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VECTOR BUNDLES OVER NONCOMMUTATIVE
NODAL CURVES

YURIY A. DROZD AND DENYS E. VOLOSHYN

ABSTRACT. We describe vector bundles over a class of noncommu-
tative curves, namely, over noncommutative nodal curves of string
type and of almost string type. We also prove that in other cases
the classification of vector bundles over a noncommutative curve
is a wild problem.

Onwmcano BeKTOPHI po3MIapyBaHHs HAJ IESIKAM KJIACOM HEKOMYTa~
THUBHUX KPUBUX, a CaMe, HaJl HONAJbHIUMI HEKOMYTATUBHUMU KPH-
BUMH CTPYHHOI'O Ta Mali?Ke CTPYHHOI'O TUIly. BCTaHOBJIEHO TAKOXK,
10 B iHINUX BUTMAIKAX KJIacudikalliss BEKTOPHAX PO3NIapyBaHb Ha,T
HEKOMYTATUBHOIO KPUBOIO € JUKOI 3aa4€lO0.

Classification of vector bundles over algebraic curves is a popular
topic in modern mathematical literature. It is due to their importance
for many branches of mathematics and mathematical physics. Vector
bundles over the projective line were described by Birkhoff [2] and
Grothendieck [I1], vector bundles over elliptic curves were classified by
Atiyah [I]. In the paper [9] Greuel and the first author described vector
bundles over a class of singular curves (line configurations of types A
and A) and showed that in all other cases a complete classification of
vector bundles is a “wild problem” in the sense of representation theory
of algebras.

This paper is devoted to analogous questions for noncommutative
curves. Perhaps, the first results in this direction were obtained by
Geigle and Lenzing [10] who considered the so called weighted pro-
jective lines. Though the original definition of this paper was in the
frames of “usual” (commutative) algebraic geometry, these curves are
actually of noncommutative nature. They can be considered as such
noncommutative curves that the underlying algebraic curve is a pro-
jective line and all localizations of the structure sheaf are hereditary.
In some sense, it is the simplest example of noncommutative curves,
though their theory is far from being simple.

We consider the “next step,” namely the case when the localizations
of the structure sheaf are nodal in the sense of [5]. In particular, this

class contains all line configurations in the sense of [9]. We reduce the
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description of vector bundles over such curves to the study of a bimod-
ule category in the sense of [8, [9]. Using this reduction, we describe
vector bundles in two cases: string type and almost string type, see
Sections Bl and @l Note that the string type is an immediate general-
ization of line configurations of types A and A. The main tool in this
description is a special sort of bimodule problems, namely, the so called
bunches of chains. Fortunately, these problems are well elaborated and
a good description of representations is given in [4]. We also show that
in all other cases the classification of vector bundles is a wild problem
(Section ). Thus, in some sense, the question about the “represen-
tation type” of the category of vector bundles over noncommutative
curves is completely solved.

1. NONCOMMUTATIVE CURVES, VECTOR BUNDLES
AND CATEGORIES OF TRIPLES

We call a noncommutative variety a pair (X, .A), where X is an alge-
braic variety over an algebraically closed field k (reduced, but maybe
reducible) and A is a sheaf of Ox-algebras which is coherent as a sheaf
of Ox-modules. We often speak about a “noncommutative variety .4”
not mentioning explicitly the underlying variety X. We denote by Kx
(or KC) the sheaf of total rings of fractions of Ox (it is locally constant)
and set K(A) = A ®p, Kx. Without loss of generality we may (and
usually will) suppose that A is central, i.e. Ox, = center(A,) for each
x € X. Otherwise we can replace X by the variety X’ = specC, where
C = center(.A). We define a noncommutative curve as a noncommuta-
tive variety (X,.A) such that X is a curve (that is all its components
are 1-dimensional) and A is reduced, that is has no nilpotent ideals.
A coherent sheaf of A-modules F is said to be a wvector bundle over
(X, .A) if it is locally projective, i.e. the A,-module F, is projective for
every x € X. We denote by VB(X, A) or by VB(A) the category of
vector bundles over (X, A).

We call a noncommutative curve (X,.A) normal if, for every point
x € X, the algebra A, is a mazimal Ox ,-order, that is there is no
Ox ,-subalgebra A, C A" C K, which is also finitely generated as
Ox o-module. Since A is reduced, there is a normal curve X = (X, A)
such that A C A c Kx. Moreover, A, = A, for almost all z € X (it
follows from [7]). We call (X, .A) a normalization of X and denote by
sg A the set of all points € X such that A, # A,. Note that such a
normalization is, as a rule, not unique, though sg A does not depend on
the choice of normalization. Let C = center(A), X = specC. We can

(and will) consider A as a sheaf of central O ¢-algebras, hence consider
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the normalization as the noncommutative curve (X,.A). The natural
morphism of ringed spaces 7 : (X, A) — (X, .A) is defined. We also de-
note by sg.A the set-theoretical preimage 7~ (sg A).If X, Xy, .., X,
are the irreducible components of X, we set A; = A %,» SO consider
the noncommutative curves (Xi, A;). We also set §g; A = sg AN X,.

