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Preface to the English Edition

This English edition has an additional chapter “Elements of Homological Al-
gebra”. Homological methods appear to be effective in many problems in the
theory of algebras; we hope their inclusion makes this book more complete
and self-contained as a textbook. We have also taken this occasion to correct
several inaccuracies and errors in the original Russian edition.

We should like to express our gratitude to V. Dlab who has not only metic-
ulously translated the text, but has also contributed by writing an Appendix
devoted to a new important class of algebras, viz. quasi-hereditary algebras.
Finally, we are indebted to the publishers, Springer-Verlag, for enabling this
book to reach such a wide audience in the world of mathematical community.

Kiev, February 1998 Yu.A. Drozd
V.V. Kirichenko



Preface

The theory of finite dimensional algebras is one of the oldest branches of
modern algebra. Its origin is linked to the work of Hamilton who discovered the
famous algebra of quaternions, and Cayley who developed matrix theory. Later
finite dimensional algebras were studied by a large number of mathematicians
including B. Peirce, C.S. Peirce, Clifford, Weierstrass, Dedekind, Jordan and
Frobenius. At the end of the last century T. Molien and E. Cartan described
the semisimple algebras over the complex and real fields and paved the first
steps towards the study of non-semisimple algebras.

A new period in the development of the theory of finite dimensional al-
gebras opened with the work of Wedderburn; the fundamental results of this
theory belong to him: a description of the structure of semisimple algebras
over an arbitrary field; the theorem on lifting the quotient algebra by its rad-
ical; the theorem on commutativity of finite division rings, etc. Most of his
results were extended to rings with minimal condition (artinian rings) and the
theory of semisimple algebras found its present form in the work of algebraists
from the German school headed by E. Noether, E. Artin and R. Brauer. More-
over, their work exposed the fundamental role of the concept of a module (or
representation).

Further development of the theory advanced basically in two directions.
The first led to establishing the theory of infinite dimensional algebras (and
rings without chain conditions); those results are reflected in the monograph
“Structure of rings” by N. Jacobson. The second direction - the study of
the structure of non-semisimple algebras — met considerable difficulties, most
of which were not overcome till now. Therefore papers which single out and
describe “natural” classes of algebras occupy here an important place. This
direction originates in the investigations of Kothe, Asano and Nakayama of
principal ideal algebras and their generalizations.

Throughout its development, the theory of finite dimensional algebras was
closely related to various branches of mathematics, acquiring from them new
ideas and methods, and in turn exerting influence on their development. In the
initial period, the most profound connections were to linear algebra, the theory
of groups and their representations and Galois theory. Recently, in particular
in connection with the study of non-semisimple algebras, an important role is
being played by methods of homological algebra, category theory and algebraic
geometry.
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The present book is intended to be a modern textbook on the theory
of finite dimensional algebras. The basic tools of investigation are methods
of the theory of modules (representations), which, in our opinion, allow a
very simple and clear approach both to classical and new results. Naturally,
we cannot pursue all directions equally. The principal goal of this book is
structure theory, i. e. investigation of the structure of algebras. In particular,
the general theory of representations of algebras, which is presently undergoing
a remarkable resurgence, is almost not touched upon. Undoubtedly, specialists
will notice the absence of some other areas recently developed. Nevertheless,
we hope that the present book will enable the reader to learn the basic results
of the classical theory of algebras and to acquire sufficient background to
follow and be able to get familiar with contemporary investigations.

A large portion of the book is based on the standard university course in
abstract and linear algebra and is fully accessible to students of the second
and third year. In particular, we do not assume knowledge of any preliminary
information on the theory of rings and modules (moreover, the word “ring”
is almost absent in the book). The chapters devoted to group representations
and Galois theory require, of course, familiarity with elements of group theory
(for instance, to the extent of A.l. Kostrikin’s textbook “An introduction to
algebra”). At the end of each chapter, we provide exercises of varied complexity
which contain examples instrumental for understanding the material as well
as fragments of theories which are not reflected in the main text. We strongly
recommend that readers (and in particular, beginners) work through most of
the exercises on their first reading. The most difficult ones are accompanied
by rather explicit hints.

The content of the book is divided into three parts. The first part consists
of Chapters 1-3; here the basic concepts of the theory of algebras are discussed,
and the classical theory of semisimple algebras and radicals is explained. The
second part, Chapters 4-6, can be called the “subtle theory of semisimple
algebras”. Here, using the technique of tensor products and bimodules, the
theory of central simple algebras, elements of Galois field theory, the concept
of the Brauer group and the theory of separable algebras are presented. Finally,
the third part, Chapters 8-10, is devoted to more recent results: to the Morita
theorem on equivalence of module categories, to the theory of quasi-Frobenius,
uniserial, hereditary and serial algebras. Some of the results of these latter
chapters until now have been available only in journal articles. A somewhat
special place is occupied by Chapter 7; in it are developed, based on the
results from semisimple algebras, the theory of group representations up to
the integral theorems and the Burnside theorem on solvability of a group of
order p®q’.

Naturally, we have not tried to formulate and prove theorems in their ut-
most generality. Besides, we have used the fact that we deal only with the
finite dimensional case whenever, in our view, it simplified our presentation.
An experienced reader will certainly note that many results hold, for example,
for arbitrary artinian rings. Very often such generalizations follow almost au-
tomatically, and when this is not the case, it would be necessary to introduce
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sufficiently complex new concepts, which, in our opinion, could make reading
the book substantially more difficult.

We are not presenting a complete list of references on finite dimensional
algebras because, even when restricted to topics covered in the book, it would
probably be comparable in length to the entire work. We point out only sev-
eral textbooks and monographs in which the reader can get acquainted with
other aspects of the theory of rings and algebras [1,2,4-9]. The questions of
arithmetic of semisimple algebras are dealt with in the book [10], or in the
classical textbook of Deuring [3].

We follow generally used notation. In particular, the symbols @, IR, C de-
note, respectively, the fields of rational, real and complex numbers. Numbering
of statements is done in the book by sections. For instance, “Theorem 4.6.5”
denotes the fifth theorem in Section 6 of Chapter 4.
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1. Introduction

1.1 Basic Concepts. Examples

An algebra over a field K, or a K-algebra, is a vector space A over the field K
together with a bilinear associative multiplication. In other words, to any two
elements a and b from the space 4, taken in a definite order, there corresponds
a uniquely defined element from A which is usually called their product and
denoted by ab, whereby the following axioms are satisfied:

1) a(b+ ¢) = ab + ac;

2) (b+ ¢)a = ba + ca;

3) (aa)b = a(ab) = a(ab);
4) (ab)c = a(bc),

where a, b, c are arbitrary elements from A and a an arbitrary element (scalar)
of the field K.

An algebra A is said to be finite dimensional or infinite dimensional ac-
cording to whether the space A is finite dimensional or infinite dimensional.
We shall consider mainly finite dimensional algebras, although in some chap-
ters we shall deal with infinite dimensional ones.

The dimension of the vector space A is called the dimension of the algebra
A and is denoted by [A : K.

It follows from the bilinearity of the multiplication that, given a basis

{a1,a2,...,a,} of the space A, the multiplication is uniquely determined by
n

the products of the basis vectors b;; = a;aj. Indeed, if @ = > aja; and
i=1

b= Z ﬂjaj, then
j=1

ab= (iaiai) (i ﬁjélj) = zn: aiﬂj(aiaj) = zn: aiﬂjbi]‘ .
i=1 Jj=1 i,j=1 4j=1

n
Now, decompose the vectors b;; with respect to the basis: b;; = > ’yf}ak.
k=1
We see that the structure of the algebra over the space A with a fixed basis is
uniquely given by a choice of n® elements 7:} (i,7,k =1,2,...,n) of the field
K. These elements are called the structure constants of the algebra A.
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Of course, the vectors b;; (and thus the structure constants "/f]) cannot
be chosen arbitrarily; although the bilinearity of the multiplication (i.e. the
validity of the axioms 1)-3)) is guaranteed by the defining formula

n n n
(Cases) (o pas) = 3 asiban,
=1 Jj=1 1,7,k=1

the associativity is, in general, not satisfied. Indeed,

n n
¢ ¢
(aigj)ar = Y vhaear = Y Yivgiam,
=

l,m:l

n n
4 £ m
ai(ajar) = a; Z’ijal = Z Vik Vit Om
£=1 £,m=1

and thus it follows that, for arbitrary i, j, k, m,

n n
S A=Y v (1.1.1)
=1 =1

Conversely, the relations (1.1.1) imply that multiplication is associative
for the basis vectors, and one can therefore easily verify that multiplication
is, indeed, associative.

Assume that {a;,ds,...,an} is another basis of the space A, related with
the original basis by the transformation matrix S = (s;5). Then

n n n
G;a; = (Z Silat’) (z Sjrar) = Z siesjr(aear) =
=1 r=1

,r=1
n n
m m ! ~
= E SitSirYerOm = g SitSjrYerSmk Ok »
£,r,m=1 k8, r,m=1

where s/, are the entries of the inverse matrix S~!. Consequently the struc-
ture constants *7,"] corresponding to the new basis have the form

n

~k o m

Yij = E SitS5kSmrYer »
£,r,m=1

i.e. the elements ’Y;’} can be considered as the coordinates of a three valent
tensor (twice covariant and once contravariant).
An element e of an algebra A is called the identity of the algebra if

ae = ea = ¢ for an arbitrary element a € A.

In what follows we shall always assume that A has the identity. Observe that
the identity e is unique: if €' is another identity, then ¢ = ee’ = ¢€'.
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The existence of the identity is a usual and non-essential restriction. If
A is an algebra without the identity, then it is always possible to “adjoin”
it by considering the algebra A consisting of the pairs (a,a), where a € A4,
a € K with the componentwise addition and scalar multiplication, and the
multiplication defined by

(a,a)(b, ) = (ab+ ab+ afB, af).

It is easy to verify that A is an algebra and that the element (0,1) is its
identity. All the properties of the algebras A and A are essentially the same;
we shall illustrate this fact in the exercises.

Ezamples. 1. The set of all square matrices of order n with entries from a field
K forms an algebra with respect to the ordinary operations on the matrices.
It is a finite dimensional algebra of dimension n? which will be denoted by
M, (K).

2. The polynomials in one variable over a field K form an infinite dimen-
sional algebra K|z].

3. If V is a vector space over the field K, then the linear transformations
of the space V form also an algebra E(V'). This algebra is finite dimensional
if and only if V is finite dimensional.

4. Consider the four-dimensional vector space over the field IR of the real
numbers, with the basis {e, ¢, j, k}. Define the multiplication by means of the
following table: ‘

elels]| 7|k

1|t |—e| k|—7

il 1-k|—e| i
E|lk|j|—-t]—e

(The product ab is written in the row denoted by a and in the column denoted
by b.)

It is easy to verify that one obtains in this way an algebra with identity e
over the field IR. This algebra is called the gquaternion algebra IH. Historically,
it is one of the first examples of an algebra.

5. Every extension L of a field K, i.e. a field containing K as a subfield,
can be considered as an algebra over K. If this algebra is finite dimensional
then the extension is called finite; otherwise, it is called infinite.

6. Let G be a group. Consider the elements of this group as basis elements
of a vector space, i.e. consider the set KG of all formal sums of the form

Y. @49, where a4 are elements of the field K which are, except for a finite
geG

number, all equal to zero. The group multiplication (products of the basis ele-
ments) defines the algebra structure over the space KG. This algebra is called
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the group algebra of the group G over the field K and plays a fundamental
role in the theory of representations of groups.

7. Consider the n-dimensional vector space of all n-tuples (a1, @2, ...,as),
a; € K, with coordinatewise addition and scalar multiplication. By defining
the multiplication coordinatewise

(a1,a2,~ . ,an)(ﬂlaﬂ27' . 7ﬂn) = (alﬂl,O‘?ﬂ?,- . ,anﬂn) )

we obtain an algebra over the field K which will be denoted by K™.

8.Let A;, As, ..., A, be algebras over the field K. Consider their Cartesian
product A, i.e. the set of all sequences (a1,as,...,an), a; € A;, and define
the operations coordinatewise:

(al,ag,...,an)—{-(bl,bg,...,bn)=(a1 +b1,a2 +b2,...,an+bn),
alay,as,...,an) = (aay,aas,...,a0,),

(al,az,. . ,an)(bl,bz,. .. ,bn) = (albl,agbg, v ,anbn).

Clearly, in this way A becomes an algebra over K which is called the direct
product of the algebras A, A,,..., A, and is denoted by A1 x Az X ... X Aq,

or H A;. The algebras A;, As,..., A, are said to be direct factors of the

=1
algebra A. Of course, the preceding example is a particular case of the present
example, if Ay = Ay =...= A, =K.

An algebra is called commutative if the multiplication is commutative,
i.e. if ab = ba for all a,b € A. The algebras of the Examples 2, 5 and 7
are commutative. The algebra of Example 6 is commutative if the group G
is commutative. The algebra of Example 8 is commutative if all the direct
factors A, As,..., A, are commutative. The remaining algebras of the above
examples are non-commutative.

A subset B of an algebra A is said to be a subalgebra if B itself is an
algebra with respect to the operations in A, and has the same identity. In
other words, B has to be a subspace of A such that e € B and if a,b € B,
then ab € B.

Ezamples. 1. The set of triangular matrices, i.e. all matrices (ai;) such that
a;; = 0 for j < i, form a subalgebra of the algebra M, (K) of all matrices.
This algebra will be denoted by Ty, (K).

2. The diagonal matrices also form a subalgebra of My,(K); it will be
denoted by D,(K).

3. The set of all matrices of the form

&1 Qg &3 ... Op—1 [ 2%
0 a1 Q2 ... Qp-2 Qp_—1
0 0 ay ... Qp-3 Qp—2
0 0 O @ o
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form a subalgebra of M, (K) of dimension n. This algebra will be called the
Jordan algebra and denoted by J,(IX).

4. If H is a subgroup of G, then K H is a subalgebra of KG.

5. The set of all elements ¢ of an algebra A which commute with all
elements of the algebra, i.e. such that ca = ac for all a € A, form, evidently,
a subalgebra of A; it is called the center of the algebra A and is denoted by
C(A).

6. Consider, in an algebra A, the set of all scalar mvltiples of the identity,
i.e. of all elements of the form ae with o € K. Since (ae)(fe) = afe, this set
forms a subalgebra denoted by Ke.

The fundamental goal of any theory is a classification of the objects un-
der investigation. We are going to classify the algebras of small dimensions.
If [A: K] = 1, then A = Ke and the structure of A is fully determined;
consequently, the first interesting case is when [4 : K] = 2.

Choose a basis in a two-dimensional algebra A, taking e as the first basis
element: {e,a}, a ¢ Ke. Then the multiplication is uniquely determined by
the product aa = a?; clearly, associativity is automatically satisfied. Moreover,
such an algebra is necessarily commutative. Let a> = pa + ge, where p and
q are some (fixed) elements of the field K. Consider the polynomial g(z) =
2% — pz — ¢q. The element a is a “root” of this polynomial. It turns out that
the structure of A is essentially determined by the properties of the roots of
g(z) in K. There are 3 possible cases.

Case 1. g(z) hasin K two distinct roots z; # z2. Thenp = 21422, ¢ = —z122.
Put

a—=Ie
b= ——

To — I ’

Since b & Ke, {e, b} is a basis of A; moreover,

a® —2z,a + zle _ pa + ge — 2z1a + z2e _ (z2 ~ z1)a — (22 — z1)T10

b = =
(22 — 21)° (z2 — 21)° (z2 — 21)?
a—=ITe
= =b_
T2 — 1

Case 2. g(z) has in K a unique (double) root, i.e. g(z) = (z — xl)z, where
z; € K. Putting b = a — z;e, we obtain the basis {e, b} for which

B = (a—2¢)’ = g(a) = 0.

Case 3. g(z) has no roots in K, i.e. g(z) is irreducible over the field K. We
shall show that A is a field, i.e. that every non-zero element b has an inverse
b~! such that b6~! = e. The easiest way to show this consists in “destroying
irrationality in the denominator”. Let b = aca+fe. Then g(z) = (az+8)f(z)+
r, where r € K, the remainder of g(z) when divided by az + §, is non-zero and



6 1. Introduction

f(z) = o'z + B'. But then it follows that g(a) = 0 = (aa+fe)(o'a+f'e)+re,

) a'a e) . .
i.e. the element —(—4_——@——2 is the inverse of b.
r

Consequently, we have obtained the following result.

Theorem 1.1.1. A two-dimensional algebra A over a field K 1is either a field
or it possesses a basis {e,b} such that b* = b or b* = 0.

If the field K is algebraically closed (for ezample, if K is the field of
complez numbers), then Case 8 above (that of the field) is not possible.

1.2 Isomorphisms and Homomorphisms.
Division Algebras

In describing the two-dimensional algebras, we have seen that many of them
(for instance, all algebras of Cases 1 and 2 above) have a “similar structure” in
the sense that, for instance, it is possible to choose bases with identical tables
of multiplication. Such algebras possess essentially the same properties and
cannot be “internally differentiated”, although they may be defined over dis-
tinct vector spaces. All such algebras will be identified and considered simply
to be different copies of the same algebra. This leads to an important concept
of the theory of algebras (and many other mathematical theories), namely to
the concept of an isomorphism.

An isomorphism from an algebra A to an algebra B is a one-to-one linear
map f of the space A onto the space B which preserves multiplication, i.e.
such that f(ajaz) = f(a1)f(az2) for any elements a;, a; from the algebra A.
If there is an isomorphism from the algebra A to the algebra B, then the
algebras A and B are called isomorphic. This will be denoted by A ~ B or, if
the isomorphism f is to be indicated explicitly, by f: A = B.

It is obvious that the existence of an isomorphism f : A = B is equivalent
to the fact that one can choose bases in A and B with identical tables of
multiplication. In particular, all two-dimensional algebras over the field K in
Cases 1 or 2 of the preceding paragraph are mutually isomorphic.

In the theory of algebras, isomorphic algebras are, as a rule, identified. It is
said that the algebras are studied “up to an isomorphism”. For instance, up to
an isomorphism, there are two two-dimensional algebras over an algebraically
closed field. It is not difficult to verify that these algebras are K2 and J2(K).

A classical example of an isomorphism, one which is very important for
linear algebra, is the isomorphism between the algebra of the linear opera-
tors E(V) of an n-dimensional space V and the matrix algebra M,(K); it is
obtained by assigning to an operator its matrix with respect to a fixed basis.

Another example of isomorphic algebras is given by the algebras K™ and
D, (K) (the algebra of diagonal matrices).
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Finally, for an arbitrary algebra with identity e, the subalgebra Ke is iso-
morphic to the basis field. In what follows, we shall always identify the element
a of the field K with the element ae € A (its image in this isomorphism) and
consider the field K as a subalgebra of the K-algebra A. In particular, the
identity of the algebra A will be often denoted simply by 1.

The concept of a homomorphism plays also an important role in the theory
of algebras.

A homomorphism from an algebra A to an algebra B is a linear map
f : A — B which preserves multiplication and the identity, i.e. such that
flaraz) = f(a1)f(a2) for any aj,a; € A and f(es) = ep, where e4 is the
identity of the algebra A and ep the identity of the algebra B.

