; 2, 2;∼), where (1, 1) ∼ (2, 1);

Ax1
= R(1; 2;∼), where (1, 1) ∼ (1, 1);

Ax2
= R(1; 2;∼), where (1, 1) ∼ (1, 2).

Then

• X̃ = X̃1 ∪ X̃2, where X1 ≃ X2 ≃ P1, X1 ∩X2 = ∅;
• s̃gA = { y1, y2, y3, y4 }, where y1, y3 ∈ Y1, y2, y4 ∈ Y2,
π(y3) = π(y4) = x, π(y1) = x1, π(y2) = x2.

Therefore the corresponding bunch of chains is

E1 = { (d1) | d ∈ Z } , F1 = { (1, 1) } ,

E2 = { (d2) | d ∈ Z } , F2 = { (2, 1) < (2, 2) } ,

E3 = { (d3) | d ∈ Z } , F3 = { (3, 1) < (3, 2) } ,

E4 = { (d4) | d ∈ Z } , F4 = { (4, 1) < (4, 2) } ,

(1, 1) ∼ (1, 1), (2, 2) ∼ (2, 1), (3, 1) ∼ (4, 1), (d1) ∼ (d3), (d2) ∼ (d4).

(We write (dk) and (k, i) instead of (d, yk) and (yk, i).) We fix a ba-

sic vector bundle Lk over Ãk (k = 1, 2). Then L1(d)/JL1(d) has
a k-basis e1i (d), e

3
j(d), (1 ≤ i, j ≤ 2) and L2(d)/JL2(d) has a k-basis

e2i (d), e
4
j(d), (1 ≤ i, j ≤ 2), the upper index showing the point yk where

the corresponding element is supported.
An example of a usual string is given by the word

(4, 2)− (d14) ∼ (d12)− (2, 2) ∼ (2, 1)− (d22) ∼ (d24)− (4, 2)

with d1 6= d2 in order that the word be not symmetric. The corre-
sponding vector bundle F is the A-submodule in G = L2(d1)⊕L2(d2)
such that Fx = Gx for x /∈ sgA, Fx2

is generated by the preimages of
e22(d1) and e21(d2), and Fx is generated by the preimages of e42(d1) and
e42(d2). Since supp G = X2, Fx1

= 0.
An example of a special string is (w, 1), where.

w = (1, 1)− (d1) ∼ (d3)− (3, 2).

Here G = L1(d), Fx1
is generated by the preimage of e12 and Fx is

generated by the preimage of e32.
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An example of a bispecial string is (w,m, 1, 0), where

w = (1, 1)− (d11) ∼ (d13)− (3, 1) ∼ (4, 1)− (d24) ∼ (d22)− (2, 1) ∼

∼ (2, 2)− (d32) ∼ (d34)− (4, 1) ∼ (3, 1)− (d43) ∼ (d41)− (1, 1).

The degrees di can be arbitrary with the only restriction that d2 6= d3
or d1 6= d4.

• G = m(L1(d1)⊕ L2(d2)⊕ L2(d3)⊕ L1(d4));
• Fx is generated by the preimages of the columns of the ma-

trices Ime
3
1(d1), Ime

3
1(d4), Ime

4
1(d2) and Ime

4
1(d3), where Im de-

notes the identity m×m matrix;
• Fx2

is generated by the preimages of the columns of the matrices
Ime

2
1(d2) and Ime

2
2(d3);

• Fx1
is generated by the preimages of the columns of the matrices

(
Iq
0

)
e12(d1),

(
0

Im−q

)
e11(d1),

(
Iq
Aq

)
e11(d4) and

(
Bq

Im−q

)
e12(d4),

where q = [(m+ 1)/2] and
– if m = 2q, then Aq = Iq, Bq = Jq(0), the Jordan q × q

matrix with eigenvalue 0;
– if m = 2q − 1, then Aq is of size (q − 1) × q and Bq is of

size q × (q − 1), namely,

Aq =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0


, Bq =




0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1



.

Finally, an example of a band is (w,m, λ), where

w = (2, 2) ∼ (2, 1)− (d12) ∼ (d14)− (4, 1) ∼ (3, 1)− (d23) ∼ (d21)−

− (1, 1) ∼ (1, 1)− (d31) ∼ (d33)− (3, 1) ∼ (4, 1)− (d44) ∼ (d42).

We suppose that d3 < d2 or d3 = d2, d4 ≤ d1. Then

• G = m(L1(d1)⊕ L2(d2)⊕ L2(d3)⊕ L1(d4));
• Fx1

is generated by the preimages of the columns of the matrices
(
Ime

1
1(d2)

Ime
1
1(d3)

)
and

(
0

Ime
1
2(d3)

)
;

• Fx is generated by the preimages of the columns of the matrices
Ime

4
1(d1), Ime

3
1(d2), Ime

3
1(d3) and Ime

4
1(d4);

• Fx2
is generated by the preimages of the columns of the matri-

ces Ime
2
1(d1) and Jm(λ)e

2
2(d4) (the Jordan m ×m matrix with

eigenvalue λ).
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If d2 < d3 or d2 = d3, d1 < d4, one has to permute d2 and d3 in the
generators of Fx1

, also permuting the rows.
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