Let X; = m(X;). Certainly, each X; is an irreducible component of X,
but these components need not be different. We set IC;(A) = K(A)|,.
It is a constant sheaf of central Kx,-gebras. Since k is algebraically
closed, the Brauer group of the field K; = Ky, is trivial [13, Chapter
I1, § 3], so K;(A) ~ Mat(n;, K;) for some n;. We call a noncommutative
curve (X, A) rational if so is the curve X, i.e. all components of X are
isomorphic to the projective line P*.

For calculation of vector bundles over noncommutative curves one
can use the “sandwich procedure,” just as it has been done in [9] in
the commutative case. Let 7 : (X, A) — (X,.A) be a normalization
of a noncommutative curve (X,.A). We denote by J the conductor
of A in A, that is the maximal sheaf of A-ideals contained in A. We
consider the noncommutative varieties (sg.A,S) and (sg.A,S), where
S=A/Jand S = A/J. These varicties are 0-dimensional and usually
not reduced. We denote by 7 : (sg.A,S) — (sg.A,S) the restriction
of 7 onto (5g.A,S) and by ¢ and i, respectively, the closed embeddings
(sg A, S) — (X, A) and (sg.A,S) — (X, A). So we have a commutative

diagram of morphisms of noncommutative varieties

(BA,S) (X, A)

ﬁl |~

(s8.A,S8) - (X, A)

Since (sg.A,S) and (sg.A,S) are 0-dimensional, coherent sheaves on
them can be identified with finitely generated modules over the alge-
bras, respectively,

S= [] A/J: and S= [] 4,/7,

z€sg A y€sg A

Following [5, [6], we introduce the category of triples T (A) as follows.

e The objects of T(A) are triples (G, P,0), where
— G is a vector bundle over A,
— P is a vector bundle over S, or, the same, a finitely gener-

ated projective S-module,
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— 6 is an isomorphism 7*P — *G, or, the same, an isomor-
phism of S-modules S ®g P — [1eqn9y/TyGy-
e A morphism (G, P,0) — (G, P',0') is a pair (P, ¢), where ® €
Hom 4(G,G’) and ¢ € Homg(P, P') such that the induced dia-
gram

7P ap

Gi \LO/

o* g e o* gl

1s commutative.

One easily sees that T(A) is indeed a full subcategory of a bimod-
ule category in the sense of [§], namely, the category defined by the

VB(S)-VB(A)-bimodule Homg(7*P, 7*G). It can also be considered as

the push-out of the categories VB(.A) and VB(S) over the category
VB(S) with respect to the functors i* and 7*. So it is an analogue of
Milnor’s construction of projective modules from [12], §2].

We define the functor F : VB(A) — T(A), which maps a vector
bundle F to the triple (7*F,*F,0%), where 05 is the natural isomor-
phism 7**F — *7*F. The same considerations as in [6, 9] give the

following result.

Theorem 1.1. The functor F induces an equivalence of the categories
VB(A) = T(A). The inverse functor G : T(A) — VB(A) maps a
triple (G, P, 0) to the preimage in G of the S-submodule (1® P) C I*G.

2. NODAL CURVES

Definition 2.1. (1) An algebra R over a local commutative ring
O of Krull dimension 1, which is finitely generated and torsion
free as O-module, is said to be nodal [5, 14] if the following
conditions hold:

(a) Endg(rad R) = H is hereditary.
(b) rad H = rad R (under the natural embedding of R into H ).
(c) lengthz(H ®@g U) < 2 for every simple R-module U.
Note that a nodal algebra never has nilpotent ideals, since it
holds for any hereditary O-algebra.
(2) A noncommutative curve (X,.A) is said to be nodal if every
algebra A, (z € X) is a nodal Ox ,-algebra.
If A= Ox, so we deal with a “usual” (commutative) curve, it means

that all singular points of X are nodes (ordinary double points).
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We recall the construction of nodal algebras over the ring O = k[[t]]
from [I4]. Up to Morita equivalence such algebra is given by a tu-
ple N = (s;n1,n9,...,ns;~), where s and ny,ns,...,n, are positive
integers, while ~ is a symmetric relation on the set of pairs 1 =
{(k,1)) |1 <k<s,1<i<ny;} satisfying the following conditions:

(N1) #{(l,j) €| (1,j)~ (k,i)} <1 for each pair (k,i) € L.

(N2) If (k,i) ~ (k,i), then i < ng and (k,i+ 1) 4 (1,7) for any

(l,j) e L.
Namely, define R(N) as the subring of M(N) = [[;_, Mat(ng, O) con-
sisting of such collections of matrices (Aj, Ag, ..., As), where Ay =
(af;) € Mat(ny, O), that
(21)  a;=0(modt)if i>j or i=j—1 and (ki) ~ (k,i),
(2.2) af = aé-j (mod t) if (k,i) ~ (1,7).