If the homomorphism f is injective, i.e. if a; # ap implies f(a1) # f(a2),
then it is called a monomorphism. If f is surjective, i.e. for an arbitrary
element b € B, there is a € A such that b = f(a), then it is called an
epimorphism.

Obviously, if f is at the same time a monomorphism as well as an epi-
morphism, then it is an isomorphism. In this case (and only in this case) f
possesses an inverse map f~! which is an isomorphism of B to A.

Since the homomorphism f is a linear map, it is sufficient, in order that
it is a monomorphism, that f(a) = 0 implies a = 0. Indeed, if this is the case,
then it follows from f(a;) = f(a2) that f(a; —az) =0, and thus a; —az =0,
l.e. a1 = as.

As for maps, there is a product (or composition) defined for homomor-
phisms: if f : A — B and ¢ : B — C are homomorphisms of algebras, then
the map gf : A — C defined by gf(a) = g(f(a)) can easily be shown to be a
homomorphism, as well. The multiplication of homomorphisms is associative:
if one of the products (gf)h and g(fh) is defined, then the other is defined
and they are equal.

Let us give the following example of a homomorphism. Let a be a fixed
element of an algebra A. Consider the map K[z] — A, assigning to each
polynomial f(z) = apz™ + ayz"~! +... + a, the element f(a) = aga™ +
a;a™ ! 4+ ... 4+ a,. Clearly, it is a homomorphism and its range consists of all
possible elements of the form f(a). This image is usually denoted by K|[a] and
is called a monogenic subalgebra generated by the element a. In the particular
case that K[a] = A, the algebra A is called monogenic. The element f(a) is
said to be the value of f(z) for z = a.

We shall now turn our attention to the study of internal properties of
algebras and their elements.

An element a of an algebra A is called a left (right) divisor of zero if there
is a non-zero element b € A such that ab = 0 (ba = 0, respectively).

Similarly, a is called a left (right) divisor of identity if there is an element
b € A such that ab=1 (or ba = 1, respectively).

Observe that if a is at the same time both left and right divisor of identity,
i.e. if there are b, b’ such that ab = b'a = 1, then b’ = b/(ab) = (V'a)b = b, and if
ac = 1, then b = b(ac) = (ba)c = c. Thus, b is a uniquely determined element
satisfying ab = 1, and similarly a uniquely determined element satisfying
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ba = 1. In this case the element is called invertible, and b is called the inverse
of a and is denoted by b = a™!.

Generally speaking, the relationship among the four properties introduced
above is rather complex. However, in finite dimensional algebras the matter
is very simple.

Theorem 1.2.1. In a finite dimensional algebra

1) every left divisor of zero (identity) is a right divisor of zero (identity),
and vice versa;

2) every element is either a divisor of zero or a divisor of identity;

3) a divisor of zero cannot be a divisor of identity.

Proof. a) First, let us prove that in every algebra, a left (right) divisor of zero
cannot be a right (left) divisor of identity. Indeed, let ab = 0 but b # 0, and
at the same time ca = 1. Then 0 = ¢(ab) = (ca)b = b, a contradiction to the
assumption b # 0.

b) Now, let the algebra A be finite dimensional, and let a € A be an
element which is not a left divisor of zero. Consider the map f of the vector
space A into itself, given by the formula f(z) = az. It turns out, in view of
the algebra properties, that f is a linear map and that, since a is not a left
divisor of zero, f(x) = 0 implies 2 = 0. But then, since A is finite dimensional,
f is a non-singular map and its image coincides with the entire space A. In
particular, 1 = f(b) = ab for some b € A, and a is thus a left divisor of identity.

In a similar manner, if a is not a right divisor of zero, then it is a right
divisor of identity.

¢) We can now complete the proof of the theorem. If an element a € A
is a left divisor of zero, then, in view of a), it cannot be a right divisor of
identity. Thus, in view of b), it must be a right divisor of zero. The other
assertions of 1) can be proved in a similar way. Furthermore, a) implies 3) and
b) implies 2). a

An algebra in which every non-zero element is invertible is called a division
algebra.

Corollary 1.2.2. A finite dimensional algebra without divisors of zero is a
diviston algebra.

Corollary 1.2.3. A subalgebra of a finite dimensional division algebra is
a diwvision algebra. In particular, the center of a finite dimensional division

algebra is a field.

Every element of a finite dimensional K-algebra A is a “root” of some non-
zero polynomial f(z) € K[z] (i.e. f(a) = 0). Indeed, otherwise the subalgebra
Ka] would be isomorphic to K[z]; this is impossible, because the space K|[z]
is infinite dimensional. The polynomial of the least degree with the leading
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coeflicient 1 whose root is a is called the minimal polynomial of the element a
and is denoted by m,(z).

Proposition 1.2.4. Every polynomial having a as its root is divisible by
mq(z). In particular, the minimal polynomial is uniquely determined.

Proof. Let f(a) = 0. Divide f(z) by mq(z):

f(z) = ma(z)9(2) + r(2),

where r(z) = 0 or its degree is less than the degree of my(z). But f(a) =
r(a) = 0, and thus the latter case is impossible: f(z) is divisible by m,(z).
0

Proposition 1.2.5. If A is a finite dimensional division algebra over a field
K, then the minimal polynomial m.(z) of every element a € A is irreducible.

Proof. If mq(z) = f(2)g(z), where f and g are polynomials of smaller degree,
then 0 = my(a) = f(a)g(a); but, since f(a) # 0, g(a) # 0, this is impossible.
0

Corollary 1.2.6. If K is algebraically closed, then the only finite dimensional
division algebra over K is K itself.

Proof. If A is such a division algebra and a is an (arbitrary) element, then
me(z) is an irreducible polynomial and thus, since A is algebraically closed,
it is linear: mqy(z) = = — a. Therefore a = a € K. Consequently, 4 = K,
completing the proof. O

1.3 Representations and Modules

The definition of an algebra given at the beginning of this chapter is useful
and important in that it covers a rather large variety of objects. However,
in investigations of the structure and properties of algebras, it is very often
essential to have a concrete realization of a given algebra, for instance, as a
suitable matrix algebra (or as an algebra of linear operators). Such realizations
are studied in the theory of representations which in many ways will be our
main tool of investigation in this book.

A representation of a K-algebra A is a homomorphism T of A into the
algebra E(V') of the linear operators on some K-space V. In other words, to
define a representation T is to assign to every element a € A a linear operator
T(a) in such a way that
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T(a+b) = T(a)+ T(b)

T(aa) = oT(a)
T(ab) = T(a)T(b)
T(1) = E (the identity operator)

for arbitrary a,b € A, o € K. If the space V is finite dimensional, then its
dimension is called the dimension (or degree) of the representation T. Evi-
dently, the image of the representation T, i.e. the set of all operators of the
form T'(a), forms a subalgebra of E(V). If T is a monomorphism, then this
subalgebra is isomorphic to the algebra A. In this case, the representation is

said to be faithful.

Theorem 1.3.1 (Cayley). Every algebra admits a faithful representation.
In other words, every algebra is isomorphic to a subalgebra of the algebra of
linear operators.

Proof. 1t follows from the axioms of an algebra that, for an arbitrary element
a € A, the map T(a) : ¢ — za, z € A, is a linear operator on the space A
and that T(a + b) = T(a) + T(b), T(aa) = aT(a), T(ab) = T(a)T(b) and
T(1) = E (identity operator). Thus, T is a representation of the algebra A. If
a # b, then la # 1b. It follows that the operators T(a) and T'(b) are distinct
and that T is a faithful representation, as required. O

The representation constructed in the proof of Cayley’s theorem is called
regular and is of great importance in the theory of algebras (one may ex-
pect this because it provides a relatively simple and standard realization of
the given algebra). The dimension of the regular representation equals the
dimension of the algebra.

If the representation T is finite dimensional (and in what follows, we shall
consider only such representations), then one may choose a basis in the space
V and assign to each operator T'(a) its matrix (T(a)). Obviously, the corre-
spondence a — (T'(a)) is a homomorphism of the algebra A to the matrix
algebra M, (K), where n is the dimension of the representation T'. Such a ho-
momorphism is called a matriz representation of the algebra A. If a new basisis
chosen in the space V, then every matrix (T(a)) transforms into C(T(a))C !,
where C is the matrix of the transformation. The matrix representations re-
lated this way are said to be similar.

The concept of similarity can be defined also for operator representations:
two representations T : A — E(V) and S : A — E(W) are called similar
if there is an isomorphism f of the space V onto the space W such that
T(a) = fS(a)f™?! for any element a € A. From the above, it follows easily
that one can choose bases of V and W in such a way that the matrices of
the operators T(a) and S(a) coincide. Therefore, it is reasonable to study the
representations up to a similarity, i. e. to identify similar representations.

In what follows, as a rule, we shall not distinguish between the representa-
tion and the corresponding matrix representation. Observe that Theorem 1.3.1
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(Cayley’s theorem) can be also formulated as follows: Every finite dimensional
algebra is isomorphic to a subalgebra of a matrix algebra (of course, the fact
that the algebra is finite dimensional is necessary in order that the regular
representation be finite dimensional).

As a rule, it is convenient not to consider the space V' and the homomor-
phism T : A — E(V) separately but to view the elements of the algebra as
operators on V. This leads to the concept of a module.

A right module over a K-algebra A, or a right A-module, is a vector space
M over the field K whose elements can be multiplied by the elements of the
algebra, i. e. to every pair (m,a), m € M, a € A, there corresponds a uniquely
determined element ma € M such that the following axioms are satisfied:

1) (my + ma)a = mia + maa;

2) m(a; + a2) = ma; + masz;

3) (am)a = m(aa) = a(ma) where a € K ;
4) m(ab) = (ma)b;

5ml=m.

We shall show that, for any representation of the algebra A, we can con-
struct a right module over that algebra, and vice versa: for any right module,
we can construct a representation.

Let T : A — E(V) be a representation of the algebra A. Define the
product of the elements of V by the elements of the algebra by putting va =
vT(a) for any v € V, a € A. It follows immediately from the definition of a
representation that, in this way, V becomes a right A-module. We say that
this module corresponds to the representation T'.

On the other hand, if M is a right module over A, then it follows from the
axioms of a module that, for a fixed a € A4, the map T(a) : m — ma is a linear
transformation in the space M. Assigning to every a the operator T'(a) (or its
matrix with respect to a basis), we obtain a representation of the algebra A
corresponding to the module M.

In particular, to a regular representation, there corresponds a regular mod-
ule. Here M = A and ma is the product of the elements m and a in the
algebra A.

In what follows, unless stated otherwise, all modules under consideration
will be assumed finite dimensional (as vector spaces over K ).

We introduce also the concepts of homomorphism and isomorphism for
modules.

A homomorphism of a right A-module M into a right A-module N is a
linear map f : M — N for which (ma)f = (mf)a for arbitrary elements
m € M and a € A.

If, in addition, f is bijective, then it is called an isomorphism, and the
modules M and N are called isomorphic. In this case, we write f : M = N,
or simply M ~ N. Evidently, if f : M 5 N, then f~! : N 5 M. Isomorphic

modules have the same properties and are identified.
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Theorem 1.3.2. The representations corresponding to isomorphic modules
are similar and conversely, the modules corresponding to similar representa-
tions are isomorphic.

Proof. Let T and S be the representations corresponding to the modules M
and N, and f: M = N. Then, for any m € M and a € A, we have

mT(a)f = (ma)f = (mfla=mfS(a),
i.e. T(a)f = fS(a), or T(a) = fS(a)f?.

Conversely, assume that the representations T' and S are similar, i. e. that
T(a) = fS(a)f~!. Then, if M and N are the corresponding modules, f is a
one-to-one linear transformation of M onto N satisfying

(ma)f = mT(a)f = mfS(a) = (mf)a

for any m € M and a € A, i.e. f is an isomorphism of the modules. |

In this way the concept of a module isomorphism corresponds precisely to
the concept of a representation similarity.

In the sequel, it will be convenient to write the homomorphisms of right
modules on the left, i.e. to write fa instead of af. Thus, unless stated other-
wise, we shall always keep to this system of notation.

As homomorphisms of algebras, homomorphisms of modules can also
be multiplied defining the product gf : M — L of the homomorphisms
f:M — N and g: N — L by gf(m) = g(f(m)) for all elements m € M
(it is easy to verify that gf is again a homomorphism).

However, for homomorphisms of modules we have also other operations:
additon and scalar multiplication. If f and g are homomorphisms of a module
M into a module N, then f+ ¢ : M — N is defined by (f + g)(m) =
f(m) + g(m) and af : M — N, where a € K, by (af)(m) = af(m) for all
m e M.

One sees immediately that both f + g and af defined above are homo-
morphisms and that the set of all homomorphisms from M to N forms with
respect to these operations a vector space over the field K. We shall denote
this space by Hom 4(M, N).

The multiplication of homomorphisms behaves in the usual way: it is
associative, i.e. (¢gf)h = g(fh) whenever these products are defined (obvi-
ously, they are defined simultaneously), and bilinear, i.e. g(f + k) = gf + gh;
(9+ f)h =gh+ fh; g(af) = (ag)f = a(gf) whenever these expressions have
meanings. The proofs are easy and are left to the reader.

If 2 homomorphism f: M — N is injective, i.e. if m; # m, implies that
f(my1) # f(m2), then it is called a monomorphism. If f is surjective, i.e. if
every element of N is of the form f(m), then f is called an epimorphism.
Clearly, if f is both a monomorphism and an epimorphism, then it is an
isomorphism. As in the case of algebras, in order that f be a monomorphism,
it is sufficient that f(m) = 0 implies m = 0.
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Analogously to the concept of a right module, one can define a left module
over the algebra A as a vector space L together with a multiplication af (a € A,
¢ € L, al € L) satisfying the following axioms:

1) a(4y + €3) = al; + als,

2) (a1 + a2)l = a1 + azf,

3) a(af) = (aa)l = a(al), a € K,
4) (ab)t = a(bl),

5) 14 =¢.

To left modules, there correspond the antirepresentations of the algebra A,
i.e. the linear transformations T : A — E(V) such that T(ab) = T(b)T(a);
T(1) = E. The concepts of similarity, homomorphism and isomorphism can
be defined for the antirepresentations and left modules in a similar way as
for representations and right modules. Also the theorems corresponding to
Theorems 1.3.1 and 1.3.2 hold. In particular, by considering the algebra A as
a left module over itself, we obtain the concept of the regular left module and
the regular antirepresentation.

In what follows, we shall consider, as a rule, just the right modules and
shall simply speak about modules over an algebra A, or A-modules. The reader
may verify easily that all results which will be proved, hold also for left mod-
ules. Therefore, whenever convenient, we shall use them without any particular
notice.

1.4 Submodules and Factor Modules.
Ideals and Quotient Algebras

It is well-known that, in linear algebra, the concept of an invariant sub-
space of an operator plays a very important role. If we have a representation
T:A— E(V) of an algebra A, then it is natural to consider the subspaces
of V which are invariant with respect to all operators of the representation.
This leads to the concept of a submodule.

A submodule of an A-module M is a subspace N C M such that na € N
for all elements n € N and a € A.

Choose a basis {e;j,...,ex} in the subspace N and complete it to a basis
of M: {e1,...,ek,€k+1,-..,€m}. Then, with respect to this basis, the repre-
sentation T' corresponding to the module M has the form

. Tl(a) 0
T(a) = (X(a) Tz(a)> . (1.4.1)

Such a representation (and any one similar to it) is called reducible. Clearly,
Ti is the representation corresponding to the module N.

On the other hand, let a representation be reducible, i.e. have a form
(1.4.1), where T} is a representation of dimension k. Then the subspace N
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spanned by the first k£ elements of the basis, is invariant with respect to all
operators T'(a), i.e. it is a submodule of M.

It follows from the properties of operations with matrices partitioned into
blocks, that the map a — T,(a) is also a representation of the algebra A. The
corresponding module can be interpreted as follows.

Let m € M. Consider the set m + N consisting of all elements of the
form m + n, where n runs through all N. Such sets are called the congruence
classes of M by N (clearly, the congruence class m + N is a linear variety
defined by the subspace N through the vector m). If an element z belongs
to the class m + N, then we say that z is congruent to m modulo N and
write 2 = m (mod N). We are going to show that two congruent classes either
coincide or are disjoint.

Indeed, if (m; + N)N(m2+ N) # 0, then there are two elements n; and n,
in N such that m; +n; = my + no. From here, mj —mg = ny —n3 = ng € N,
and for every element n € N,

mi+n=mes+ng+n€me+N

and
me4+n=mp+n—ng€m +N,

l.e. mi +N=m2 +N

One can see easily that if z € m+ N andy € m' + N, then ¢t +y €
(m+ m') + N and also az € am + N and za € ma + N for all elements
a € K, a € A. Consequently, one can define on the set of the congruence
classes an A-module structure, defining

(m+N)+(m'+N)=(m+m')+ N,
am+N)=am+ N, (1.4.2)
(m+N)a=ma+ N.

The fact that all axioms are satisfied is clear because the operations with
the classes are determined by means of their “representatives”, i.e. by the
operations in the module M.

The set of congruence classes of M by N together with the module struc-
ture defined by (1.4.2) is called the factor module of the module M by the
submodule N and is denoted by M/N.

Observe that the factor module defines a canonical map 7 : M — M/N
assigning to each element m € M the class m + N. Moreover, the formulae
(1.4.2) imply that 7 is a homomorphism (and obviously an epimorphism). We
shall call this epimorphism the projection of M onto the factor module M/N.

It is trivial to verify that if {e;,...,ex} is a basisof N and {ex41,...,€em}
its completion to a basis of M, then the classes m(egt1),-..,7(em) form a
basis of M /N and the corresponding representation coincides with T5.

The submodules of the regular module are called the right ideals of A.
Thus, a right ideal is a space I C A such that, if z € I and a € A, tken
za € I. The submodules of the left regular module are called the left ideals.
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Let us point out that in the term “right ideal” we shall never omit the adjective
“right” because the term “ideal” alone is used with quite a different meaning.
Important examples of submodules and factor modules occur in the study
of homomorphisms.
Let f : M; — M, be a homomorphism of A-modules. The set of all
elements m € M; for which f(m) = 0 is its kernel Ker f. The image Im f of
the homomorphism f is the set of all elements of M; of the form f(m).

Theorem 1.4.1 (Homomorphism Theorem). For any homomorphism
f : My — M, the kernel and the image are submodules of My and M;,
respectively, and Im f ~ M, [Ker f.

Proof. If f(m) = f(m') =0, then f(m +m') = f(m) + f(m') =0, flam) =
af(m) =0 and f(ma) = f(m)a =0, i.e. Ker f = N; is a submodule of M;.
Similarly, since f(m) + f(m') = f(m +m'), af(m) = f(am) and f(m)a =
f(ma), Im f = N3 is a submodule of M.

Let m + N; be an element of M;/N; and 2 € m + N;. Then 2 = m + n,
where f(n) = 0 which yields f(z) = f(m). Thus, putting g(m + N1) = f(m),
we define a map g : M;/N; — N,; moreover, from the fact that f is a
homomorphism and from the definition of the operations (1.4.2) in a factor
module it follows that g is a homomorphism.