Theorem 2.2 ([14]). (1) Every ring R(N) is a nodal O-algebra.
(2) Every nodal O-algebra is Morita equivalent to one of the rings
R(N).
(3) rad R(IN) consists of such collections (Ay, Aa, ..., Ag) that the
condition [Z1)) holds and also a¥, = 0 (mod t) for all k,i.
(4) The hereditary algebra H(N) = Endpgn)(rad R(N)) consists of
such collections (A1, Ao, ..., Ax) that

k:

a;; =0 (mod t) if i > j, except the case when

i=7—1and (ki) ~ (k,1).

(5) M(N) is a mazimal order containing R(N) such that J(N) =
rad M (N) is the conductor of M(N) both in R(N) and in H(IN),
and J(N) C rad R(N).

(6) R(N)/J(N) is the subring of M/J(N) = [[;_, Mat(ny, k) con-
sisting of such collections of matrices (Ay, Ag, ..., As) that

al; =0 if i>j or i=j—1 and (ki) ~ (k,i),
afi:ag»j if (k,i) ~ (1,7).

In particular, R(N) is hereditary if and only if the relation ~ is
empty. (Then we write R = R(s;ny,ns,...,ns).)

Actually, to define a ring Morita equivalent to R(IN), one only has
to prescribe positive integers m(k, i) for each pair (k,i) € I so that
m(k,i) = m(l,7) if (k,i) ~ (I,j), and consider af; in the definition
of R(N) not as elements of k, but as matrices from Mat(m(k,i) x

m(k, j), k), preserving all congruences modulo ¢. We denote such data
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by (N,m), where m is the function (k,i) — m(k,i), and the corre-
sponding algebra by R(N, m). Note that different data N or (N, m)
can describe isomorphic algebras, even if they do not only differ by a
permutation of indices (k,7). We extend the relation ~ to an equiv-
alence relation =~ setting (k,i) ~ ([,7) if and only if (k,i) = (I,7) or
(ki) ~ (1, 7).

From the well-known properties of torsion free modules over reduced
rings of Krull dimension 1 (see, for instance, [7]) it follows that, given
a torsion free coherent sheaf F over a noncommutative curve (X, .A),
a finite set of closed points xi,xy,..., 2, € X and a set of coher-
ent A, -submodules G, C F ®;0, K, there is a unique coherent sheaf
G C F ®roy K such that G,, = G; and G, = F, if y # x; for all 4.
In particular, since almost all localizations A, are maximal, one can
construct a normalization A of A locally, choosing arbitrary normaliza-
tions A, of A, for z € sg.A. Therefore, given a nodal noncommutative
curve (X, .A), we can (and will) suppose that the normalizations of its
local components are chosen as in Theorem Thus, if z € sg X,
y € 7Y (x) = {91, 92, ...,y }, we identify A, with a full matrix ring
Mat(ny,(’))@y) and suppose that the ring A, is given by some data
(N,m) as above. In what follows, we write (yx,?) instead of (k,1),
so the local embeddings A, — A, = 11—, ~yk for x € sg. A are de-
scribed by the data IN(A) consisting of integers n, and m(y,i) for
y €sgA, 1 <i<n,, and an equivalence relation ~ on the set of pairs
(y, 1) satisfying the above conditions (N1) and (N2) and such that

(N3) the sum m, = >_1*, m(y, ) is the same for all points y belong-
ing to the same component of X.

The last condition just expresses the fact that the sheaf IC(fl) is locally
constant. One easily sees that 7(y) = 7(y’) if and only if there is at
least one relation (y,7) ~ (y',j). Moreover, if we suppose that X is
connected and A is central, the set 77!(x) for each z € sg X must be
connected as the graph defined by the symmetric relation y ~ 3" which
means that there is at least one pair 4, j such that (y,7) ~ (v/, ).
From now on we fix a connected central noncommutative nodal curve
(X, A) and its normalization 7 : (X, A) — (X,.A) chosen as de-
scribed above. We write O instead of Ox and O instead of Oz. It
Xl,Xg, ..., X, are the irreducible components of X, X, = W(Xk)
write Ok = (’)X LA = A\X , O = Ox, and A, = A|x,. Recall that
the sheaves of rings Oy and A, are Morita equivalent. Namely, there is
a vector bundle £ over A; such that &nd g, Ly, ~ Oy, Endgp, Ly ~ Ag,

so the functors Hom g, (Lx, _ ) and Ly ®Ok— establish an equlvalence
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between Coh(A;) and Coh(Oy). We call Ly, a basic vector bundle over
Ay. (Note that it is not uniquely defined.)

Let J be the conductor of Ain A If z € sgA, then J, =
@W(y):w rad A,, S, = A,/J, ~ Mat(m,,k) and L,/T,L, ~ m,U,,
where U, is the unique simple Sy-module. For any vector bundle G
over ./L we define its rank: 1k G = r it G,/ J,G, ~ rU, for some (then
for any) y € X;.

Every pair (y,i), where 7(y) = =, 1 < i < n,, defines a simple
S;-module V,;, where S, = A,/J,, and V,,; ~ V,/; if and only if
(y,4) ~ (v',7). Moreover, U, ~ @.* V,; as S,-module. We denote
by P,; the projective S,-module such that P,;/radP,; ~ V,;. In
particular, P,; ~ P, ; if and only if (y,7) = (v, j).

To describe the category of triples T (\A) it is convenient to introduce
new symbols efj, where 1 <1 < j < n,, and the sets Eé’,’fj consisting of
all e, such that one of the following conditions hold:

e 2=y, (y,7) ~ (v, j) and either i =7’ or (y,7) ~ (y,7');

e z=y, (y,1) ~ (y,i) and either j = j" or (¢, 5) ~ (v, J').
We also set e} = > .., €j; and consider the copies Uej; of the
simple modules U,. Then

S®s P~ P Ue,
(,5)~(y,1)
ke if (y,4) % (y,J) for any j # i,
Ends P, ~ ¢ kef © ke, if (y,i) ~ (y,7) and i < j,
ke © ke, if (y,i) ~ (y,J) and j <.

and, for (y,1) % (v, 7),

Homs (P, Py ;) ~ EP ke

Ey’i
y'j

Under such notations the maps S ®s Pyi — S ®s Py ; induced by the
homomorphisms P, ; — P, ; as well as the multiplication of homomor-
phisms are given by the “matrix multiplication” on the right, i.e. by
the rules:

y Y

e’ e, . =

wn 7' Yy : _ / <) s
e; Hy=y and i =7j".

Let (G, P, ) be a triple from 7 (A). Decompose G and P:
o G = @w 91Gri, where G, are nonisomorphic indecomposable

, {o if y £ o or i’ # j,

vector bundles over Ay,
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o P = @y,i py,iPy,i-

Set r; = rk Gy, Then the isomorphism 6 : 7P — *G is given by
aset © = {0, |ycsgA} of invertible block matrices ©, = (0%)),
where y € sg,. A, the block @Z}i has coefficients from k and is of size
Trigkl X Dy,i- If another triple (G', P', ") is given by the matrices ©, a
morphism (G, P,0) — (G', P',¢') is given by block matrices ®; = (!,
and ¢, = ( Z;) such that ®(y)©, = ¢, for every y € sg; A, where
the elements of @if, are from Hom Ak(gkl, Gy ), elements of Z; are from
k, ¢¥; :gzsgi;; if (y,4) ~ (y/,j) and ¢¥% = 01if i > jori=j—1, (y,i) ~
(y,7). This morphism is an isomorphism if and only if all “diagonal”
blocks ®%! and gbzz are invertible.

Let N (A) be the ideal in T(A) consisting of all morphisms (9, ¢)
such that all values ®4(y), where y € sg, A, are zero. In the matrix
presentation it means that ®,(y) = 0 for all possible triples (k,,1’)
and all y € X;. Denote T(A) = T(A)/N(A). These categories have
the same objects and the natural functor 7(A) — T (A) is full (not
faithful), maps nonisomorphic objects to nonisomorphic and indecom-
posable objects to indecomposable. Therefore, to obtain a classifica-
tion of vector bundles, we actually have to study the category T (.A).
Nevertheless, passing from 7 to 7 we can lose some information. It
is important, for instance, if we are looking for stable vector bundles
(see, for instance, [3]).

3. STRING CASE

Definition 3.1. A noncommutative nodal curve (X,.A) is said to be
of string type if it is rational and every set sg, A contains at most 2
points.

If (X,.A) is of string type, we identify all components X, with P!
and fix an affine part A’ C X, containing g, A .

In this case the category of triples 7 (.A) can be treated as the cate-
gory of representations of a certain bunch of chains B(.A) in the sense
of [5, Appendix B]E Namely, if £}, is a basic vector bundle over Ay, then
every indecomposable vector bundle over A, is isomorphic to Ly (d) for
some d, which is called the degree of Li(d)i Moreover,

0 if d > d,
Hom 1(£4(d), £i(d)) = {k[t]d, g ifd<d

LOr a bundle of semi-chains in the terms of [4].
2 Note that it is not the degree of Li(d) as of Og-sheaf; the latter equals dny.
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where klt],, denotes the set of polynomials f(¢) such that deg f(¢) < m.
Therefore, in the decomposition of a vector bundle G, over A, we can
suppose that Gy = Li(l). Then the elements of the matrices ®¥, can
be considered as the polynomials of degree I’ — [ if I > [; they are zero
if ' <. If y # ' are two points from sg, A and " > [, we can always
choose a polynomial f(t) € k[t|;_; such that f(y) = a, f(y') = bfor any
prescribed values a, b € k. It means that the values of the matrices ®f,
at the points y and 3’ can be prescribed arbitrary. Therefore, the rule
4(y)©, = O,¢, from the matrix description of morphisms in 7 (A)
can be rewritten as F'(y)0, = O, ¢,, where F(y) is an arbitrary lower
block triangular matrix F(y) = (F(y)&,) (F(y)k, = 0if I <I') over the
field k and the only restrictions for these blocks is that F(y) = F(y/)}!
if y and ¢ are in the same component Xj.