Assume that g(m + N1) = 0. Then f(m) =0, i.e. m € Ni, and therefore
m+ Ny = 0+ N is the zero class of the factor module M; /N;, and thus g is a
monomorphism. Since every element from N» has a form f(m) = g(m + Ny),
g is an epimorphism, and hence an isomorphism of M;/Ker f ontoIm f. O

Although it is very simple, the homomorphism theorem plays an important
role in the study of modules. We shall illustrate this with an example.

A module M is said to be cyclic, if it contains an element mg such that
every element of M is of the form mga, where a € A. The element my is called
a generator of the module M.

Corollary 1.4.2. Every cyclic module is isomorphic to a factor module of the
regular module by a suitable right ideal.

Proof. Let M be a cyclic module with a generator myg. It follows from the
module axioms that the map f : A — M defined by f(a) = mpa is a
module homomorphism and that, since mg is a generator, Im f = M. But
then M ~ A/Ker f, where Ker f is a right ideal. O

We shall also often use the following result which refines the homomor-
phism theorem.

Theorem 1.4.3 (Noether). Let N be a submodule of M and w the projection
of M onto M = M/N. For any submodule L C M, set (L) = {n(z) | z € L}
and for any submodule L C M, set 7= '(L) = {z € M | n(z) € L}. Then

1) 7 Y(L) is a submodule in M containing N;
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2) w(7~Y(L))=L and if L D N, then 7~} (n(L)) =
3) ifL=n"YL), then L/N ~ L and M/L ~ M/L

In this way, we obtain a bijective correspondence between the submodules of
M and the submodules of M containing N; moreover, this correspondence
preserves the operation of forming factor modules.

Proof. The assertion 1) is trivial. Furthermore, every element € L is of the
form w(z), where z € M, and also # € 7~!(L) because n(z) = Z € L, from
where we get the formula L = n(7~1(L)).

Now, let L be a submodule of M containing N. If we restrict = to L, we
obtain a homomorphism # : L — M whose kernel is N and whose image
is m(L) = L. Obviously, 7~}(L) D L. We show the converse inclusion. If
m € n~Y(L), then w(m) € L and therefore it has the form =(z) with z € L.
From n(m) = =(z) it follows that 7(m —z) = 0, i.e. m—2z = n € N.
However, N C L and thus alsom =z +n € L. As a result, 7~'(L) = L and
L=Im#%~L/Ker7 = L/N.

Denote by 7 the projection of M onto M /L and consider the homomor-
phism 77 : M — M/L. Since 7 and 7 are epimorphisms, 77 is an epimor-
phism, too.

Let us determine Ker 77. The fact that 77(m) = 0 implies that 7(m) € L,

lLe.me 7~Y(L) = L. Hence Ker 7 = L and, by the homomorphism theorem,
M/L~M/L. O

Let us investigate what will happen if L is a submodule of M which does
not contain N. As before, we can consider the restriction # : L — M/N
of the projection M — M/N. Here, n(z) = 0 means that = € N, and thus
Ker7 = LNN and L = Im # ~ L/LNN. But we have seen that L ~ 7~'(L)/N.
At the same time, m € 77*(L) if and only if 7(m) = =n(z) for a certain
z € L,i.e. m = z + n, where n € N. Therefore, denoting by L + N, as
usually, the subspace of M consisting of all possible sums « + n, we see that
L+ N = 7r"1(L) is a submodule of M (thls can easily be seen directly) and
(L+N)/N~L~L/LNN.

The following theorem has been proved.

Theorem 1.4.4 (Noether). For any submodules L and N of a module M,
(L + N)/N ~L/(LON).

If we wish to illustrate the position of the submodules L, N, L + N and
LN N in the module M, we obtain a “parallelogram”.

L+ N
VRN
N L
NS
LNAN
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The factor modules (L+N)/N and L/(LNN) are the “opposite sides of the
parallelogram”. Therefore we shall occasionally refer to the second Noether
theorem as the “parallelogram rule”.

A natural process of translating the above results to the homomorphisms
of algebras leads to the concept of an ideal (or, as one often says, of a two-sided
ideal).

Let A and B be two algebras over a field K and ¢ : A — B a K-algebra
homomorphism. Its image In @& = {$(a) | a € A} is, of course, a subalgebra of
B. But the kernel Ker® = {a € A | #(a) = 0} is not a subalgebra because it
does not contain the identity. Since @ is a linear map, Ker @ is a subspace of A.
In addition, if z € Ker @, then for any a € A, #(az) = #(a)P(z) = $(a)0 =0,
and similarly &(za) = 0, i.e. az and za both belong to Ker . In other words,
Ker & is simultaneously a right and a left ideal.

A subspace which is at the same time a right and a left ideal of an algebra
is called an ideal.

Given an ideal I C A, one can construct a new algebra as follows.

Again, consider the set of all congruence classes of A by I. If a + I and
b+ I are two such classes, then, for any ¢ € a+ I and y € b+ I, the element
zy lies in the class ab+ I. Therefore the set of all congruence classes forms an
algebra over the field K if we put

(a+ D+ B+ =(a+b)+1,
ala+)=aa+I, a€ K,
(a+I)(b+I)=ab+I.

This algebra is called the quotient algebra of the algebra A by the ideal I and
is denoted by A/I. The zero of this algebra is the class 0 + I = I, and the
identity is the class 1 + I.

The map 7 : A — A/I for which n(a) = a + I, is an epimorphism of the
algebra A onto the quotient algebra A/I. It is called the projection of A onto
A/l

The following results are completely analogous to the corresponding the-
orems proved for modules. Their proofs, also similar to those given above, are
left to the reader as a simple exercise.

Theorem 1.4.5 (Homomorphism Theorem). For an algebra homomor-
phism & : A — B, we have In®d ~ A/Ker ®.

Corollary 1.4.6. If A = Kla] is ¢ monogenic algebra, then A ~ K[z]/I,
where I is the ideal consisting of all multiples of the polynomial mg(z).

Theorem 1.4.7 (Noether). Let 7 be a projection of an algebra A onto its
quotient algebra A = A/I. For any subspace B C A, put n(B) = {n(b) |
b€ B}, and for any subspace B C A, put n71(B) = {b € A | n(b) € B}.
Then



18 1. Introduction

1) if B is an ideal (subalgebra) of A, then w(B) is an ideal (subalgebra) of
A; if B is an ideal (subalgebra) of A, then n~'(B) is an ideal (subalgebra)
of A;

2) for any ideal (subalgebra) B C A, w(v~1(B)) = B; for any ideal (subal-
gebra) B C A containing I, 7~ (n(B)) = B;

3) if B is an ideal (subalgebra) of A, B = n~Y(B), then A/B ~ A/B (B/I ~
B, respectively).

Theorem 1.4.8 (Noether). If I is an ideal and B a subalgebra of an algebra
A, then (B+I)/I~B/(BNI).

If N is a submodule of a module M and I is a right ideal of an algebra A,
define NI as the set of all sums of the form ) n;a;, wheren; € N, a; € I. It is
easy to see that NI is also a submodule of M. It may happen that NI = 0,i.e.
that na = 0 for any n € N and a € I. We say in this case that I annihilates the
submodule N. For any module M, one can determine the greatest right ideal
of A which annihilates M. Put Ann M = {a € A | ma =0 for all m € M}.
Obviously, Ann M is a right ideal, and also an ideal, of the algebra A. It is
called the annihilator of the module M.

If an ideal I annihilates a module M, it is possible to view M as a module
over the quotient algebra A/I, setting m(a + I) = ma (verify that this defi-
nition does not depend on the choice of a representative in the class a + I).
Clearly, in this case, since I annihilates every submodule and every factor
module of the module M, the “structure” of the module M does not depend
on whether we consider it as an A- or as an A/I-module.

Conversely, every A/I-module M can be considered as an A-module if we
set ma = m(a + I) (here, I automatically annihilates M).

In what follows, we shall always identify the modules over A/I and the
modules over A which are annihilated by the ideal I. In particular, we shall
often consider the regular A/I-module as an A-module. Obviously, its anni-
hilator is the ideal I.

Moreover, let us remark that, for any element m € M and any right ideal
I C A, the subspace mI = {ma | a € I} is a submodule of M. If mI = 0,
we say that I ennthilates m. Among the right ideals which annihilate a given
element, there is also a greatest one which is called the annihilator of m:
Annm = {@a € A | ma = 0}. In difference to the annihilator of a module,
Annm may not be an ideal (cf. Exercise 9 at the end of this chapter).

1.5 The Jordan-Holder Theorem

In every non-zero module M, there are evidently always at least two submod-
ules: M itself and the zero subspace (these submodules are said to be trivial).
If there are no other submodules of M, the module M is called simple. The
corresponding representation is irreducible, i. e. it is not of the form (1.4.1) in
any basis.
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Let us assume that the module M is not simple. Then it contains a non-
trivial submodule N: N # 0 and N # M (i.e. M/N # 0). We say that
the module M is an eztension of the module L = M/N by the kernel N. In
view of the homomorphism theorem, this is equivalent to the existence of an
epimorphism M — L with kernel N.

If the modules L and N are not simple, then we can choose a non-trivial
submodule L; of L and a non-trivial submodule N; of N. By Theorem 1.4.3,
L, ~ N3/N, where N, is a submodule of M containing N. As a result, we
obtain the following chain of submodules of M: M D N, D N D N; D 0. fin
this chain the module N; or any of the factor modules M/N;, No/N, N/N;
is still non-simple, then it is possible to insert in it, in the same way as above,
yet another submodule. Since the space M is finite dimensional, this process
cannot be repeated indefinitely. This means that in the end we obtain a chain
M=M, DM DM;D... D> Ms;_; DM, = 0 such that all factor modules
M;/M;y, are simple. Such a chain is called a composition series of the module
M. The factor modules M;/M;; are called the factors of this series and their
number s is the length of the series.

We could say, that the factors of a composition series are “bricks” from
which the module M is constructed by subsequent extensions. Of course, these
factors do not determine, in general, the module M but they carry rather
significant information on its structure. It is natural to ask the question to
what extent are they determined by the module M. The answer is given in
the following theorem:.

Theorem 1.5.1 (Jordan-Hélder). If M = My D M; D ... D> M, =0 and
M = Ny DNy D... D> Ny =0 are two composition series, then their lengths
are equal and there is a bijection between the factors of these series such that
the corresponding factors are isomorphic.

Proof. We shall give a proof by induction on s. If s = 1, then the module
M = My /M, is simple. Therefore, ¢t =1 and Ng/N1 = M = My/M;. Assume
that s > 1 and that for any series of length s — 1 the theorem holds.

If M, = Ny, then My/M; = No/N; and the theorem follows immediately
from the induction hypothesis. If M; # Nj, then M; + N; # M, and since
there are no intermediate submodules between M and M;, M; + N; = M
and by the parallelogram rule

K

N]/Ml ﬂNl >~ M/M1 N ]\J]/M] an >~ M/N] .
Now we construct a composition series in the module M; N Ny:
MiNN; =1L, DL3D...DL,=0.

Then My D Ly D Ly D ... D L = 0 is a composition series of M;. In
comparison to the series My D My D ... D M, = 0, it turns out, by the
induction hypothesis, that s = k and that there is a bijection such that the
factors of the series are pairwise isomorphic.
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Furthermore, compare the series M D My D Ly D L3 D ... D L, =0
and M DNy DLy DLy D... > Ly = 0. Their factors coincide from the
third position, and the isomorphisms M/M; ~ N;/L; and M/N; ~ M;/L,
were established earlier. It follows that all factors of these series are pairwise
isomorphic.

Finally, comparing the series Ny D Ly D L3y D ... D Ly =0and N; D
N; D ... D Ny =0, we get, by the induction hypothesis, that s = ¢ and that
the factors of these series are pairwise isomorphic (in a certain bijection). The
proof of the theorem is completed. ]

The length of a composition series is called the length of the module M
and is denoted by ¢(M), and the factors of a composition series are called the
simple factors of the module M. In view of the Jordan-Holder theorem, the
definition of the length and the simple factors does not depend on the choice
of the series. '

Let us remark that the order of the simple factors in a composition series
is, in general, not determined in a unique way. For instance, for the semisimple
modules which will be studied in the next chapter, it is quite arbitrary.

Corollary 1.5.2. If a module M is an extension of a module L by a kernel
N, then ¢(M) =¢€(L) + £(N).

Proof. Consider a composition series of the module L ~ M/N: L = Ly D
L; D ... D L = 0 and take the preimages M; of the modules L; in M. Then,
by Theorem 1.4.3, M;/M;y1 ~ L;/L;41 are simple modules. Now, construct
a composition series of the module N: N =Ny D N; D ... D Ny =0. Then

M=MODM1 :)DMk=N=NQDNlDDNt'—“0

is a composition series of the module M of length k + ¢, as required. O

Corollary 1.5.3 (Grassmann’s Rule). If L and N are submodules of M,
then

QL+ N)+0LNN)=L)+eN).

Proof. 1t is an immediate consequence of Corollary 1.5.2 and the parallelogram
rule. O

A submodule N of a module M is said to be mazimal if N # M and there
1s no submodule L, different from M and N such that M D L D> N. This
1s, obviously, equivalent to M/N being simple. In a composition series, every
subsequent submodule is maximal in the immediately preceding one.
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1.6 Direct Sums

The knowledge of a submodule and factor module provides rather significant
information on the structure of the entire module. This is quite evident if one
takes into account the matrix expression (1.4.1) of the respective representa-
tion. However, the “gluing block” X (a) which appears in the left lower corner
of the matrix is not, in general, determined by the submodule and the factor
module and its structure can be rather complex.

The most favourable case is, of course, the one when the additional infor-
mation carried by the gluing is absent, i.e. when X(a) = 0 and the represen-

tation has the form
_ Tl((l) 0
T(a) = ( 0 Tg(a)) . (1.6.1)

Such representations (and all similar ones) are called decomposable.

In the language of modules, the concept of a decomposable representation
leads to the definition of the direct sum of modules.

Let M, M,,..., M, be modules over an algebra A. Consider the set M

of the n-tuples (mi,ms,...,m,), where m; € M;, and define the operations
coordinatewise:
! ! ! 1 ! !
(ma1,ma,...,my) + (my,my,...,mp) = (m1 + my,ma + mh,...,m, + ml),
a(my,ma,...,my) = (amy,ama,...,am,), a€ K,
(m1,ma,...,mz)a = (mia,mea,...,mua), a€ A.

Obviously, M becomes an A-module which is called the direct sum of the
modules My, M,,..., M, and is denoted by M; § M2 & ... D M, or él} M;.
i=1

As a vector space, M is the direct sum of the spaces My, Ms,..., M,.

Ifn=2,and {e;,e2,...,ex}, {f1, f2,-.., fe}, are bases of M; and M,, re-
spectively, then {(e1,0), (e2,0),..., (e, 0),(0, f1),(0, f2),...,(0, fe)} is a basis
of M, & M, and the corresponding representation has the form (1.6.1), where
Ti(a) and T3(a) are the representations corresponding to M; and M.

A module M which is isomorphic to M; & M,, where M; and M, are
non-zero modules, is said to be decomposable. We shall give an internal char-
acterization of decomposable modules.

Let N and L be two submodules of a module M. Define the map f :
N®L - M by f(z,y) =2 +vy, where 2 € N, y € L. It is trivial to verify
that f is a homomorphism and Im f = L 4+ N. We shall calculate Ker f.

If (z,y) € Kerf, then 2 +y = 0, i.e. 2 = —y. Therefore, 2 € N N L.
Conversely, if 2 € N N L, then the element (z,—2) of the module N @ L
belongs to Ker f. Thus Ker f ~ N N L, and we get the following proposition.

Proposition 1.6.1. The homomorphism f: N@® L — M (N, L are submod-
ules of M) defined by the formula f(z,y) = z +y s an isomorphism if and
onlytf N+ L=M and NNL =0.
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If the above conditions are satisfied, we say that M is decomposable into
e direct sum of its submodules N and L, and we write M = N @ L. The
submodule L is called in this case the complement of the submodule N (and
vice versa). Furthermeore, we say that the submodule N is a direct summand
of the module M.

The same submodule N of M can possess different complements (even in
the simple case when A = K, i.e. when the modules are just vector spaces).
However, all complements are mutually isomorphic: it is easy to see that each
of them is isomorphic to M/N.

Proposition 1.6.2. The following conditions are equivalent:

1) the submodule N of the module M is a direct summand;
2) there is @ homomorphism p: M — N such that p(z) = = for everyz € N;

3) there is a homomorphism i : M/N — M such that i(§) € § for every class
y€M/N.

Proof. 1) = 2). If M = N & L, then every element m € M can be uniquely
expressed in the form m = z + y, where z € N, y € L. Put p(m) = =z.
One gets immediately that p(m + m') = p(m) + p(m') for every m' € M,
and p(am) = ap(m), p(ma) = p(m)a for every a € K, a € A, i.e. pis a
homomorphism. If z € N, then z = z + 0 and thus p(z) = z.

2) = 3). Define the value of i at the class m = m + N by the rule
i(/m) = m—p(m). If m' is another element of the same class, then m' = m+z,
where £ € N, and thus m' — p(m') = m + ¢ — p(m) — p(z) = m — p(m), i.e.
our definition does not depend on the choice of the representative in the class
m. It is easy to verify that ¢ is a homomorphism and that, since p(m) € N,
i(m)€em+ N =m.

3) = 1). Denote L = Im:. Since i(#) € m, where m = m+ N, m—i(m) €
N and the expression m = (m — i(/m)) + :(m) shows that N + L = M. If
z € NNL, then z = i(y), wherey =+ N = N,ie.y =0 in M/N, and
therefore z = 0. Consequently, NNL=0and M = N@ L. a

The homomorphism p is often called a projector onto the submodule N.
Like complements, projectors are not determined uniquely.

The direct sum of several modules also allows an internal formulation.

Theorem 1.6.3. Let My, Mo,..., My be submodules of a module M and let
fiMi®M;®... 0 My — M be the homomorphism defined by the formula
flmyi,ma,...,mg) =my +ma+... +my. Then the following conditions are
equivalent:

1) f is an isomorphism;

2) M1+M2+...+Mk:Mand]\liﬂ(EMj)z()foranyi;
J#i

3) M1+M2+...+Mk=MandMiﬂ(ZMj)=0faranyi>1.

1<t
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Proof. 1) = 2). The fact that f is an epimorphism yields immediately that
M = M+ M,+...4+ M. Furthermore, if z € Miﬂ( > Mj), thenz = Y m;,
iFi i

where m; € M;. If we put m; = —z, then f(mj,ma,...,m;) = 0, and since
f is a monomorphism, we get that m; =my =...=my =0and z = 0.

2) = 3). Trivial.

3) = 1). From the condition that M; +Mo+...4+M; = M, we get that f is

an epimorphism. Moreover, if f(m1,ms,...,m;) = 0 and ¢ is the last position

for which m; # 0, then m; = — Y. m; € M; n (E Mj), a contradiction.
i<t J<i

Therefore, m; = my = ... = m; = 0 and f is a monomorphism. ]

If any of the equivalent conditions of Theorem 1.6.3 holds, then we say
that M decomposes into a direct sum of the submodules My, Ms, ..., My and
wewrite M =M, M ®...0 M.

The external and internal definitions of the direct sum are equivalent: If
M =M &M, ®... 5 M; is an external direct sum, then the set of the
elements (0,...,0,m;,0,...,0) (all the coordinates but the ith one are 0)
forms a submodule M} in M and one can see easily that M! ~ M; and
M=M ®&M;&... &M, (as the internal direct sum).

Obviously, every (finite dimensional) module can be decomposed into a
direct sum of indecomposable modules. We shall see in Chapter 3 that such a
decomposition is unique (up to isomorphism and a permutation of the sum-
mands). Therefore, if we know all indecomposable modules over an algebra A,
then we can describe all A-modules. However, in many cases the description of
the indecomposable modules is a very difficult problem which is unaccessible
by presently known methods.

1.7 Endomorphisms. The Peirce Decomposition

In this section we shall prove some fundamental theorems, establishing a con-
nection between the theory of representations and the structure theory of
algebras. These results will play the main role in the following chapters of the
book.

Let us recall that in Sect. 1.2 we have defined operations over the homo-
morphisms of modules and showed that, for two given A-modules M and N,
the set Homs (M, N) can be considered as a vector space over the field K.

A particularly important case is when M = N. The homomorphisms of
Hom 4(M, M) can always be multiplied. Hence the space Hom 4(M, M) is also
a K-algebra. This algebra is called the algebra of endomorphisms of the module
M and is denoted by E4(M). Its elements (homomorphisms into itself) are
called the endomorphisms of M. The invertible elements of this algebra, i.e.
the isomorphisms of M onto M, are called the automorphisms of M.

Let us see the meaning of the above introduced concepts in the case of the
regular module. Let f : A — M be a homomorphism of the regular module
into a module M. Then, for every element a € A4, f(a) = f(1)a = mga,
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where mg = f(1) is a fixed element of M. Conversely, if we fix an arbitrary
element mo € M and put f(a) = mga, then, as one can easily see, we obtain
a homomorphism f : A — M. In this way we establish a bijection between
the elements of M and the homomorphisms from Hom4(A4, M). If f and g are
two such homomorphisms whereby f(1) = mo, g(1) = my, then (f + ¢)(1) =
mo +m; and (af)(1) = amy for arbitrary a € K. Consequently, our bijection
is an isomorphism of the vector spaces.

Now, let M = A and f and g be endomorphisms of A with f(1) = a,
g(1) = b. Then (fg)(1) = f(g(1)) = f(b) = f(1)b = ab. Therefore the bijection
between A and E4(A) is an algebra isomorphism. Hence, we have proved the
following theorem:.

Theorem 1.7.1. The map f — f(1) is an isomorphism of the vector spaces
Homa(A, M) and M. If M = A, this map is an isomorphism of the algebras
E4(A) and A.

The endomorphism algebra of M is a subalgebra of the algebra of all linear
operators of the space M. It consists of those transformations which commute
with all transformations T'(a), a € A, where T is the representation defined by
the module M. In this way, the presentation of the algebra E4(M) provides
its faithful representation (more precisely, anti-representation because we have
agreed to write the endomorphisms on the left and the linear transformations
on the right of the elements). The corresponding left module can be canonically
identified with the vector space M endowed by the endomorphisms acting on
it by the rule fm = f(m) (the value of f at the element m € M).

Thus, every A-module M can be considered as a left module over the
algebra E4(M). It is easy to verify that if M = A is the regular module, then
the corresponding left module over the algebra E4(A) >~ A is simply the left
regular module.

The analogous assertions hold also for the left modules. Here, it is con-
venient to write the homomorphisms of the left modules on the right of the
elements. The image of m in the homomorphism f will be denoted by mf;
correspondingly, the product fg is defined by m(fg) = (mf)g. In this nota-
tion, a left A-module becomes a right module over its endomorphism algebra.
Also, the analogue of Theorem 1.7.1 holds.

What is the relation between the structure of the endomorphism algebra
and the structure of the module, in particular the decompositions into direct
sums? k

Let M decompose into a direct sum of its submodules: M = M; & M, &
...®M,. This means that every element m € M is uniquely represented in the
form of the sum m = my + mo + ... + my, where m; € M;. Write m; = e;m.
It follows from the fact that the sum is unique that e;(m + n) = e;m + ein,
ei{am) = aei(m) and e;(ma) = (e;m)a for every mn € M, a € K, a € A,
i.e. e; is an endomorphism of M. Besides, if m € M;, then e;m = m and
ejm = 0 for j # ¢ which yields that eje; = 6;;e;, where 6;; is the Kronecker
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symbol (8;; = 1 for ¢ = j and &;; = 0 for 7 # j). Finally, from the definition
of e;, it follows that m =eym +eam + ...+ e;m,i.e. e1 +e2+ ...+ e, = 1.

An element e of an algebra A is said to be an idempotent if 2 = e. Two
idempotents e and f such that ef = fe = 0 are called orthogonal. The equality
1=e4es+...+¢e,, whereey, e, ..., e, are pairwise orthogonal idempotents,
will be called a decomposition of the identity of the algebra A.

Theorem 1.7.2. There is a bijective correspondence between the decomposi-
tions of an A-module M into a direct sum of submodules and the decomposi-
tions of the identity of the algebra E = E4(M).

Proof. We have already attached to every decomposition of the module M a
decomposition of the identity of the algebra E. Now,let 1 =e; +e2+...+ ¢,
be a decomposition of the identity of the algebra E. Put M; = Ime;. Then,
for every element m € M, m = (e; +e2+...+es)m =eim+eam+...+e,m,
where e;m € M;. f m = my +ma +...4+m;, is a decomposition of the element
m in the form of the sum of the elements m; € M;, then m; = e;z; for some
z; € M. Therefore, '

8 8

€;m = E €Eimy = E €i€jT; = €;T; = MMy

i=1 =1

(since e; and e are for i # j orthogonal). Consequently, such a form is unique,
ileM=MeoeMe&...0 M. a

Corollary 1.7.3. A module M is indecomposable if and only if there are no
non-trivial (1. e. different from 0 and 1) idempotents in the algebra E4(M).

Proof. If e is a non-trivial idempotent, then f = 1 — e is also a non-trivial
idempotent which is orthogonal to e, and thus 1 = e + f is a decomposition
of the identity. O

Combining Theorems 1.7.1 and 1.7.2, we obtain the following corollary.

Corollary 1.7.4. There is a bijective correspondence between the decomposi-
tions of a module M and the decompositions of the reqular module over the
algebra E4(M).

Observe that if 1 = e; +e3 + ... + e, 1s a decomposition of the identity of
an algebra A, then the corresponding decomposition of the regular A-module
has the form A = ;A ® e2A D ... ® esA. This decomposition is called the
right Peirce decomposition of the algebra A. Similarly one can define the left
Peirce decomposition: A = Ae; @ Aea @ ... D Ae,s (this is a decomposition of
the left regular module).

Moreover, if M is an arbitrary module, then a given decomposition of
the identity of the algebra A induces a decomposition of M as a vector space
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M =Me, ®Mey @...HMe,. Since f(me;) = (fm)e; for every endomorphism
f € Ea(M), this decomposition is also a decomposition of M as a left E4(M)-
module (but, in general, it is not a decomposition of M as an A-module). We
shall call this decomposition the Peirce decomposition of the module M.

The summands e; A of the right Peirce decomposition of an algebra A are
the right ideals, i.e. the A-modules. If we apply the Peirce decomposition of
modules, we obtain the following decomposition of the vector space A:

A= EsB e;Ae; . (1.7.1)
t,7=1

This decomposition is called the two-sided Peirce decomposition, or sim-
ply the Peirce decomposition of the algebra A. The components of the Peirce
decomposition A;; = e;Ae; are, in general, no longer right nor left ideals.
Nevertheless, this decomposition allows a convenient interpretation of the el-

ements of the algebra A in the form of some matrices.
Let a and b be two elements of the algebra A. We shall decompose them
in accordance with the Peirce decomposition (1.7.1): @ = > a;j, b = Y bij,

4,7 i,j

where a;; = e;ae;, b;; = e;be;. Then a+ b= ) (aij + bij) an,d
i,J

ab = ZZaikbU = Z(Z aikbkj> )

ik €] ik
because, for k # ¢, airbe; = e;aerecbe; = 0. Thus, e;(adble; = Y airbs;.
2

This allows the element a to be written in the form of a matrix of its Peirce
components

azi a2 N A 1)
asi a2 o Qg

a = . . . . , Q5 = e;aej € A,‘j . (1.7.2)
as1 Gg2 ... Qs

We have just established that the addition and multiplication of these
elements translates in this interpretation into the addition and multiplication
of the matrices defined in the usual way. In what follows, we shall often use
this description. In particular, the Peirce decomposition (1.7.1) will be written
in the form

An A12 e A]B
Agr Az ... Ao,
Asl As2 e Ass

Let us apply the Peirce decomposition to the endomorphism algebra of a
module M decomposed into the direct sum M = M; @ My & ... d M,. Let
1=-e1+ex+...+e, be the corresponding decomposition of the identity of the
algebra E = E4(M); E;j = e;Ee;. The Peirce decomposition of the element
f € E is of the form
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fll f12 fls
_ f21 f22 ffs , fij _ eifej ’
fsl fs2 fs.s

Let m = mj +mg + ... + m, be an element of M (m; = ¢;m). Then

fm= Z eife;m = Z fiym;,

,j t,J
1.e. if one writes m in the form of a column of the elements m;,ma,...,ms,

then
fu fiz ... fis my
fa fa2 ... fas ma
fm=1 . . . .
fsl f32 s fss ms
where the multiplication is to be again the matrix multiplication.

Note that f;jm always belongs to M;. Besides, the value of f;;jm is deter-
mined uniquely by the component m; = ejm, because fi;m = f;;m;. There-
fore, fij can be interpreted as a homomorphism M; — M;. Conversely, if
g : M; — M; is a homomorphism, then one can define the homomorphism
§: M — M by gm = gm; (where m; = e;m) and, obviously, g will belong to
E;;. Consequently E;; ~ Hom 4(M;, M;) and we shall always identify E;; and
Hom 4(Mj;, M;) by means of this isomorphism.

In particular, if we turn our attention to the regular A-module, then we
see that, for any decomposition of the identity 1 = e; + e2 + ... + es of the
algebra A the components of the Peirce decomposition A;; = e;Ae; can be
canonically identified with Hom 4(e; A, e;A) and this identification agrees with
the matrix form (1.7.2) of the elements of the algebra.

Finally, we obtain an interesting result if all summands My, M2, ..., M, are
mutually isomorphic: My ~ My ~ ... ~ M, ~ L. In this case, we shall write
M ~ sL. Obviously, E;; ~ E4(L) and the matrix form of the endomorphisms
yields the following conclusion.

Theorem 1.7.5. If M ~ sL, then the algebra Es(M) is 1somorphic to the
algebra of the matrices of degree s with coefficients from E4(L).

In what follows, the algebra of all matrices of degree n with coefficients
from an algebra A will be denoted by M,(A).

Corollary 1.7.6. M,(A) ~ E4(nA).

In conclusion, let us now consider the relation between the idempotents
and the direct products of algebras.

Let A = A; x Ay x ... x Ar. Put ¢; = (0,...,1,...,0), the identity of
the algebra A; at the ith position, zeroes elsewhere. Obviously, e, es,...,ex
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are pairwise orthogonal idempotents and 1 = e; + e2 + ... + ex. But the
idempotents e; have an additional property: they belong to the center of the
algebra, i.e. e;a = ae; for any a € A.

Idempotents which lie in the center are said to be central. If, in a decom-
position of the identity, all idempotents are central, then the decomposition
is called itself central.

For every central decomposition of the identity 1 = e; + e2 + ... + ek, we
have e;A = Ae; = e; Ae; and ejAe; = eje; A = 0 for ¢ # j. Thus, the right, left
and two-sided Peirce decompositions coincide in this case and its components
are ideals of the algebra A.

Theorem 1.7.7. There is a bijective correspondence between

1) the decompositions of the algebra A into a direct product of algebras;
2) the central decompositions of the identity of the algebra A;
3) the decompositions of A into a direct sum of ideals.

Proof. We have already constructed, for a given decomposition into a direct
product, the central decomposition of the identity and then, the decomposition
into a direct sum of ideals.

Conversely, let A=1, @ I, & ... ® I, where I; are ideals, and 1 = e; +
€2 + ...+ ex the corresponding decomposition of the identity. Then I; = €; A,
and thus e;ae; € I; N I; for any a € A; from here, e;ae; = 0, i.e. e;4e; =0
for ¢ # j, and the Peirce decomposition has the form

A O

Ay

0 4

where A; = e;Ae; = e;A. But then A ~ 4; x Ay x ... x Ag, as required. O

Corollary 1.7.8. There is a bijective correspondence between the direct prod-
uct decompositions of the algebra A and those of its center.

It is clear from the proof of Theorem 1.7.7 that the decomposition of the
identity 1 = e; +ep+...+e€, is central if and only if e; Ae; = 0 for 1 # j. Taking
into account the interpretation of the Peirce components of the endomorphism
algebra, we obtain the following result.

Corollary 1.7.9. f M =M ® M, ®...d M, and if Hom4(M;, M;) = 0 for
Z#], then EA(M) ~ E'A(Ml) X EA(MQ) X ... X EA(MS).
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Exercises to Chapter 1

Compute the regular matrix representation of the field € of complex numbers
and of the algebra IH of quaternions (over the field of reals) with respect to the
natural bases ({1,:} for € and {1,1,7,k} for H).

. Using the regular representation, prove that the algebra of quaternions is a

division algebra.

. Let A be the algebra over the field of complex numbers with basis {e,?,7,k}

whose multiplication table is the same as that of quaternions. Find the divisors
of zero. Establish an isomorphism A ~ M,(C).

4. Find the center and the ideals of the algebra M, (K).

5. Compute a regular matrix representation of the Jordan algebra J,(I); find all

10.

11.

12.

ideals of J,(K).

. Prove that every monogenic algebra over an algebraically closed field is isomor-

phic to a direct product of Jordan algebras. (Hint: Use Cayley’s theorem and
the Jordan normal form of a matrix.)

. Let M be a vector space of n-tuples considered as a module over the algebra

A = T,(K) of triangular matrices (the image of a matrix X in the respective
representation is X).

Find the submodules of the module M and the respective representations. Con-
struct a composition series in M. Show that the module M is indecomposable.
Compute Eo(M).

. Let M1,M>,..., M} be submodules of M and f the natural homomorphism

Mi®M;®...0 My — M defined in Theorem 1.6.3. Prove that Ker f has a
filtration with the factors N; ~ M; N (E M), 2<i<k.

i<i

. Let M be a cyclic module over an algebra A, generated by m. Prove that M =~

A/Annm. Verify that, if Annm is an ideal of A (for instance in case that A is
commutative), then Annm = Ann M and for an arbitrary generator m’ of M,
Annm’ = Annm.

Show that, if A is not commutative, then Annm may depend on the choice of
m. (Hint: Take A = M,(K) and M the space of all n-tuples.)

(Peirce decomposition of an ideal) Let I be an ideal of an algebra A and 1 =

€1 +ez+...+e; a decomposition of the identity of this algebra. Prove that the

element a = ) aij, where a;j € €; Ae;, belongs to I if and only if a;; € eile;.
]

Using the statement of Exercise 10, describe the ideals of the algebra of trian-

gular matrices.

Let A be an algebra not necessarily with identity. Let A be the algebra obtained
from A by adjoining an identity (see Sect. 1.1):

A={(e,a) | a € A€ K}.

a) Prove that the elements of the form (a,0) generate an ideal of A which is
isomorphic to A (as an algebra without an identity).

b) If A has an identity, show that A ~ A x K.

c) Show that every homomorphism f: A — B between two algebras without
an identity extends uniquely to a homomorphism f: A — B between the
algebras with identity, and that every homomorphism g : A- B maps A
into B. In particular, A ~ B if and only if A ~ B.
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13. A representation of an algebra A without an identity is a homomorphism

f:A— End(V).

a) Define a module over an algebra without an identity and establish a relation
between the modules and representations.

b) Let M be a module over an algebra A without an identity. Put m(a,a) =
ma+ am (a € A, @ € K). Prove that M is an A-module.

c) Verify that, for any A-modules M and N, Homa(M, N) ~ Hom 4(M, N),
considering M and N as A-modules (see b)). In particular, M ~ N (as
A-modules) if and only if M ~ N considered as A-modules.



2. Semisimple Algebras

The classical theory of semisimple algebras is one of the most striking ex-
amples how “module theoretical” methods produce deep structural results.
Moreover, semisimple algebras and their representations play a very impor-
tant role in many parts of mathematics. In this chapter, we establish the most
fundamental properties of semisimple algebras and their modules, and prove
the Wedderburn-Artin theorem which gives complete classification of such al-
gebras. The results of Chapter 1 (in particular, of Sect. 1.7) and a description
of the homomorphisms of simple modules, the so-called Schur’s lemma, will
play a fundamental role in this process.

2.1 Schur’s Lemma

Let us recall that a non-zero module M is said to be simple if it has no non-
trivial (i.e. different from 0 and M) submodules. We have explained their
significance in the module theory: every module is obtained by subsequent
extensions of simple modules. The simple modules play also a very important
role in the structure theory; this aspect is to large extent a consequence of the
following results.

Theorem 2.1.1 (Schur). If U and V are simple A-modules, then every non-
zero homomorphism f : U — V is an isomorphism.

Proof. This follows from the fact that Ker f and Im f are submodules of U
and V, respectively, and that f # 0 implies that Ker f # U and Im f # 0.
Consequently, Ker f = 0 and Im f = V, i.e. f is both a monomorphism and
an epimorphism, thus an isomorphism. O

Corollary 2.1.2 (Schur). The endomorphism algebra of o simple module is
a division algebra.

Indeed, every non-zero element of such an algebra is an isomorphism and
therefore invertible.

Corollary 2.1.3. A regular A-module is simple if and only if the algebra A
is a division algebra.
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Proof. This follows from the isomorphism A ~ E4(A) (Theorem 1.7.1) and
the fact that there are no non-trivial right ideals in a division algebra. o

Let us remark that the converse of Schur’s lemma does not hold: There are

non-simple modules M such that E4(M) is a division algebra (see Exercise 7
of Chap. 1).

2.2 Semisimple Modules and Algebras

A module M is called semisimple if it is isomorphic to a direct sum of simple
modules.

To a semisimple module, there corresponds a completely reducible repre-
sentation, i.e. a representation T' of the form

T](a) 0

TQ(G.)
T(a) =

O To(a)

where T; are irreducible representations.

Proposition 2.2.1. The following conditions are equivalent:

1) the module M is semisimple;
m

2) M =3 M;, where M; are simple submodules of M;
i=1

3) every submodule N C M has a complement;

4) every simple submodule N C M has a complement.