Thus we define the bunch of chains B(A) as follows. We consider
sg A as the index set of this bunch and for every y € sg.A set

€ ={(y,) [1<i<my }\{(y,9) | (y,i—1) ~(y,i—1)},
Sy ={(dy)|de},

(y,7) < (y,7) ifi <3,

(d,y) < (d,y) ifd<d,
(

(

y,1) ~ (y',7) if and only if they are so in the nodal data N(A),
d,y) ~ (d',z) if and only if d = d’, y # 2 but y and z belong

to the same component Xk

Recall [4, 5] that a representation M of this bunch of chains is given by
a set of block matrices M, = (M), where y € sg. A, 1 <i <n,, My €
Mat(mga, x ny;, k) for some integers mgy,, n,; such that mg, = mg, if
(d,y) ~ (d,vy') and ny,; = ny; if (y,i) ~ (v/,j). Here we identify the
symbols (y, )" and (y,7)” from [5, Definition B.1|, where (y, ) ~ (y, 1),
with the pairs (y,i) and (y,i +1). A morphism a : M — M’ given by
a set of block matrices oy, o, where y € sg A, o), = (afil?y), ay = (ayy),
9



such that
Oéj?y S Mat(md/y X Mgy, ]k),
ozzf, € Mat(my; x my;, k),
af, =0 ifd>d,
aly, =0 ifi>i or i =i+ 1and (y,i) ~ (y,19),
ol = ol i (d,y) ~ (),

i y'j

Oéyi - ay/] lf (y, Z) ~ (y,,j),

and
a, M, = My for all y € sg.A.
The matrix presentations described above imply the following fact.

Proposition 3.2. Let the noncommutative nodal curve (X, A) is of
string type, B = B(A). Then the category T (A) is equivalent to the
full subcategory repy(B) of the category of representations of the bunch
of chains B consisting of such representations M that all matrices M,
are invertible.

In particular, the category 7 (A) and hence the category VB(A) are
tame in the sense that they have at most 1-parameter families of inde-
composable objects. Moreover, from the description of representations
of a bunch of chains given in [4] one can deduce a description of vector
bundles over a noncommutative nodal curve of string type. For the
corresponding combinatorics we use the terminology from [5] adopted
to our situation.

Definition 3.3. (1) Let € =, ¢, § = U,8,, X = EUF. We
define the symmetric relation — on X setting (d,y) — (y, ) for
all possible d,i,y. We also write £ || & if either both ¢ and &’
belong to & or both of them belong to §, and £ L & if one of
them belongs to & while the other belongs to §.

(2) We define a word (more precisely, an X-word) as a sequence
Er&ary .. & _1r_1& such that
(a) GeX,me{~—}
(b) &mri&ivq for each 1 < i < [ accordingly to the definition of
the relations ~ and —;
(¢) ri £ rigq forall 1 <i<l—1.
We call | = [(w) the length of the word w and &, §; the ends of
this word.

(3) We call the word w full if the following conditions hold:
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(a) either r =~ or & ¢ & for any & # &i;
(b) either 1 =~ or & % & for any &' # &.
(4) We call the word w terminating if it is full and r = r_; = —.

(5) The end & (&) is said to be special if 1 = — and & ~ &
(respectively, & ~ & and r;_; = —). Otherwise it is said to be
usual.

(6) The terminating word w is said to be
e usual if both its ends are usual;
e special if one of its ends, but not both, is special;
e bispecial if both its ends are special.
(7) The word w* = &ry_y ... &mr & is called inverse to the word w.
(8) We call w symmetric if w = w* and quasisymmetric if it can be
presented as v ~ v* ~ v ~ -+ ~ v* ~ v for a shorter word v.
Note that a quasisymmetric word is always bispecial.
(9) The word w is said to be cyclic if 11 = r;_; =~ and § — & in
8. Then we set 7o = — and &1y = &;, rip = 1; for any k € Z.
(10) A shift of the cyclic word w is the cyclic word

wh = Eht1Tk418k+2 - - - T0&ar1 - - &,

where k is even. In this case we set e(w, k) = (—1)/2.

(11) The cyclic word w is said to be aperiodic if w* # w for 0 <
k < . It is said to be cyclic-symmetric if w* = w!*! for some k.

Note that the length of a terminating or cyclic word is always divis-
ible by 4.

Definition 3.4. (1) A usual string is a usual nonsymmetric termi-
nating word.

(2) A special string is a pair (w, 0), where w is a special terminating
word and 0 € {0,1}.

(3) A bispecial string is a quadruple (w,m,dg, 1), where w is a
bispecial terminating word that is neither symmetric nor qua-
sisymetric, m € N and 6; € {0,1} (i =0,1).

(4) A band is a triple (w, m, \), where w is a cyclic word, m € N,
A € k* and, if w is cyclic-symmetric, also A # 1.

(5) The following strings are said to be equivalent:

e w and w*;
e (w,0) and (w",9);
e (w,m,dy,d1) and (w*, m, dy, o).

(6) Two bands are said to be equivalent if they can be obtained from
one another by a sequence of the following transformations:

e replacing (w,m, \) by (wll, m, As(0:+));
e replacing (w, m, A) by (w*, m, A\71).
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Note that if w* = w*, then k = 2 (mod 4), so e(w, k) = —1.
Now the results of [4] imply the following theorem.