Proof. 1) = 2) by deﬁnition
2)=3). M= Z M;, then trivially M = N + Z M; . Observe that,

=1 =1

j—1
from the fact that Mj is simple, it follows that either M; N (N + Z M;)=0

or M; C N + Z M; . Omitting those M; for which M; C N + Z M;,
we obtain a famﬂy of submodules N such that N + ZN;. = M and

NeN(N + > Ni) =0. Consequently, M is the direct sum of the submod-
k<t

ules N and N; (Theorem 1.6.3) and N’ = }_ Nj is a complement of N.
k

3) = 4) is trivial.

4) = 1) can be proved easily by induction on the length ¢(M) of the
module M. If {(M) = 1, then the module M is simple. Let (M) > 1 and U be
a simple submodule of M. Then M = U®U’, where U’ is a complement of U in



2.2 Semisimple Modules and Algebras 33

M, and ¢(M) = {U)+4(U"),i.e. U') = {(M)—1. If N is a simple submodule

of U' and N’ its complement in M, then every element z € U’ can be written

in the form z =n+n', wheren € N,n' € N',and thusn' =z—-—n e N'nU".

As aresult, U' = N @ (N' NU'), i.e. every simple submodule of U’ has a

complement in U’. By the induction hypothesis, U’ ~ & U; with simple U;’s.
=2

Therefore, M ~ és U;, where U; = U, as required. a
=1

Corollary 2.2.2. Every submodule and every factor module of a semisimple
module s semisimple.

Proof. Let N be a submodule of a semisimple module M, and = : M — M/N

be the projection of M onto the factor module M/N. If M = } M;, where
i=1

M; are simple modules, then M /N = Z w(M;). But 7(M;) is a factor module

of M; and therefore either n(M;) = 0 or m(M;) ~ M;. Hence, M/N is a
sum of simple submodules and therefore semisimple. Now, the fact that N

is semisimple follows immediately: if N’ is a complement of N in M, then
N~ M/N' a

If M is a semisimple module, and M = EB U; a decomposition into a direct

sum of simple submodules, then M; = 69 U ( j =0,1,...,n) are submodules

of M and M;_; D M; with M;_,/M; ~ U Consequently, M = My D My D
M; D ... D> M, =0 is a composition series of M and U,,U,,...,U, are its
simple factors. Then, by the Jordan-Hélder theorem (1.5.1), we obtain the
following proposition.

Proposition 2.2.3. If M is a semisimple module and M ~ U @Uz®...0U, ~
VieVa®...®V,, two decompositions of M into a direct sum of simple modules,
then n = m and by e suitable permutation of the summands, U; ~ V; for alli.

An algebra is said to be semisimple if its regular module is semisimple.
The simple submodules of the regular right (left) A-module are called minimal
right (left) ideals of the algebra A.

The following lemma, together with Proposition 2.2.1, provides an “inter-
nal” characterization of the semisimple algebras.

Lemma 2.2.4 (Brauer). If I is a minimal right ideal of an algebra A, then
either I? = 0, or I = eA, where e is an idempotent.

Proof. Assume that I? # 0, i.e. there are elements = and y in I such that
zy # 0. Then the map f: I — I given by f(a) = za is a non-zero homomor-
phism, and since I is a simple module, it is an isomorphism (Theorem 2.1.1).
Therefore, there is an element e € I such that z = ze. But then ze = ze?, i.e.
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f(e) = f(e?) and therefore e = €. It follows that e is an idempotent. Finally,
eA is a non-zero submodule of I and therefore I = eA. O

A right (left, two-sided) ideal of I of an algebra A is called nilpotent if
I™ = 0 for some m.

Corollary 2.2.5. The following conditions for an algebra A are equivalent:
1) A is semisimple;

2) every right ideal of A is of the form eA, where e is an idempotent;

3) every non-zero ideal of A contains a non-zero idempotent;

4) A has no non-zero nilpotent ideals;

5) A has no non-zero nilpotent right ideals.

Proof. 1) = 2). If I is a right ideal, then by Proposition 2.2.1, A = I®I', where
I' is a complement of I. Hence I = €A, where 1 = e + ¢’ is the corresponding
decomposition of the identity (Theorem 1.7.2).

2) = 3) is trivial.

3) = 4) follows from the fact that if e is a non-zero idempotent, then
e* = e # 0 for every k.

4) = 5). If I # 0 is a nilpotent right ideal, then Al is a two-sided ideal of
A and (AI)™ = AI™ implies that AT is nilpotent, too.

5) = 1). If I is a simple submodule of the regular module, i.e. a minimal
right ideal of the algebra A, then I? # 0 and, by Lemma 2.2.4, I = eA.
Therefore, there is a complement I' = (1 —e¢)A of I and, by Proposition 2.2.1,
the algebra A is semisimple. O

Note that the conditions 3) and 4) of Corollary 2.2.5 are symmetric with
respect to the notion of “right” and “left”. Therefore “left semisimplicity”,
i.e. semisimplicity of the left regular module, is equivalent to semisimplicity,
and one may add to the conditions of Corollary 2.2.5 all those obtained by
replacing “right” with “left”.

The above criterion can be easily reformulated in terms of elements. To
do so, one assigns to an element a € A the right ideal aA = {az | = € A} (the
right ideals of this form are called principal) and expresses the meaning of the
nilpotency of this ideal. Every element of (aA)™ is a sum of elements of the
form aziazs...arn, , where z1,29,...,7,, are some elements of the algebra.
Therefore (a4)™ = 0 if and only if every product of such a form is equal to
zero. In other words, whenever the element a appears m times in a product
aias...as, the product is zero. Such elements are called strongly nilpotent.

Corollary 2.2.6. An algebra is semisimple if and only if it contains no non-
zero strongly nilpotent elements.

Corollary 2.2.7. A commutative algebra is semisimple if and only if it con-
tains no nilpotent elements (i. e. a # 0 such that a™ =0).
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Indeed, in a commutative algebra every nilpotent element is strongly nilpo-
tent.

Note that in a non-commutative algebra there may be nilpotent elements
which are not strongly nilpotent. For example, in the matrix algebra M;(K),
the matrix e, is nilpotent: e, = 0; however ez;e12 = ez, is an idempotent,
and therefore e, is not strongly nilpotent.

It is not difficult to see that there are no non-zero strongly nilpotent
elements in M3(K) (the reader should verify this statement).

Corollary 2.2.8. The center of a semisimple algebra is semisimple.

Proof. The statement follows from the fact that an element of the center is
nilpotent if and only if it is strongly nilpotent. a

Finally, our considerations yield the following important criterion of
semisimplicity in terms of representation theory.

Theorem 2.2.9. An algebra A is semisimple if and only if there is a faithful
semisimple A-module.!

Proof. The necessity of the condition follows immediately from the fact that
the regular module is faithful. We are going to prove the sufficiency.

Let M = éla U; be a faithful module, where U; are simple A-modules.

=1
IfI#0is anlideal of the algebra A, then U;I # 0 for some i because M
is faithful. But then U,I = U;, and thus U;I™ = U;. Therefore I"™ # 0
for every m. In view of Corollary 2.2.5, this means that the algebra A is
semisimple. O

2.3 Vector Spaces and Matrices

Before we embark on the general theory of semisimple algebras and their rep-
resentations, we shall consider vector spaces and matrix algebras over division
algebras.

Let D be a (finite dimensional) division algebra over K and V a (finite
dimensional) left D-module. Then V is called a (finite dimensional) vector
space over the division algebra D.

Proposition 2.3.1. A vector space i3 a semisimple module. Every simple left
D-module is isomorphic to the regular one.

Proof. Let V be a vector space over D and v; a non-zero element (vector) of V.
The homomorphism f : D — V mapping z € D into zv; € V is non-zero,

! Recall that a module M is said to be faithful if the respective representation is
faithful, i.e. if AnnM = 0.
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and thus Ker f = 0 (since the regular left D-module is simple). Therefore
Dvy =Imf ~ D.

If V is a simple module, then V = Dv; ~ D. Otherwise, there is an
element v, ¢ Dv; . But then Dvy, ~ D and Dv; + Dv, contains properly Dv; .
Continuing in this way, we get the equality V = Y Dv;, where Dv; >~ D are

i=1
simple modules. By Proposition 2.2.1, V is a semisimple module, as required.
a

Corollary 2.3.2. Every vector space over a division algebra D is isomor-
phic to nD (direct sum of n copies of the regular module). The number n is
determined uniquely.

The fact that n is an invariant is a consequence of n being the length of
the module V. It is usually called the dimension of the vector space V and
denoted by [V : D]. Evidently, [V : K] = [V : D][D : K].

In accordance with Corollary 1.7.6, the endomorphism algebra of an n-
dimensional vector space V over a division algebra D is isomorphic to the
matrix algebra M, (D) with entries from the division algebra D. Consequently,
it is natural to consider the space V as a right module over M,(D). In what
follows, the elements of V will be identified with n-tuples (21,z2,...,2xs),
z; € D. Then the action of the matrices is the usual multiplication of vectors
by matrices.

Proposition 2.3.3. The module V over the algebra A = M,(D) is simple.
The algebra M,(D) is semisimple.

Proof. Let U be a non-zero A-submodule of V, and u = (uj,ug,...,u,) a
non-zero element of U. Assume, without loss of generality, that u; # 0. Then
every vector z = (z1,%2,...,Z5) can be represented in the form z = uX,
where
uflzl ui’lzg ... ui’lxn
X = 0 0 0
0 0 0
Therefore uA = V, the A-module V is simple and the algebra M,(D) is
semisimple by Theorem 2.2.9. a

Let us describe an explicit decomposition of the regular A-module. Denote
by I; the right ideal of the algebra M,(D) consisting of all matrices of the
form
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(the non-zero row is the ith one). Making (z1,23,...,%,) € V correspond to
the matrix, we obtain, obviously, an isomorphism of I; onto V.

In the sequel, we shall denote by e;; the elementary matrices, i.e. the
matrices such that the (zj)th entry is 1 and all the other entries are 0. In
particular, 1 = €33 +e32+. ..+ €nn is a decomposition of the identity, whereby
eiid = I;. It follows that E4(V) ~ e;;Ae;; ~ D.

Proposition 2.3.4. Every module over the algebra A = Mp(D) s semisim-
ple. Every simple A-module is isomorphic to V, and the regular A-module is
isomorphic to nV.

Proof. Clearly, A=1, ® I, ®...® I, is a decomposition of the regular A-

module and, as we have seen, I; ~ V. If M is an arbitrary A-module and m

a non-zero element of M, then mlI; is either the zero module or is isomorphic
n n

to I;, since I; is simple. Besides, m = 3 me;; € Y mI; and thus some of the
=1 =1

modules mI; is non-zero. If M is simple, then M ~ mI; ~ V. Otherwise, we

proceed as in the proof of Proposition 2.3.1 to represent M as a sum of simple

modules, and thus to complete the proof of our proposition. O

Corollary 2.3.5. Two modules M and N over the algebra M,(D) are iso-
morphic if and only if [M : K] = [N : K].

Proof. ¥ M = mV and N = kV, then [M : K] = m[V : K] and [N : K] =
k[V:K],i.e. m =k if and only if [M : K] = [N : K]. O

Proposition 2.3.6. There are no proper ideals (different from 0 and A) in
the algebra A = M,(D).

Proof. Let I be a non-zero ideal of A, X = (z;;) a non-zero matrix from I
and zx, a non-zero entry of this matrix. Then e;; X # 0 and belongs to I; N I.
Therefore I; N I # 0, and since I; is simple, I D I; (for all i!). Consequently,
n
I> Y I, = A, as required. 0O
i=1
An algebra which has no ideals different from 0 and the algebra itself is
called simple. Proposition 2.3.6 shows that the algebra M, (D) is simple. In
the following section, we shall show that there are no other (finite dimensional)
simple algebras.
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2.4 The Wedderburn-Artin Theorem

The results of Sect. 1.7 and those of the preceding section of Chapter 2 allow
us to obtain the fundamental structure theorems of the semisimple algebras.

First of all, Schur’s lemma yields immediately a description of the com-
mutative semisimple algebras.

Theorem 2.4.1 (Weierstrass-Dedekind). A commutative semisimple al-
gebra 1s isomorphic to a direct product of fields. Conversely, a direct product
of fields is a semisimple algebra.

Proof. Let A be a commutative semisimple algebra, A=U; U@ ...0 U,
a decomposition of the regular A-module into a direct sum of simple modules
and 1 = e; + ez + ... + e, the corresponding decomposition of the identity.
Because of commutativity, all idempotents are central. Then A ~ A; x A2 x
... X Ay, where A; = ;A ~ E4(U;) (see Theorem 1.7.7). By Schur’s lemma,
A; are division algebras and since they are commutative, they are fields.

Conversely, if A >~ 4; x Ay X...x A,, where A; are fields, then the regular
A-module is of the form A = U; ® U & ... ® Uy, where U; are regular A;-
modules which are simple. a

Corollary 2.4.2. If K is algebraically closed, then every commutative semi-
simple K -algebra 1s isomorphic to K™.

The general structure theorem is obtained by a combination of Schur’s
lemma and the matrix form of endomorphisms.

Theorem 2.4.3 (Wedderburn-Artin). Every semisimple algebra is isomor-
phic to a direct product of matriz algebras over division algebras. Conversely,
a direct product of matriz algebras over division algebras is a semisimple al-
gebra.

Proof. Let A be a semisimple algebra and A ~ n1U; @ nUs & ... @ ns U, be
a decomposition of the regular A-module into a direct sum of simple mod-
ules with U; % U; for 1 # j. Denoting n;U; by M;, we get a decomposition
A~ M, &M & ... ®» M,, where, for : # j, Hom4(M;, M;) = 0 because
Hom 4(U;,U;) = 0 by Theorem 2.1.1. But then A ~ A; X A3 x...x A, where
A; = E4(M;) (see Corollary 1.7.9). Since M; = n;U;, Theorem 1.7.5 yields
A; ~ My, (D;) with a division algebra D; = E4(U;) (by Schur’s lemma).
Conversely, if A = A; x Ay X...X Ay, where 4; = M,,(D;), then the reg-
ular A-module can be decomposed into a direct sum A = [ @ I, ®...® I; with
the regular A;-modules I; (see Theorem 1.7.7). In view of Proposition 2.3.4,
I; are semisimple modules. Thus, A is a semisimple algebra, too. a
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Corollary 2.4.4 (Molien). If K is algebraically closed, then every semisim-
ple K -algebra is isomorphic to the algebra of the form My, (K) x M,,(K) x
.o X My, (K).

Corollary 2.4.5. Every simple K -algebra is isomorphic to an algebra of the
form M, (D), where D is a division algebra.

Proof. We have already seen that M, (D) is a simple algebra. Conversely, if
A is simple, then the unique non-zero two-sided ideal (A itself) contains a
non-zero idempotent 1, i.e. the algebra is semisimple (by Corollary 2.2.5). In

addition, the algebra A is indecomposable (into a direct product). This means
that A ~ M, (D). O

Corollary 2.4.6. Every simple algebra over an algebraically closed field K 1s
isomorphic to M,(K) for some n.

2.5 Uniqueness of the Decomposition

The Wedderburn-Artin theorem assigns to every semisimple algebra A a sys-
tem (Dy,D,,...,D,;n1,n2,...,n,), where D; are division algebras and n;
the degrees of the matrices, so that

A M, (D1) x Mny(D3) X ... x My, (D). (2.5.1)

There is a natural question: Are the division algebras D; and the degrees n;
determined uniquely? We are going to answer this question in the affirmative.
Moreover, we will show that a decomposition (2.5.1) is, in fact, unique.

First, we are going to establish a general result concerning the uniqueness
of the decomposition of algebras into direct products.

Theorem 2.5.1. Let A ~ A} x Ay X ... x Ay o~ By Xx By x ... x By be
two decompositions of the algebra A into a direct product of indecomposable
algebras, and 1 = e;+ey+...+es = fi+ fa+...+ fi the corresponding central
decompositions of the identity. Then s =t and, by a suitable permutation of
the idempotents, e; = f; and A; ~ B; for all 1.

Proof. In view of Theorem 1.7.7, the indecomposability of A; ~ e;A and
Bj ~ f;B means that, if e; = e} + ¢!, f; = f} + f}', where €; and ¢},
as well as f} and f}' are central idempotents, then either e; = 0 or €] =

and similarly, fi = 0 or fi = 0. But in view of the fact that e; and f;
are central, e; f; and e; — e; f; are central orthogonal idempotents. Therefore,
either e; f; = 0 or e; f; = e; . Similarly, either e; f; = 0 or e;f; = f; . Since e; =
ei(fi+ fa+...+ ft), thereis an index j such that e;f; # 0,1.e. e; = eif; = fj.
But there can be only one such index; for, k # j implies e;fy = fjfx = 0. It
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follows immediately that s = ¢ and that, by a suitable relabelling, e; = f; for
allz. Then A; ~e;A= fiA~ Bj. O

Now we can establish the uniqueness in the formulation of the Wedder-
burn-Artin theorem.

Theorem 2.5.2. If A~ M, (D1) x Mp,(D2) X ... x My, (D) ~ M, (F1) x
My, (Fy) x ... x My, (Fy), where D1,Ds,...,Ds, F\, Fy, ..., F; are division al-
gebras then s = t and, by a suitable permutation, n; = k; and D; ~ F; for
alli.

Proof. Since there are no ideals in the algebra M,(D), it is indecomposable.
Therefore, by Theorem 2.5.1, it follows immediately that s = ¢ and that, by
a suitable renumbering, My, (D;) ~ My, (F;). It remains to be shown that if
A~ M,(D) ~ My(F), where D and F' are division algebras, then n = k and
D~F.

According to Proposition 2.3.4, A possesses a simple module V' such that
A ~nV ~ kV; from here k = n. Besides, D ~ E4(V) ~ F, which completes
the proof of the theorem. O

The simple algebras 4; = M, ,(D;) are called simple components of the
semisimple algebra A. In view of Theorem 2.5.2, they are determined uniquely.
Thus, the classification of semisimple algebras is completely reduced to the
classification of finite dimensional division algebras.

2.6 Representations of Semisimple Algebras

The structure theorem of Wedderburn-Artin, together with the results of
Sect. 2.3, enables us to give a complete description of the modules over semi-
simple algebras.

Proposition 2.6.1. Let M be a module over an algebra A = Ay X Agx...x A,
and 1 =e1 +e2+ ...+ es be the corresponding central decomposition of the
wdentity of A. Then M = é Me; , where Me; are modules over A;.

=1

Proof. Clearly, Me; is a submodule of M because e; belongs to the center
of A. Furthermore, m = me; + mea + ... + me,; and, moreover, if m = m; +
mg + ...+ mgy, where m; € ]er; , then me; = m;, i.e. this representation

is unique. Consequently, M = GB Me;. But Me;e; = 0 for ¢ # j and thus
ejA C Ann(Me;); hence, Me; is a module over A/ 69 ejA ~ A;, which was

to be proved. a

Theorem 2.6.2. Let A be a semisimple algebra, and A; ~ M,,(D;) its ssimple
components (i = 1,2,...,s). Then every A-module is semisimple and can be
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uniquely written in the form €B k;V;, where V; is the simple A;-module. In

particular, the simple A- modules are in a bijective correspondence with the
simple components of the algebra.