Theorem 3.5. The isomorphism classes of indecomposable vector bun-
dles over a noncommutative nodal curve curve of string type (X, A) are
in one-to-one correspondence with the equivalence classes of strings
and bands for the bunch of chains B(A). The rank of the vector bun-
dle corresponding to a string or a band equals /4, where [ is the length
of the word w entering into this string or band.

We refer to [4] for an explicit construction of representations corre-
sponding to strings and bands, hence of vector bundles over noncom-
mutative nodal curves of string type.

Note that it can so happen that there are no strings or no bands. For
instance, if all localizations A, are hereditary, there are no bands as well
as no special and bispecial strings. Then there are only finitely many
isomorphism classes of indecomposable vector bundles up to twist, i.e.
up to change of degrees d in the pairs (d,y) occurring in a word. On
the other hand, if each sg, A consists of 2 points and for every pair
(y,1) there is another pair (z,j) # (y,4) such that (z,7) ~ (y,1), then
there are no terminating strings.

Actually, one can easily deduce the following criterion of finiteness.

Corollary 3.6. The following conditions for a noncommutative nodal
curve of string type (X,.A) are equivalent:

(1) There are only finitely many isomorphism classes of indecom-
posable vector bundles over A up to twist.
(2) There are no cycles for the bunch of chains B(A).
(3) There are no sequences of points yi,Ya, .- -, Yn, Ynt1 = Y1 from
sg A such that, for 1 <k <mn,
o if k is odd, then the points y. and yr,1 are different and
belong to the same component of X ;
e if k is even, there are indices i, j such that (y, 1) ~ (Yx+1,7)
(possibly Yx = Yr41)-

4. ALMOST STRING CASE

We consider one more case when there is a good description of vector
bundles.

Definition 4.1. A noncommutative nodal curve (X, A) is said to be of
almost string type if every set sg, A contains at most 3 point, and if it

contains three points then for 2 of them the algebra Ay, is hereditary
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and Morita equivalent to the algebra R(1;2) from Theorem (with
the empty relation ~).

Note that if Ay, is hereditary, y is the unique point of sg.A with
the image 7 (y). Hence, if X is connected, either X consists of a unique
component or there must be another point z on the same component
of X such that Ax(») is not hereditary.

Let sg;, A = { yo,y1, 2 } so that A.,) and A(,,) are Morita equiva-
lent to R(1;2). In this case we call y1, yo extra points and yo a marked
point. Then the horizontal stripes of the matrices ©,,,0,, correspond-
ing to the vector bundle Ly (d) can be reduced to the form

0 0 I 0 0 0 I 0
w1 |10 2 10 0 110 0 2 |0 [

(41) @Zd ' 0 ol @Zd2: 0 I/ @Zill: I 0l @Zil2: 0 0
0 I 0 0 0 I 00

where I denote identity matrices of some sizes (equal if they are in the
same row). From now on we only consider the objects from 7 (.A) such
that these matrices have the form (@.1]), calling them precanonical. If
(®,¢) is a morphism between precanonical objects, then the matrix
k4 must be of the 4 x 4 block form

kd __
(I)kd -

* K X ¥
* O % O
* * O O
* O O O

where stars denote arbitrary matrices of appropriate sizes. Moreover, if
we consider ®P'" also as a 4 x 4 block matrix (fu) (a,b € {1,2,3,4}),
where the blocks f,, consist of linear polynomials, then fi4(y;) =
fia(y2) = 0, so fi4 = 0. Note that the values fu;(yo) can be chosen
arbitrary for (ab) # (14), as well as the values of ®¥¢ for &' < d — 1.
Therefore, the full subcategory of T (A) consisting of precanonical ob-
jects can again be treated as the category of representations of a bunch
of chains B’ = B'(A). Namely, let ex.A be the set of all extra points.
The index set for the bunch B’ is sg.A \ ex.A. If a point y is not
marked, the sets &, and §, are defined just as in Section 3] (page [@). If
y is marked, the set §, is also defined as in Section [3, but the set &,
consists of the triples (d,y, «), where a € { 0,1 }, such that

o (d,y,a) < (d,y,«) if and only if either d' < d or d' = d and
o <
o (d,y,a) ~ (d,y,a) for all d, a.
13



Actually the element (d,y,0) represents in this bunch the first horizon-

tal row of the stripe (d,y) and the fourth horizontal row of the stripe

(d — 1,y) in the precanonical form (4.Il), while the element (d,y,1)

represents the second and the third horizontal rows of the stripe (d, y).
The preceding observations imply

Theorem 4.2. Let (X, .A) be a noncommutative nodal curve of almost
string type. The category T (A) is equivalent to the full subcategory of
the category of representations of the bunch of chains B'(A) consisting
of such representations M that all matrices M, are invertible.

Just as in Section [3 these representations (hence, vector bundles
over A) correspond to terminating strings and bands. In particular,
the category of vector bundles over a noncommutative nodal curve of
almost string type is also tame.

Corollary 4.3. The following conditions for a noncommutative nodal
curve of almost string type (X, A) are equivalent:

(1) There are only finitely many isomorphism classes of indecom-
posable vector bundles over A up to twist.