Proof. In view of Proposition 2.6.1, every A-module decomposes into a direct
sum M, & M, @ ... ® M, , where M; are A;-modules. By Proposition 2.3.4,
M; ~ k;V;, from where the theorem follows (the uniqueness follows from
Proposition 2.2.3). g

In representation theory of groups, the following consequence of the pre-
ceding theorem plays an important role.

Corollary 2.6.3. Let T and S be two representations of a semisimple algebra
A over a field of characteristic 0. These representations are similar if and only

if tr T(a) = tr S(a) for alla € A2

Proof. If the representations T and S are similar, then the matrices T'(a) and
S(a) are similar and therefore have equal traces.

Conversely, assume that tr T'(a) = tr S(a) for all a € A. Let A = 4; x
Az X ... x A,, where A; are simple components of A, furthermore let 1 =
er + €2 + ... + es be the central decomposition of the identity and V; the
simple A;-modules. Decompose the modules M and N corresponding to the

representations T and S: M ~ 69 m;V;, N o EB kV;. Ifv € V;, then
ve; = v and ve; = 0 for j # ¢; from here trT(e;) = m d and tr S(e;) = kid;,
where d; = [V; : K]. Therefore, since the traces are equal, m; = k; for all 7,

i.e. M ~ N and the representations T and S are similar.® O

Theorem 2.6.2 allows us to describe the endomorphism algebra of a module
over a semisimple algebra A. In order to do that, we recall that, for the simple
module V; over the algebra A; = M,,(D;) (the simple component of the
algebra A), E4(V;) ~ D;. In addition, by Schur’s lemma, Hom4(V;,V;) =0
for ¢ # j. Therefore, the matrix form of the endomorphism yields the following
result.

Theorem 2.6.4. If M 1s a module over a semisimple algeb'ra A then the
algebra E4(M) is also semisimple. More precisely, if M = GB k;Vi, where V;

18 the simple module over the simple component A; = M, (D ) of the algebra
A, then Eo4(M)~ E, x E3 x ... x E;, where E; ~ My, (D;).

? The symbol tr X denotes the trace of the matrix X: If X = (zi;), then tr X =
zi11 222+ ...+ Ton.

3 The proof shows that it is sufficient to assume that the traces coincide only on the
elements of the center.
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Two semisimple algebras A and B are said to be isotypic if they have the
same number of simple components and the corresponding division algebras
are isomorphic.

Corollary 2.6.5. The algebras A and B are isotypic if and only if B ~
E4(M), where M is a faithful A-module.

Proof. This follows from Theorem 2.6.4 and the fact that, for a faithful module
M= & kVi, ki>0 for all i. 0
=1

Corollary 2.6.6. If M is a semisimple module over an algebra A, then E 4(M)
s a semisimple algebra.

Indeed, E4(M) = E4(M), where A = A/Ann M. But M is a faithful A-
module and thus A, and consequently E (M), are semisimple algebras (The-
orem 2.2.9).

In conclusion, from the above results, we derive the so-called density the-
orem for semisimple algebras.

Theorem 2.6.7 (Burnside). Let M be a semisimple module over an algebra
A, B = Es(M), A= Ep(M) (here, M is considered as a left B-module).
Let us attach to every element a € A the endomorphism @ € A, defined by
za = za. Then the map a — & is an epimorphism of the algebras.

Proof. Consider A/Ann M instead of A; this has no effect on the algebras B
or A. Since a € Ann M implies @ = 0, we thus assume that M is a faithful
module. Then the algebra A is semisimple (by Theorem 2.2.9). In this case,

a # 0 implies @ # 0 and we need only to verify that the above map is an
isomorphism.

Let A= A; xA2Xx...xAs, where A; ~ M, (D;) and M = GBkV,,where

V; is the simple A;-module. Then B = B; x By X...x By, where B My, (D )
and the corresponding decomposition of the identlty l=%e€ +ex+...+ 6
satisfies ;M = k;V;. Denote the simple B;-module by U;. Then, as a B-
module, ;M ~ m;U;. But [V; : K] = n;d;, where d; = [D; : K|, and
[U; : K] = kid; . Therefore, [e; M : K] = k;n;d; = m;k;d;, from where m; = n;,

A = Ep(M) ~ A and the monomorphism A — A has to be an isomorphism.
0

Corollary 2.6.8. If U s a simple A-module, D = E4(U) its division algebra
of endomorphisms and [U : D] = n, then A has o quotient algebra isomorphic
to M,(D).

Proof. This is an immediate consequence of Theorem 2.6.7 and the homomor-
phism theorem.
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Exercises to Chapter 2

. Prove that an irreducible representation of a commutative algebra over an alge-

braically closed field is one-dimensional.

. Let A be a commutative semisimple subalgebra of the algebra My (K), where K

is an algebraically closed field. Prove that then there is a matrix S such that,
for every matrix X € A, SX57! is a diagonal matrix. (Two subalgebras A and
A’ of an algebra B are said to be conjugate if there is an element b € B such
that bab~! € A’ for every a € A and, furthermore, every element a’ € A’ has
such a form. Exercise 2 states that the subalgebra A C M,(K) is conjugate to
a subalgebra of the algebra of the diagonal matrices.)

3. Under what conditions is a monogenic algebra semisimple?

Prove that a matrix X € Mn(K), where K is an algebraically closed field, is
conjugate to a diagonal matrix if and only if the monogenic subalgebra generated
by the matrix X is semisimple.

Let G be a cyclic group of order n. Prove that the group algebra G is semisim-
ple if and only if the characteristic of the field K does not divide n.

. Prove that a commutative algebra A is semisimple if and only if every monogenic

subalgebra of A is semisimple.

. Describe those algebras whose monogenic subalgebras are semisimple.

8. Describe the algebras without nilpotent elements.

10.

11.
12.

13.

. Prove that every non-zero idempotent of the algebra M,(D) is conjugate to

k

>~ eii for some k (1 < k < n).
i=1
Let X and Y be two matrices of the algebra A = M,(K), XA={XS | S € A},
YA ={YS | S € A}. Clearly, XA and Y A are right ideals. When are they
isomorphic as A-modules?

Prove that isomorphic simple subalgebras of the algebra M, (K) are conjugate.

Show that, if the algebra A is semisimple, then the length of the left regular
module equals the length of the right regular module (for algebras which are
not semisimple, the statement is, in general, false).

Let A be a semisimple algebra over a field K of characteristic 0; let 7 and S
be two representations of A of the same dimension with the property that for
every a € A, there is a matrix C, such that C,T(a)C;* = S(a). Prove that the
representations T and S are similar.*

* This exercise has been proposed by A.V. Rojter.
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Theorems 2.4.3 (Wedderburn-Artin) and 2.6.2 give a complete description of
semisimple algebras and their representations. In comparison, we know very
little on the structure of non-semisimple algebras and modules over them,
even in the case when K is algebraically closed. The fundamental concept
here is the notion of a redical: the least ideal such that the respective quotient
algebra is semisimple. An essential property of the radical is its nilpotency. It
allows to “lift the idempotents modulo the radical”. In this way, the class of
projective modules, related to semisimple modules, appears in a natural way.
Their decomposition into the indecomposable ones can be shown to be unique,
and by means of the endomorphism algebras, this result can be extended to
arbitrary modules. Finally, in the last section of this chapter, we introduce the
concept of a diagram of an algebra and of a universal algebra over a diagram;
making use of them we obtain a description (of course, by no means complete)
of algebras, at least in the algebraically closed case.’ In particular, we obtain
the classification of so-called hereditary algebras (over an algebraically closed
field). ‘

Recall that, unless stated otherwise, all algebras are finite dimensional
(infinite dimensional algebras will appear in Sect. 3.6 as universal algebras
over diagrams).

3.1 The Radical of a Module and of an Algebra

Let M be a semisimple module: M = 65 U; , where U; are simple modules and

let 7; be the projection of M on U,. Then for any non-zero element m € M,
7i(m) # 0 for at least one index 7. One can say that the homomorphisms of M
into all possible simple modules “distinguish” the elements of the module M.
Conversely, it is not difficult to verify that if the homomorphisms of M into
simple modules distinguish the elements, then M is semisimple. Indeed, if N is
a minimal submodule of M and n € N a non-zero element, then f(n) # 0 for
a suitable homomorphism f : M — U, where U is a simple module. But then
N N Ker f = 0 because N is minimal. Besides, Im f = U, i.e. M/Ker f ~ U

® In Chapter 8 these concepts will be generalized to arbitrary algebras whose quo-
tients by the radical are separable.
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and Ker f is a maximal submodule of M. Therefore, N + Ker f = M and
Ker f is a complement of N in M. Thus M is a semisimple module (see
Proposition 2.2.1).

For a given module M, we shall introduce “a measure of how far it is from
being semisimple”: the set of all elements m € M such that f(m) = 0 for any
homomorphism f of M to a simple module. Evidently, these elements form
a submodule of M, which will be called the radical of the module M and be
denoted by rad M.

Since, for any non-zero homomorphism f : M — U, where U is a simple
module, Ker f is a maximal submodule of M, and conversely, since every
maximal submodule M' C M is a kernel of the projection = : M — M/M’,
and the module M /M’ is simple, the radical is the intersection of all maximal
submodules of the module M.

Theorem 3.1.1. A module M is semisimple if and only if rad M = 0. The
factor module M [rad M is always semisimple.

Proof. The first assertion has already been proved above. Therefore, it is suf-
ficient to prove that rad (M/rad M) = 0. But, by Theorem 1.4.3, the maxi-
mal submodules of M/rad M are of the form M'/rad M, where M' is max-
imal submodule of M (since always M' D rad M). Clearly, N(M'/rad M) =
(NM'")/rad M =0, i.e. rad(M/rad M) = 0 and the theorem is proved. O

Proposition 3.1.2. rad( é M;) = é rad M; .
i=1 i=1

Proof. Every homomorphism f : M — U, where M = é M; , is determined
i=1
uniquely by a family of homomorphisms f; : M; — U according to the formula
Ll

f(mi,ma,...,ms) = 3 fi(m;) (see Sect. 1.7). Therefore, if m; € rad M; for
=1

all 7, then f(mi,m2,...,m;) =0 and thus (mi,mz,...,m,) € rad M.

Conversely, if (m1,ma,...,ms) € rad M, consider the homomorphisms
f: M — U for which f; = 0 for j # ¢. We get that fi(m;) = 0 for any
homomorphism f; : M; — U. Consequently, m; € rad M;, as required. O

Proposition 3.1.3. f(rad M) C rad N for any module homomorphism
f:M—N.

Proof. If m € rad M, then, for any homomorphism g : N — U, where U is a
simple module, gf(m) =0, i.e. f(m) € rad N. O

This result implies that, for any homomorphism f : M — N, one can
construct the induced homomorphism f : M/rad M — N/rad N by setting

fm+rad M) = f(m)+radN.



46 3. The Radical

Lemma 3.1.4 (Nakayama). A homomorphism f : M — N 1is an epimor-
phism if and only if the induced homomorphism f : M/rad M — N/rad N is

an epimorphism.

Proof. If f is an epimorphism, then clearly f is an epimorphism. Conversely,
the fact that f is an epimorphism means that Im f + rad N = N. But if
Im f # N, then Im f is contained in a maximal submodule N' of N. Since
radN C N', Imf +radN C N' and thus cannot be N. Consequently,
Im f = N, i.e. fisan epimorphism. O

It follows that the fact that a homomorphism is an epimorphism is suffi-
cient to be verified “modulo the radical”. Occasionally, the following form of
this result can be found useful.

Corollary 3.1.5. If N and L are submodules of M such that N+ L =M
and N Crad M, then L= M.

Proof. An exercise. O

The radical of a regular module of an algebra A is called the radical of the
algebra. By definition, rad A is a right ideal. It follows from Theorem 3.1.1 that
the semisimplicity of the algebra A is equivalent to the equality rad A = 0.

Theorem 3.1.6. For any A-module M, rad M = MR, where R=rad A. In
particular, the radical of an algebra is a two-sided ideal and the corresponding
quotient algebra is semisimple.

Proof. Consider the homomorphism A — M which maps every element a € A
into ma, where m is a fixed element of M (see Theorem 1.7.1). By Proposi-
tion 3.1.3, it maps the radical into the radical, i.e. mR C rad M. Therefore
MR C rad M.

In particular, AR C R, i.e. R is a two-sided ideal and the quotient algebra
A/R = A is semisimple according to Theorem 3.1.1.

Consider the factor module M = M/MR. It is annihilated by the radical
R and can be therefore considered as an A-module which is semisimple in
view of Theorem 2.6.2. Consequently, for every non-zero class m = m + MR,
there is a homomorphism f : M — U, with a simple module U such that
f(m) # 0. In combination with the projection = : M — M, we obtain the
homomorphism fr : M — U satisfying fr(m) # 0,1.e. m ¢ rad M. It follows
that rad M C MR and the proof of our theorem is completed. O

Let us remark that we have, in fact, proved that M R = rad M is the least
submodule of M such that the respective factor module is semisimple.

Corollary 3.1.7. Every semisimple A-module 1s a module over the semisimple
quotient algebra A = A/radA. In particular, the number of simple A-modules
i3 equal to the number of the simple components of the algebra A.
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Corollary 3.1.8. The radical of an algebra is the intersection of all mazimal
1deals.

Proof. If I is a maximal ideal of an algebra A, then A/I is a simple algebra,
and hence it is a semisimple A-module. Therefore, (A/I)R = 0,i.e. R C I and
I/R is a maximal ideal of the quotient algebra A = A/R (Theorem 1.4.7).
Denote by J the intersection of all maximal ideals of the algebra A. Then
J D R and J/R is the intersection of all maximal ideals of the algebra A. But
A is a semisimple algebra, and thus J/IR=0,i.e.J=R. O

Corollary 3.1.8 provides a symmetric characterization of the radical (free
of the concepts “right” and “left”). It follows that the radical of the left regular
module coincides with the radical of the algebra.

Proposition 3.1.9. The radical R of an algebra A is a nilpotent ideal con-
taining all nilpotent right and left ideals.

Proof. Theorem 3.1.6 together with Nakayama’s lemma (Corollary 3.1.5) im-
plies that R? = radR # R and, in general, R™*! = rad R™ # R™ when-
ever R™ # 0. However, the chain of the subspaces R D R* D> ... D
R™> R™*! 5 ... must become stationary, and thus R™ = 0 for some m.
Conversely, if I is a nilpotent right ideal, then (I+ R)/R is a nilpotent right
ideal of the semisimple algebra A/R. Hence, by Corollary 2.2.5, (I+R)/R = 0,
iiee I+ R=R. O

Corollary 3.1.10. The radical of an algebra 1s the set of all strongly nilpotent
elements.

An important property of the radical relates to the following concept. A
right (left) ideal I of an algebra A is called quasiregular if every element 1 —z,
where z € I, is invertible.

Proposition 3.1.11. The radical is a quasireqular ideal containing all right
and left quasiregular ideals.

Proof. If z € R, then 2* = 0 for some k and therefore (1 —z)(14+z+2%+...
+z%1)=1—2F =1,i.e. 1 —z is invertible. Conversely, let I ¢ R, where I is
a right ideal. Then I ¢ M for some maximal right ideal M. Thus I + M = A.
In particular, 1 = z + m, where z € I and m € M. Consequently, m =1 —z
is not invertible because mA # A. Hence, I is not quasiregular. O

Thus, in finite dimensional algebras, the concepts of being nilpotent and
quasiregular coincide.

Corollary 3.1.12. Every right (left) nil ideal (i. e. such whose elements are
nilpotent) is contained in the radical and is therefore nilpotent.
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Proof. The statement follows from the fact that, for a nil right ideal I, all
elements 1 —z (x € I) are invertible; for, if z™ = 0, then (1 —z)(1 + z + 2% +
st z™ ) =1, O

In what follows, we shall often make use of the following characteristic of
the radical.

Proposition 3.1.13. The radical of an algebra is the unique nil ideal such
that the respective quotient algebra is semisimple.

Proof. The radical has all these properties, as we have seen above. Conversely,
since A/I is semisimple, it follows that I D rad A and, from the fact that I is
a nil ideal, we deduce that I C rad A. O

Corollary 3.1.14. rad(A/I) = (R+I)/I, where R =rad A.

Proof. Since R is nilpotent, it follows that (R + I)/I is nilpotent. At the same
time, (A/I)/((R+I)/I) ~ A/(R+I)~ (A/R)/((R + I)/R). Since A/R is
semisimple, its quotient algebra is also semisimple; thus (R+1)/I = rad (A/I).

]

3.2 Lifting of Idempotents. Principal Modules

The fact that the radical is nilpotent provides a powerful method of inves-
tigation of non-semisimple algebras, viz. lifting of idempotents modulo the
radical. ’

Lemma 3.2.1. Let I be a nil ideal of an algebra A and u an element of the
algebra such that u® = u (modI). Then there is an idempotent e in A such
that e = u (mod I).

Proof. Put v = u+r — 2ur, where r = u? —u. Then ur = ru, r? € I? and thus
v? = u? 4+ 2ur — 4u?r = u +r 4 2ur — 4ur = v (mod I?). Besides, evidently,
v = u (mod I). Proceeding in this way with the element v in place of u, we
can construct an element v; such that v} = v; (mod I*) and v; = v (mod I?).
Thus v; = u (mod I). Finally, continuing this process, and taking into account
that the ideal I is nilpotent, we can construct a required idempotent e. O

Lemma 3.2.1 above yields a characterization of the algebras whose regular

module is indecomposable.

Theorem 3.2.2. The following conditions are equivalent:

1) the regular A-module is indecomposable;
2) A/R, where R =rad A, is a division algebra;
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3) there is a unigue mazimal Tight ideal in the algebra A;
4) the non-invertible elements of the algebra A form a right ideal.’

Proof. 1) = 2). The condition 1) means that there are no non-trivial idem-
potents in the algebra E4(A) = A (Corollary 1.7.3). But then, in view of
Lemma 3.2.1, there are no non-trivial idempotents in the semisimple algebra
A/R, and thus A/R is a division algebra.

2) = 4). If A/R is a division algebra and an element a € A does not
belong to R, then the class a + R is invertible in A/R, i.e. there is an element
b € A such that ab = 1 (mod R). It follows from Proposition 3.1.11 that the
element ab, and therefore also a, is invertible. Since all elements of the radical
are not invertible, the radical R is just the set of all non-invertible elements,
as required.

4) = 3). Let I be the right ideal consisting of all non-invertible elements of
the algebra A. Then every right ideal J # A must be contained in I because the
ideal J cannot contain invertible elements, and thus I is the unique maximal
right ideal.

3) = 1) follows from the fact that if M is decomposable, M = N & L,
where N # 0, L # 0, then M contains at least two maximal submodules
N' @ L and N @ L', where N' and L' are maximal submodules of N and L,
respectively. o

The algebras satisfying the conditions of Theorem 3.2.2 are called local.
Corollary 1.7.4 implies the following assertion.

Corollary 3.2.3 (Fitting). A module is indecomposable if and only if its
endomorphism algebra s local.

We shall apply the above results to direct summands of the regular module.
The modules which are isomorphic to indecomposable direct summands of the
regular module are called principal indecomposable modules, or simply prin-
cipal modules. In other words, a principal A-module is of the form eA, where
e is a minimal idempotent: it cannot be represented in the form e = ¢’ + ¢€”,
where €' and e” are non-zero orthogonal idempotents. By corollary 3.2.3, this
is equivalent to the fact that the algebra E4(eA) ~ eAe is local.

Proposition 3.2.4. For an idempotent e of A, rad (eAe) = eRe. An idempo-
tent e € A is minimal if and only if the idempotent € = e + R of the algebra
A = A/R is minimal.

Proof. Evidently, eRe is an ideal of eAe and is nilpotent (because R is nilpo-
tent). On the other hand, eAe/eRe ~ &AE is a semisimple algebra. By Propo-
sition 3.1.13, eRe = rad (eAe). Now, the second assertion follows from Theo-
rem 3.2.2, since € is minimal if and only if £4¢ is a division algebra. O

¢ Since condition 2) is symmetric, one can replace right modules and ideals in 1),
3) and 4) by left ideals.
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Corollary 3.2.5. A principal module contains a unigue mazimal submodule.

Proof. If €A is a principal module, then € = e + R is a minimal idempotent;
thus €4 ~ eA/eR is a simple module and eR is a maximal submodule of eA.
But, by Theorem 3.1.6, eR = rad (eA) is contained in all maximal submodules
and is therefore the unique maximal submodule of eA. a

Proposition 3.2.6. If f : eA — M s a homomorphism of A-modules, then
f(e) € Me and, making the element f(e) correspond to f, we establish an
18omorphism of the vector spaces Hom 4(eA, M) ~ Me.

Proof. f(e) = f(e?) = f(e)e € Me, and if f(e) = g(e), then f(ea) = f(e)a =
g(e)a = g(ea) for any a € A, and thus the map Homa(eA, M) — Me is a
monomorphism. On the other hand, restricting the homomorphism A — M
which maps a into ma, to eA, we obtain the homomorphism f : eA — M
which maps e into me and therefore the map Homa(ed, M) — Me is an
epimorphism. a

Corollary 3.2.7. For any homomorphism f : eA — M and any epimorphism
g: N — M, there i3 a homomorphism ¢ : eA — N such that f = gp.

Proof. Let f(e) = me and n be a preimage of m in N. Then ¢ : eA — N can
be defined by mapping e into ne. ]

Corollary 3.2.8. If a module M has a uniqgue mazimal submodule, then M
s 1somorphic to a factor module of a principal module.

Proof. Let M' be the unique maximal submodule of M. Then M' = MR and
M/MR is a simple module (here R = rad A). Thus M/MR ~ €A for some
minimal idempotent & of the algebra A = A/R. By Lemma 3.2.1, e =e¢+ R
with an idempotent e of A which is by Proposition 3.2.4 minimal and for which
EA ~ eA/eR. Denote by 7 the projection of M onto €A and by f the projection
of eA onto A. By Corollary 3.2.7, there is a homomorphism ¢ : eA — M such
that mp = f and, moreover, the induced homomorphism @ : eA/eR — M/MR
is an isomorphism. By Nakayama’s lemma (Lemma 3.1.4), ¢ is an epimorphism

and M ~ eA/Ker . O

Corollary 3.2.9. The principal modules eA and fA are isomorphic if and
only if the simple modules €A and fA are isomorphic (A = A/R and a =
a+ R).

Proof. If eA ~ fA, then €A ~ eA/eR ~ fA/fR ~ fA. Conversely, let
€A ~ fA. Combining this isomorphism with the projection eA — A, we
obtain an epimorphism ¢ : eA — fA. By Corollary 3.2.7, ¢ = mp, where
@ :eA — fA and 7 is a projection fA — fA. Since ¢ induces an isomor-
phism €4 ~ fA, it is an epimorphism (by Lemma 3.1.4). In a similar way,
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one can define an epimorphism ¥ : fA — eA. But then both 9 and ¥y
are epimorphisms and therefore isomorphisms (since eA and fA are finite di-
mensional spaces). Therefore ¢ and v are isomorphisms and the proof of the
corollary is completed. O

In this way, a natural bijective correspondence has been established be-
tween the principal and the simple modules. Let us remark that the same
results hold for the left modules. Now one can see easily that in a semisimple
algebra A, €A ~ fA if and only if Ae ~ Af (any of these isomorphisms means
that e and f belong to the same simple component). Hence, one obtains the
following result.

Corollary 3.2.10. The left principal modules Ae and Af are isomorphic if
and only if the modules eA and fA are isomorphic.

3.3 Projective Modules and Projective Covers

Corollary 3.2.7 expresses the most important property of principal modules,
viz. their projectivity.

A module P over an algebra A is called projective if for every epimorphism
g: M — N and every homomorphism f : P — N there is a homomorphism
¢ : P — M such that f = gp. We say that f can be lifted to ¢ or that ¢ is a
lifting of f to M.

Proposition 3.3.1. Two projective modules P and Q are isomorphic if and
only if the semisimple modules P = P/PR and Q = Q/QR are isomorphic
(here R =rad A).

Proof. Every isomorphism P 5 @ induces an isomorphism P ~ Q. Conversely,
if P ~ @, then there is an epimorphism f: P — Q which can be lifted to a
homomorphism ¢ : P — @ (since P is a projective module); by Nakayama’s
lemma, ¢ is an epimorphism. In a similar way, one obtains an epimorphism
¥ : @ — P. Comparing the dimensions, it turns out that ¢ and + are isomor-
phisms. O

Proposition 3.3.2. 4 direct sum of modules is projective if and only if every
direct summand is projective.

Proof. Every homomorphism f : P& Q — N is uniquely determined by a pair
of homomorphisms f; : P — N and f; : @ — N; indeed, f(p,q) = fi(p) +
f2(g). Now, the solution of the equation f = g, where g is an epimorphism
M — N and ¢ the required homomorphism P®Q — M, isapairp; : P > M
and @3 : Q@ — M such that f; = gy; and fo = gps. Consequently, f can be
lifted if and only if each of the homomorphisms f; and f, can be lifted. O
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Among the fundamental examples.of projective modules are the free mod-
ules. A free module is a module which is isomorphic to a direct sum of regular
modules, i.e. is of the form nA for some n. The elements of a free module
can be viewed as the “vectors” (aj,as,...,a,) with the components from A
and componentwise operations. The number n is called the rank of the free
module.

Proposition 3.3.3. Every homomorphism f : nA — M is given uniquely by
a choice of the elements {m1,ma,...,m,} of the module M, according to the

formula
n

flar,az2,...,a,) = Zmiai . (3.3.1)
i=1

Hence, Hom4(nA, M) ~ nM.

Proof. Tt is trivial to verify that the map f : nA — M given by the for-
mula (3.3.1) for arbitrary mj,ms,...,m, is a homomorphism. Conversely,
if f is a homomorphism nA — M, we put m; = f(u;), where u; =

n
(0,...,1,...,0) (with 1 at the ith position). Since (a1, az,...,a,) = Y u;a;,
=1

n n
flar,a2,...,an) = Y f(ui)ai = 5 m;a; and the proposition is proved. O
i=1 i=1
A set of elements {m;,m2,...,m,} of a module M is called a generating
set (a set of generators) if every element m € M can be expressed in the
n

form m = ) mja; for some a; € A. This means that the homomorphism

=1
f:nA — M defined by the formula (3.3.1) is an epimorphism. The homo-
morphism theorem then yields the following corollary. .

Corollary 3.3.4. If a module M has a generating set consisting of n elements,
then M 1is isomorphic to a factor module of the free module of rank n.

Observe that a finite dimensional module M always has a finite gener-
ating set (for example, a basis). The least number of elements in any of the
generating sets of M is called the number of generators of the module M and
is denoted by pa(M).

Free modules as well as principal ones are projective (by Proposition 3.3.2).
The following theorem describes the relation between free, principal and pro-
jective modules.

Theorem 3.3.5. The following conditions for a module P are equivalent:

1) P is projective;

2) P is isomorphic to a direct sum of principal modules;

3) P is isomorphic to a direct summand of a free module;

4) the kernel of every epimorphism f : M — P has a complement in M (and
then, evidently, M ~ P @ Ker f).
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Proof. 2) = 1) and 3) = 1) by Proposition 3.3.2.

4) = 3) by Corollary 3.3.4.

1) = 4). There exists a homomorphism ¢ : P — M such that fo = 1, and
by Proposition 1.6.2, this is equivalent to the fact that Ker f has a complement
in M.

1) = 2). Decompose the semisimple module P = P/PR into a direct sum
P=U,0U,®...® U, of simple modules U;. Let P; be a principle module

such that P;/P;R ~ U; . Write Q = é P; . Then @Q is a projective module and
i=1 .
Q/QR ~ P/PR. Consequently, P ~ ) by Proposition 3.3.1. 0

It turns out that the projective modules are in a bijective correspondence
with the semisimple ones, in a similar manner as the principal modules are in
a bijective correspondence with the simple ones.

Theorem 3.3.6. The map assigning to every projective module P the semisim-
ple module P = P/PR, is a bijective correspondence between the projective and
semisimple modules. f P=P, P, ®.. d P, =Q1 D Q2D ... D Qum are
two decompositions of a projective module P into a direct sum of principal
modules, then n = m and, under a suitable relabelling, P; ~ Q; for all i.

Proof. In view of Proposition 3.3.1, we need to verify only that every semisim-
ple module M is isomorphic to P/PR, where P is a projective module. To
this end, it is sufficient to decompose M into a direct sum of simple modules
M=U10U;0.. U, andtoput P=P, &P, ®...D P,, where P; is a
principal modules satisfying U; ~ P;/P;R.

IPoP®.. P, ~2Q19Q:®...5Qm, where P; and Q; are principal
modules, then for the factors modulo the radical we obtain an isomorphism
PoP®.. 0P, ~0100:... ® Q.. with the simple modules P; = P;/P,R
and Q; = Q;/Q;R. By Proposition 2.2.3, n = m and P; ~ Q; for all i (after
an appropriate reindexing), and then, by Proposition 3.2.9, also P; ~ @Q;. 0O

It follows from Proposition 3.3.4 that every module is isomorphic to a
factor module of a projective module. Of course, there are many different
ways of representing a given module M in the form P/N with a projective
module P. However, we are going to show that there is, in a certain sense, a
unique minimal representation of this form.

A projective module P is called a projective cover of a module M and is
denoted by P(M) if there is an epimorphism f : P — M which induces an
isomorphism P/rad P = M/rad M. Evidently, this is equivalent to the fact
that M ~ P/N with N C rad P.

Theorem 3.3.7. 1) For every module M, there is a projective cover and it is
unique up to an isomorphism.

2) P(M)~ P(M), where M = M/rad M.

3) 1If g is an epimorphism of a projective module Q onto a module M, then
Q ~ P, @ P,, where P, ~ P(M), the restriction of g to Py is an epi-
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morphism, and P, C Kerg. Moreover, the isomorphism P(M) = Py can
be chosen in such a way that the composition with the epimorphism g is
equal to a fized epimorphism f: P(M) — M.

Proof. By Theorem 3.3.6, M ~ P/rad P for some projective module P. Con-
sequently, the epimorphism P — M can be extended to a homomorphism
f: P — M, whereby, by Nakayama’s lemma, f is an epimorphism. Thus, P
is a projective cover of M and the assertions 1) and 2) are proved (the fact
that the cover is unique follows from Proposition 3.3.1).

Now, let @ be a projective module and g : Q — M an epimorphism. Let
us lift g to a homomorphism ¢ : @ — P such that fio = ¢g. Then the induced
map ¢ : @Q/rad Q — P/rad P is an epimorphism and, by Nakayama’s lemma,
 is an epimorphism. By Theorem 3.3.5, Q = P; ®Kery, where P; ~ P. Since
P, = Kerp C Kerg, we have obtained the assertion 3), as well. O

Corollary 3.3.8. P(M @ N) ~ P(M) & P(N).
The proof is immediate.

Corollary 3.3.9. Let R =radA, A= A/Rand 1l =& + &+ ...+ &, bea
decomposition of the identity of the algebra A. Then there is a decomposition
of the identity 1 = €1 +e3 + ...+ e, of the algebra A such that & = e; + R.

Proof. Evidently, A = P(A). On the other hand, if U; = &A and P; = P(U;),
then P(A) P, @® P, ®...® P,. Consequently, A~ P& P, &...®» P, and
the isomorphism can be chosen in such a way that the composition with the
natural epimorphism P, @ P & ...® P, U1 0 U2 @ ... ® U, = A would
give the projection 7: A — A. Let 1 = e; + e +... + e, be a decomposition
of the identity of the algebra A corresponding to the decomposition A =~
PL® P, ®...® P, of the regular module. Then e;A/e;R ~ &A, i.e. the
idempotents e; + R determine a decomposition of the identity corresponding
to the decomposition A = 6, AP e, AG...De, A. In view of the fact that there
is a bijective correspondence between the decompositions of the identity and
the decompositions of the module (Theorem 1.7.2), e; + R = €;, as required.

O

In conclusion of this section, we are going to apply the above results to
the study of a particular class of algebras.

An algebra A is called primary if A/rad A is a simple algebra.

Theorem 3.3.10. The following statements for an algebra A are equivalent:

1) A is primary;

N

) there is a unique mazimal ideal in A;
) every proper ideal of the algebra A is nilpotent;
) A has a single simple module;

> W
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5) A has a single principal module;
6) A~ M,(B), where B is a local algebra.

Proof. We are going to give a proof following the implications 3) = 2) = 1)
=>4)=5)=6)=1)=>3).

3) = 2). If all ideals are nilpotent, then they are all contained in R = rad 4
(Proposition 3.1.9) and thus R is the unique maximal ideal.

2) = 1). This follows from Corollary 3.1.8. Also, 1) = 4) follows from
Corollary 3.1.7, and 4) = 5) follows from Corollary 3.2.9.

5) = 6). The regular module A is isomorphic to nP, where P is the unique
principal module; from here, A ~ E4(A) ~ M,(B), where B = E4(P) is a
local algebra (by Corollary 3.2.3).

6) = 1). Let A = M, (B). We shall prove that rad A = M,(J), where
J = rad B. Indeed, My(J) is a nilpotent ideal in A and A/M,(J) ~ M,(B/J)
is a simple algebra, because B/J is a division algebra. Therefore My(J) is
rad A (by Proposition 3.1.13) and A is a primary algebra.

1) = 3). If I is an ideal of a primary algebra A, then (I + R)/R is an ideal
of the simple algebra A/R. From here, either (I + R)/R =0,1.e. I C R, or
(I+R)/R = A/Ri.e. I + R = A, and by Nakayama’s lemma, I = A. This
means that if I # A, then the ideal I C R and therefore it is nilpotent. a

Observe that, by proving the implication 6) = 1), we have also proved the
following proposition.

Proposition 3.3.11. rad M,(B) = M,(rad B).

3.4 The Krull-Schmidt Theorem

Theorem 3.3.6 implies, in particular, that a decomposition of the regular mod-
ule into a direct sum of indecomposable modules is unique. In this section,
using the results of Sect. 1.7, we shall extend this fact to arbitrary modules.
First, we shall express it in terms of the idempotents.

Theorem 3.4.1. Let 1 = e;+es+...4+en = fi+ fo+ ...+ fm be two
decompositions of the identity of an algebra A with minimal idempotents e;
and f;. Then n = m and there is an invertible element a in the algebra A
such that, up to a suitable reindexing, f; = ae;a™! for all .

Proof. Let A = et A® e AD ... De,A = fLAD LAD ... D fmA be two
decompositions of the regular module into a direct sum of principal modules.
By Theorem 3.3.6,n = m and e; A ~ f; A for all i (up to a suitable relabelling).
But the isomorphism e;A = f;A is given by a suitable element a; € f;Ae;
such that fia; = a;e; =a;. Puta=a; +az+ ...+ a,. Then ae; = a;e; = a;
and fia = f;a; = a; for all ;. We show that a is invertible. To that end, we
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choose elements b; € e;Af; defining the isomorphism f;A ~ e;A reciprocal

to a; and put b = by + b + ... + b,,. Since a;b; = f; and e;b = b; = bf;,
n n

ab= > a;b; = 5 fi =1 and b = a7!. Consequently, the equality ae; = f;a
i=1 i=1

yields f; = ae;ja™!. The theorem is proved. a

Now, in order to prove the uniqueness of module decompositions, we apply
Theorem 3.4.1 to endomorphism algebras.

Theorem 3.4.2 (Krull-Schmidt). If M = Mi e My & ... ® M, =
N1 ® N2@... ® N, are two decompositions of the module M into a direct
sum of indecomposable modules, then n = m and, after a suitable reindezing,

M; ~ N; for all 1.

Proof. By Theorem 1.7.2, we have two decompositions of the identity of the
algebra E = E4(M) corresponding to the two decompositions of M into a
direct sum of indecomposable modules: 1 = e;+e3+...+en = fi+fo+...+ fm,
where e; and f; are minimal idempotents, M; = e;M and N; = f;M. By
Theorem 3.4.1, n = m and, after a suitable renumbering,"f; = ae;a™!, where
a is an invertible element of the algebra E, i. e. an automorphism of the module
M. Let a; be the restriction of a to M;. Since ae; = f;a, ae;(m) € fiM =
N;, and thus a; maps M; into N;. Since a is a monomorphism, a; is also a
monomorphism. On the other hand, @ is an epimorphism, and therefore any
element y of NV; is of the form y = a(z). But then fi(y) = y = fia(z) = aei(z)
with ei(z) € M;; thus a; is an epimorphism of M; onto N;, and therefore an
isomorphism. The theorem is proved. O

3.5 The Radical of an Endomorphism Algebra

We shall apply the above results to clarify the behaviour of the radical with
respect to a Peirce decomposition.

Lemma 3.5.1. Let f : M — N be a homomorphism between two indecompos-

able A-modules. Then either f is an isomorphism or, for any homomorphism
g:N—- M, fgeradE4(N) and gf € rad E4(M).

Proof. Let g € Homu(N, M) and fg ¢ rad E4(N). Then, since the algebra
E 4(N) is local (Corollary 3.2.3), fg is an invertible element and thus an au-
tomorphism of N. Consequently, f is an epimorphism. If p = ( fg)™', then
f(gp) = 1, and by Proposition 1.6.2, M ~ N @ Ker f. Since M is indecom-
posable, we get Ker f = 0 and thus f is a monomorphism; therefore, f is an
isomorphism. In a similar manner, one can show that gf ¢ rad E4(M) also
implies that f is an isomorphism. |
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Theorem 3.5.2. Let M = M; @ My @ ... ® M,, where M; = n;N;, the
modules N; are indecomposable and such that N; % N; for i # j. Write
Hom 4(M;, M;) = E;j and consider the two-sided Peirce decomposition of the
algebra E = E (M)

Ell El?. “e Els
E = E21 E22 s E23
Esl E32 e Ess

Then the radical of the algebra E has the form

Ry Enp ... Eyg
Ey1 Ry ... Ey

(3.5.1)

where Ri; = rad E;; . In other words, if 1 = e;+ea+. . .+e, 18 the corresponding
decomposition of the identity of the algebra E, then e;Rej = e;Eej fori # j
and e;Re; = rade; Ee;.