(2) There are no cycles for the bunch of chains B'(A).

(3) There are no sequences of points yi,Ya, - - -, Yn, Ynt1 = Y1 from
sg A\ ex A such that, for 1 <k <mn,

e if k is odd, then either the points y. and yryq1 are different
and belong to the same component of X or yj, = Yk+1 1S @
marked point;

e if k is even, there are indices i, j such that (Y, 1) ~ (Yx+1,7)

(possibly Yx = Yrs1)-

5. WILD CASES

If a noncommutative curve (X,.A) is rational and connected and
all localizations A, are hereditary, then X ~ P! and the category
Coh(A) is equivalent to the category of coherent sheaves over a weighted
projective line C(p, A) in the sense of [10]. Here A = { Ay, Ao, ..., A } =
sg A and p = (p1,p2, ..., ps) are the integers such that A,, is Morita
equivalent to the hereditary algebra R(1;py). Then it is known that
VB(A) is of finite type if and only if Y ;_ 1/p; > 1 and is tame
if Y0 1/pe = 1. It >0 1/pp < 1, it is wild. It means that the
classification of vector bundle over such noncommutative curve contains
the classification of representations of every finitely generated k-algebra
(see [9] for formal definitions). Note also that if (X, .4) is normal, then,

just as X itself, it is of finite type if X ~ P!, tame if X is an elliptic
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curve and wild otherwise [9]. So the next theorem completes the answer
to the question about the representation type of VB(A).

Theorem 5.1. In the following cases the category VB(A) is wild:

(1) (X, .A) is neither rational nor normal.

(2) At least one of the localizations A, is not nodal.

(3) (X, .A) is nodal, at least one of the localizations A, is not hered-
itary and (X, A) is neither of string nor of almost string type.

Proof. The cases (1) and (2) are considered quite analogously to the
commutative case [9, Proposition 2.5|, so we omit their proofs. The
proof of (3) we shall give in two cases:

(3a) X =P sg A = {x, 29,73}, A, is Morita equivalent to R(1; k)
for k = 2,3, while, A, is Morita equivalent to R(1;2; ~), where
either (1,1) ~ (1,2) or (1,1) ~ (1,1).

(3b) X = X; U X, so that X; ~ Xy, ~ P!, X, N X, = {2} and
this intersection is transversal (i.e. O, is nodal), there are two
more singular points z3,x3 € X; and A,, is Morita equiva-
lent to R(1;k) for k = 2,3, while A, is Morita equivalent to
R(2;1,1;~), where (1,1) ~ (2,1).

All other cases easily reduce to these ones.
In both cases 77! (x;,) = {yx} for k = 2,3 and the d-th horizontal
stripe of the matrices ©,, can be reduced to the form:

0 0l0 Ol O 000l 00

0 0[I 0[0 O 00 0l0 0

o, | L 0[0000 o, | 000001
=190 0l0 0/0 I |7~ | T o00l0O0O0]

0 0[O0 Il0 O 07 0/000

0 Il0 0|0 O 00 IIl000

where the vertical lines divide these matrices into the stripes corre-
sponding to the projective modules Py;. In the case (3a) we only con-
sider such triples that the 1st, 5th and 6th horizontal rows of these ma-
trices are empty. Then the matrix ©,, where y € sg; A and 7 (y) = z,
is divided into 3 horizontal stripes and if (®, ¢) is a morphism of such
representations, then

The classification of such triples can be considered as a bimodule prob-

lem (see [8, [9] for definitions and details) so that the corresponding
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Tits form is either
QL=2634+ 22+ 25+ 2129 + 25 — 2t1(21 + 20 + 23)
or

Qo =t +1t5+ 21 + 25 + 2120 + 25 — (t1 + t2) (21 + 20 + 23),

where t; are the sizes of vertical stripes and z; are the sizes of hori-
zontal stripes (if (1,1) ~ (1,2), then t; = t3). Since Q1(2,1,1,1) =
@2(2,2,1,1,1) = —1, this bimodule is wild, hence so is the category
VB(A). Note that we need to check that ¢; + to = 21 + 25 + 23, since
the matrix ©, must be invertible.

In the case (3b) we only omit the 1st and the 6th row of the matrices
©,,. Then the matrix ®{¢ will be of the form

0 00

1d __
(I)ld -

* O * ¥
o O %
* ¥ O
* O O

We have one more matrix ©,, where z € sg, A and 7(z) = x. We con-
sider the triples such that G|y, = @321 r4G2q. The matrix ©, reduces
to the form

I{0{0(0(0]{0|0]O0
0(Z]0(0]0]|0|0]O0
0(0|1|(0]0]|0|0]O0
0. — 0(0{0(1]0]{0|0]O0
- 10/0]0]|0]|l]0]0|O0O
0(0(0{0(0]I]0]0
0(010{0(0]0]1]0
0(010{0(0|0|0|1

Then the matrix ¢z} = ¢§} from a morphism (®, ) of such triples
must be triangular and we obtain a matrix problem with the Tits form

Q=B+B+B+1 +tta+ bty +tsta+ Y 1y — > b,
i<y .3

Now Q(1,3,3,1,1,1,1,1,1,1,1,1) = —1, so we again obtain a wild
problem. O

6. EXAMPLE

We consider a simple but typical example. Let (X, .A) be defined as

follows.
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e X = X, UX,, where X; ~ Xy, ~ P!, X; N X, = {z} and the
intersection is transversal;

e sg A={x 21,25}, where x1 € Xy, 25 € Xy;

o C(A) =Mat(2, ;) x Mat(2, Ky);

e The singular localizations are:

A, = R(2;2,2;~), where (1,1) ~ (2,1);
Az, = R(1;2;~), where (1,1) ~ (1,1);
A, = R(1;2;~), where (1,1) ~ (1,2).

Then
e X = X, UX,, where X; ~ Xo ~ P!, X; N X, = 0;
o sg A = {y1,y2,y3,ys }, where y1,y3 € Y1, y2,y1 € Yo,
T(ys) = m(ys) =z, 7(y1) = 21, T(Y2) = 22.
Therefore the corresponding bunch of chains is

Q912{(611)\d62} Si={(1,1},
E={(d2)[deZ}, T2={(2,1)<(2,2)},
€ ={(d3)[deZ}, §F={31) <32},
¢ ={(d4)[deZ}, Fa={(41)<(42)},
(1,1) ~ (L,1), (2,2) ~(2,1), 3,1) ~ (4,1), (d1) ~ (d3), (d2) ~ (d4).

(We write (dk) and (k,i) instead of (d,y) and (yg,i).) We fix a ba-
sic vector bundle £, over A, (k = 1,2). Then £,(d)/JL1(d) has
a k-basis e;(d), e}(d), (1 <1i,j < 2) and Ly(d)/ T Lo(d) has a k-basis
e;(d), ej(d), (1 <1i,j <2), the upper index showing the point y; where
the corresponding element is supported.

An example of a usual string is given by the word
(4,2) = (di4) ~ (dr2) = (2,2) ~ (2,1) = (d22) ~ (d24) — (4,2)

with d; # dy in order that the word be not symmetric. The corre-
sponding vector bundle F is the A-submodule in G = Lo(dy) ® Lo(d2)
such that F, = G, for x ¢ sg A, F,, is generated by the preimages of
e3(dy) and e?(dy), and F, is generated by the preimages of ei(d;) and
e3(ds). Since supp G = Xy, Fy, = 0.

An example of a special string is (w, 1), where.

w=(1,1) - (d1) ~ (d3) — (3,2).

Here G = L(d), F., is generated by the preimage of e} and F, is

generated by the preimage of e3.
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An example of a bispecial string is (w, m, 1,0), where
w=(1,1) = (di1) ~ (di3) = (3,1) ~ (4,1) = (d4) ~ (d22) — (2,1) ~
~(2,2) = (ds2) ~ (d34) — (4,1) ~ (3,1) — (da3) ~ (ds1) — (1, 1).
The degrees d; can be arbitrary with the only restriction that dy # ds
or d1 §£ d4.

L Q = m(ﬁl(dl) © £2(d2) © £2(d3) ©® ﬁl(d4));

e F, is generated by the preimages of the columns of the ma-
trices I,e3(dy), Ime3(dy), Inei(ds) and I,,e1(d3), where I, de-
notes the identity m x m matrix;

e F,, is generated by the preimages of the columns of the matrices
I,e3(ds) and I,,e3(ds);

e F,, is generated by the preimages of the columns of the matrices

(%) ex(dr), (In?_q) er(dy), (iz) e1(ds) and (Ifiq) el(dy),

where ¢ = [(m + 1)/2] and
—if m = 2¢, then A, = I,, B, = J,(0), the Jordan ¢ X ¢
matrix with eigenvalue 0;
— if m = 2¢q — 1, then A, is of size (¢ — 1) x ¢ and B, is of
size ¢ X (¢ — 1), namely,

100 ... 00 R
A= |00 00 s o1 o
000 ... 10 TS

Finally, an example of a band is (w, m, A), where
w=(2,2) ~(2,1) = (di2) ~ (di4) — (4,1) ~ (3,1) — (d23) ~ (d21)—
—(1,1) ~ (1,1) = (ds1) ~ (d33) — (3,1) ~ (4, 1) — (dad) ~ (d42).
We suppose that d3 < dy or d3 = dsy, dy < dy. Then
o G=m(Ly(d1) D La(ds) B Lo(ds) B L1(dy));

e F,, is generated by the preimages of the columns of the matrices

(frete)) o (s efan)

e F, is generated by the preimages of the columns of the matrices
Imeil(d1>, Imei’(dg), Imeif(dg) and Imeﬁ‘(d4),

e F,, is generated by the preimages of the columns of the matri-
ces I,€2(dy) and J,,(A)e3(dy) (the Jordan m x m matrix with

eigenvalue \).
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If dy < d3 or dy = d3, di < dy, one has to permute dy and d3 in the
generators of F,,, also permuting the rows.
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