Proof. According to Sect. 1.7, the elements of E;j can be interpreted as
matrices of dimension n; x n; with coefficients from H;; = Hom4(N;, N;).
Therefore, Ri; = My, (R;), where R; = rad E 4(N;) (see Proposition 3.3.11).
Moreover, it follows from Lemma 3.5.1 that E;;E;; C Ry for ¢ # j. Con-
sequently, the set R defined by the formula (3.5.1) is an ideal in E and
E/R ~ E11/R11 X Ey3/Ras % ... X Egs/ Ry, is a semisimple algebra; therefore
RDOradE.
On the other hand, consider the right ideal

0 6o ... 0 ... O
I = EyZ Eo ... R; ... Eg
0 0 0 0
(the ith row of R). We shall show that it is nilpotent. Indeed,
0 0 0
I’ = | RiEa R?z Ri;E;, ’
0 0 0
and in general,
0 0 0
I = | peg, REH1 REE,,
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Since RY, = 0 for some k, If*' = 0. Therefore I; C rad E and we obtain
RCchi+IL+...4+ I, Crad E, as required. O

If we apply Theorem 3.5.2 to the algebra A ~ E4(A), we get the following
result.

Theorem 3.5.3. Let1 = e;+e2+...+es be a decomposition of the identity of
an algebra A such that the idempotents €; = e; + R are central in the quotient
algebra A = A/R, where R = rad A. Then e;Re; = e;Ae; for i # j and
eiRe; = rad (e; Ae;).

Proof. Since &; are central idempotents, the A-modules &A and &;A have
no isomorphic simple direct summands for ¢ # j. Thus, by Corollary 3.2.9,
e;A and e; A have no isomorphic principal direct summands and, in view of
Theorem 3.5.2, e;Ae; = Hom(ej A, e;A) C rad A. Since, by Proposition 3.2.4,
rad (e; Ae;) = e; Re;, the theorem follows. O

Now we are going to introduce a class of algebras which plays a funda-
mental role in the theory of finite dimensional algebras. :

Theorem 3.5.4. The following conditions for an algebra A are equivalent:

1) the quotient algebra A = A/R, where R = rad A, is isomorphic to a
product of division algebras;

2) fA=PidP®...0 P, is a decomposition of the regular module into a
direct sum of principal modules, then P; % P; for i # j;

3) there is an algebra B and a B-module M such that A ~ Ep(M) and
M=M®M &...0 M,, where M; are indecomposable modules and

M; # M; fori#j.

Proof. 1) = 2). If A~ Dy x Dy x...x D, where D; are division algebras,
then, by Corollary 3.3.9, A ~ P ® P, ® ... ® Ps, where P;/P,R ~ U; are
simple D;-modules, P; are principal modules and P; % P; for i # j because
Ui 2 Ujfori # 3.

2) = 3) follows from Theorem 1.7.1. It is sufficient to put B = A and take
the regular module for M.

3) = 1) follows immediately from Theorem 3.5.2. a

An algebra A satisfying the conditions of Theorem 3.5.4 is called basic.

Let A be an arbitrary algebra and 4 ~ n; Py @ noPy @ ... ® n,P, a
decomposition of the regular A-module into a direct sum of the principal
modules, whereby P; % P; for i # j. Write P = P, ® P, @ ... ® P; and
B = E4(P). Then B is basic and is called the basic algebra of the algebra A.
fl=-¢e +ey+...4esis a decomposition of the identity of the algebra B
corresponding to the given decomposition of the module P, we say that the
principal B-module Q; = e; B corresponds to the principal A-module P; and
that the projective B-module Q = k1Q; @ k2Q2 & ... D k., Q, corresponds to
the projective A-module k1P @ k2P, & ... B kP, .
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Lemma 3.5.5. If B is the basic algebra of an algebra A and Q;, Q. are
projective B-modules corresponding to the projective A-modules Py, P, , then
HOII].B(QI,Q2) ~ HomA(PI,PZ)'

Proof. In view of the matrix form of the endomorphisms introduced in
Sect. 1.7, the proof can be reduced to verifying that Homp(Q;,Q;) =~
Hom 4(P;, P;) for principal B-modules Q; corresponding to the principal
A-modules P;. Since both Homp(Q;,Q:) and Homa(P;, P;) can be identi-
fied with e;Be;, the proof of the lemma, follows. O

Theorem 3.5.6. The following conditions are equivalent:

1) the basic algebras of the algebras Ay and A, are isomorphic;

2) Ay > E4, (P), where P 1s a projective A;-module having among its direct
summands all principal A;-modules;

3) Ay ~ E4 (P1) and Ay ~ E4,(Py), where P; are projective A;-modules
(i=1,2).

Proof. 1) = 2). Let B be a common basic algebra of the algebras A; and 4, ,
Q be a projective B-module corresponding to the regular A;-module and P
be a projective A;-module corresponding to Q. Then Q contains all principal
B-modules as direct summands. This means that P contains all principal
Aj-modules and by Lemma 3.5.5, A; ~ F4,(A4;) ~ Eg(Q) ~ Ea,(P).

Observe that, in view of the fact that condition 1) is symmetric, we have
at the same time proved the implication 1) = 3).

2) =1). Let P = kyP, ® koPo @ ... @ k P, , where P,,P,,...,P, are
all pairwise non-isomorphic A;-modules and 4, = Ey4,(P). It follows from
Theorem 3.5.2 that A;/rad Ay ~ My, (D1) x My,(D2) % ... x My, (D), where
D; = B;/rad B; and B; = E4,(P;). Therefore, there are s simple A;-modules
and s principal A;-modules Py, P}, ..., P! (Corollary 3.2.9), and moreover, as
one can easily see using Lemma 3.5.5, Hom, (P}, P{) ~ Hom 4, (P;, P;). Thus
Ef,(PiOP,®...0P)~Es(PLOP,®...® P,), as required.

3) = 2) If Ay ~ EAI(P1)7 where P, = ki & szz ®...85 sta with
pairwise non-isomorphic principal A;-modules Q;, then, by Theorem 3.5.2,
Az has s simple, and thus s principal modules. Similarly, if A; ~ Ea,(P,),
where P, = m1Q) @ m2Qy & ... & m,Q} with pairwise non-isomorphic prin-
cipal Az-modules @, the A; has t principal modules. From here we conclude
that s <t andt < s, i.e. t = s and that Q1,Q>,...,Q, are all principal
A;-modules. O

The algebras satisfying the conditions of Theorem 3.5.6 are called iso-
typic. Evidently, for semisimple algebras this concept coincides with the one
introduced in Sect. 2.6.

Corollary 3.5.7. Every algebra A is isomorphic to the endomorphism algebra
of a projective module P over a basic algebra B. The algebra B is determined
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(up to an isomorphism) uniquely and is isomorphic to the basic algebra of the
algebra A.

Let us remark that the module P is, in general, not uniquely determined
(see Exercise 16 of this chapter).

3.6 Diagram of an Algebra

The preceding results allow us to outline a certain method of investigation of
non-semisimple algebras. Taking into account Corollary 3.5.7, we can restrict
ourselves to basic algebras.

Let Py, P,,...,P; be pairwise non-isomorphic principal modules over an
algebra A (by Corollary 3.2.9, their number equals the number of simple com-
ponents of the algebra A = A/R where R = rad A). Write R; = P;R and

Vi = Ri/R;R. Here V; is a semisimple module, and thus V; ~ é t;;U; , where
j=1
U; = P;/R; are simple modules (in view of Theorem 3.3.7, this is equivalent
to the isomorphism P(R;) ~ ESB tijP;). Now, to each module P; assign a point
=1

of the plane which will be denoted by 7, and join the point ¢ with the point j
by t;; arrows. The set of points and arrows which will be obtained in this way
will be called a diagram of the algebra A and will be denoted by D(A).”

Observe that isotypic algebras have the same diagrams. Besides, since
Vi = P;R/P;R?, the diagrams of the algebras A and A/R? coincide.

Ezamples. 1. If the algebra A is semisimple, then R; = 0 and D(A) is a set of
points without any arrows.

2. Let A = T,,(IX) be the algebra of triangular matrices of degree n. The
matrix units e;; are minimal idempotents and 1 = e;; + €22 + ... + epyn is
a decomposition of the identity. Since [e; A : K] = n — ¢ + 1, the principal
A-modules P; = ¢;;A are pairwise non-isomorphic. By Theorem 3.5.3, we get
easily that R; = €;(i+1)K + €;(i42)/X + ... + €in K =~ Piyy. Therefore, the
diagram D(A) looks as follows:

1 2 3 n-1 n
3. The Jordan-algebra J,(I) is local and its radical is cyclic. Therefore
the only principal module is the regular one and it is the projective cover of
its radical. Consequently, the diagram of the algebra J,(R') has the form

O

" Compare this concept to that of a K-species S(A) of an algebra A and its valued
graph as presently used in literature and the Appendix. For split algebras, one
usually speaks about a “quiver” of an algebra in the sense of P. Gabriel. See also
Sect. 8.5. ( Translator’s note)
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In general, by a diagram D we shall understand an arbitrary finite set of
points together with arrows between them. Usually, the points will be denoted

by the numbers 1,2,...,s. Then, the diagram is given by its incidence matriz
t11 ti2 ... i1
(D] = t21  tao t2s ’
ts1 ts2 tss

where ¢;; is the number of arrows from the point : to the point j. If an arrow
o of the diagram D joins the point 7 with the point j, then i is called the tail
(origin) and j the head (top) of the arrow o. This fact will be recorded as
follows: 0 : 7 — j.

Two diagrams D; and D, are called isomorphic if there is a bijective
correspondence between their points and arrows such that the tails and the
heads of the corresponding arrows map one to the other. It is not difficult to
see that D; =~ D, if and only if the incidence matrix [D;] can be transformed
into the incidence matrix [D;] by simultaneous permutations of the rows and
columns. In particular, the diagram of an algebra is determined uniquely up
to an isomorphism.

A path of a diagram D is an ordered sequence of arrows {o1,02,...,0%}
such that the head of the arrow o coincides with the tail of the arrow oy
(¢ =1,2,...,k — 1). The number of the arrows k is called the length of the
path. The tail of the arrow o is called the tail of the path and the head of the
arrow o the head of the path. We shall say that the path connects the point
¢ with the point j and write o109 ...0% 1 ¢ — j.

We shall assume that the algebra A is basic. Then A ~ Dy x Dy x...x D,
where D; = E4(U;) and U; can be considered as the regular D;-module. Let
1=¢& +& +...+ & be the decomposition of the identity of the algebra A
such that & A ~ D; and 1 = e; +e;+...+e, the corresponding decomposition
of the identity of the algebra A (see Corollary 3.3.9). In this case, P; = ¢;A,
R; = eiR and V; = ¢;V, where V = R/R?. Write V;j = ¢;Ve;. Now, V;; is a
right D;-module and as such V;; ~ t;;U;. Thus, up,(Vi;) = tij . Let us choose
in Vi; a generating set of ¢;; elements and index them by the arrows of the
diagram D(A) which point from 7 to j (their number is also ¢;;). Let v, be
the generator corresponding to the arrow o : 1 — j and r, its preimage in
R;j = eiRe; . The set of all elements {v,} (over all arrows of the diagram D)
is a generating set of the module V. By Nakayama’s lemma (Corollary 3.1.5),
{rs} is a generating set of R (as a right module). Note that if o : i — j, then
€iTe = ry€j = ¢ and 7,7, = 0 if the head of the arrow ¢ does not coincide
with the tail of 7.

Lemma 3.6.1. If there is no path in the diagram D(A) which connects
the point i with the point j (i # j), then Homua(Pj,P;) = 0. If the al-
gebra A is basic, then every element r € R;j can be represented in the
form r =3 1,70, ...70,00,0,..0, » Where the summation runs over all paths
0102...0k 11— J and Gg,0,..0, € Aj; with Aj; = ejAe; .
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Proof. By Lemma 3.5.5, the algebra A can be assumed to be basic and there-
fore, by Theorem 3.5.3, Hom 4(Pj, P;) ~ e;Ae; = Rij (for i # j). Therefore,
it suffices to prove only the second assertion. The considerations introduced
above show that if r € R;;, thenr = Y r,a, (mod R?), where a, € A;j and
the summation runs over all arrows o : i — j. Then the element 7' : r =) r,a,
belongs to e;R%ej. However, R = }_ R;j and therefore e;R%e; = Y RixRyj,
i E
ie.r' =3 zryk, where z; € Ri, yx € Rij. Again, zx = ) rrar (mod R?),
k T
where 7 : i — k, ar € Ayt and aryr = Y rparp (mod R?), where p: k — j,
P

arp € Ajj. Therefore, ' =Y r,ryar, (mod R*), where 7p: i — j. Continuing
this process and taking into account that the radical is nilpotent, we obtain
the required expression for r.

Let us remark here that Hom 4(Pj, P;) = 0 is possible even if there is a
path from ¢ to j (see Exercise 12). O

A diagram D is called connected if it cannot be divided into two non-empty
disjoint subsets which are not connected by any arrows.

Theorem 3.6.2. An algebra A is a non-trivial direct product if an only if the
diagram D(A) is disconnected.

Proof. Let the diagram D = D(A) be disconnected: D = D;UD;, D1 NDy =
0, D1 # 0, Dy # 0 and there are no arrows between the points of D; and
D,. Thus, by Lemma 3.6.1, if : € Dy, j € D, then Homu4(P;, P;) = 0 and
Homa(P;, P;) = 0. By Corollary 1.7.9, the algebra A is decomposable. Con-
versely, if A decomposes, A = A; x A, then, for any principal A;-module P;
and any principal As-module P;, Homa(P;, Pj) = 0 and Hom4(P;, P;) = 0;
it follows that the points ¢ and j are not connected and the diagram D(A) is
disconnected. O

Corollary 3.6.3. Algebras A and A/R? are either both decomposable or both
indecomposable.

In addition to the diagram D(A), an algebra A has a number of important
invariants. First of all, such are the division algebras D; = E4(U;) and the
multiplicities n; of the P; in the decomposition of the regular module. For a
basic algebra, all n; = 1, but the division algebras can be arbitrary. If the
field K is algebraically closed then the situation simplifies significantly: All
D; coincide with the ground field K.

An algebra A over the field K is called split if A/R ~ My, (K)x Mpn,(K)x
... X M, (K). All algebras over algebraically closed fields are split.

For split algebras, Lemma 3.6.1 can be strengthened.

Lemma 3.6.4. Let A be a basic split algebra. Then every elementr € R;; can
be represented in the form r = Y . To,Toy .- -TowCoros...0n » WheTe Co0y..0, € K
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and the summation runs through all paths g102...01 : i — j (here, possibly,
t=3)

Proof. The proof of Lemma 3.6.1 can be repeated word by word. Observe that
in this case Aj;/R;; = K, i.e. every element of the algebra Aj; is of the form
c+z, wherec€ K, z € Rj;. O

A cyele of the diagram D is a path whose tail coincides with its head.

Corollary 3.6.5. If there is no cycle in the diagram of a basic split algebra
A, then E4(P) = K for each principal A-module P.

Lemma 3.6.4 enables us to construct for every diagram D a K-algebra
K (D), in general infinite dimensional, such that every basic split algebra with
the given diagram D is its quotient algebra.
A basis of the space K(D) is formed by all possible paths of the di-
agram and by the symbols {¢;} (indexed by the points of D). In this
3
way, every element of K(D) can be uniquely written in the form Y ¢;e; +
i=1
> €o109...0.0102 . .. 0k (the second sum runs over all paths of the diagram D),
where ¢; € K, ¢5,0,...0, € K. It will be convenient to interpret the symbol ¢;
as the path of length 0 with its head and tail at the point :.
Define the product of the paths a and 8 as the path af if the head of «
coincides with the tail of 3, and as 0 otherwise. In other words,

0102 ...0,kT1T2...Te if the head of o) coin-
(o102...0k)(T1T2...T¢) = cides with the tail of 7,
0 otherwise;
) _Jooz...0k if 7 is the tail of oy,
£i0102.-- Ok = { 0 otherwise;
oo ores = 01920k if 7 is the head of o,
192 9kE1 = ¢ otherwise;
e ifi=j,
6’51‘{0 Wi .

Extend this definition to the whole space K (D) “by linearity” putting
(2 Catt) (E cpB) = E cacy(af), where a, B are paths of the diagram D and

ca,cﬂ elements of the ﬁeld K. A trivial verification shows that in this way
K (D) becomes an algebra over the field K with the identity 1 = ¢; + €2 +
ot €.
Denote by J the set of those elements of the algebra K(D) whose coeffi-
cients of ¢; are equal to 0 for all i. Evidently, J is an ideal of K(D). An ideal
I C K(D) is called admissible if J2 D I D J™ for some n > 2.

Theorem 3.6.6. For any admissible ideal I C K (D), the quotient algebra
K(D)/I is a split basic algebra with the diagram D. Conversely, every split
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basic algebra with a diagram D is isomorphic to a quotient algebra of the

algebra K(D) by an admissible ideal I.

Proof. Let A, = K(D)/J™! (n > 1). The classes @ = a + J**1, where
o is an arbitrary path of the diagram D of length smaller or equal than n,
form a basis of the algebra A, . The ideal J = J/J"t! of A, is nilpotent
and A,/J ~ K(D)/J ~ K* (a basis of this algebra is formed by the classes
&; = &; + J; moreover €;6; = 6;;¢;). By Proposition 3.1.13, J =rad4d,. In
this way, A, is a basic split algebra and A,/J? ~ A, i.e. D(A,) = D(41).
In the algebra A;, &;J¢; is a vector space over K with a basis {5}, where o
are the arrows from ¢ to j. Therefore, if [D] = (¢;;) is the incidence matrix of
the diagram D, then E,-J_Ej ~ t;;U;, where U; = éjAl/a_jJ_ and D(A4,;) = D.
From here we get the first statement of the theorem (taking into account
Corollary 3.1.14).

Now, let A be an arbitrary basic split algebra with the diagram D, 1 = e; +
ez + ...+ e, be a decomposition of the identity into minimal idempotents and
{re} a generating set of the radical constructed earlier (before Lemma 3.6.1).

For every path @ = o0y02...0r of the diagram D, we write ro, =
ToToy -+ Tay, Te; = € and put f(z caa) = Y cqTa - The relations between

i

[e3 [+
T, and e; imply that f is a homomorphism of the algebra K(D) into the
algebra A, and that, in view of Lemma 3.6.4, it is an epimorphism. There-
fore, A ~ K(D)/I with I = Kerf. One can see easily that f(J) = R,
where R = rad A. Since R™ = 0 for some n, J® C I. Finally, the elements
Ve = Ty + R? are linearly independent in R/R? and therefore the homomor-
phism A; — A/R? is an isomorphism; hence I C J2. The proof of the theorem
is completed. o

The algebra K (D) is called the path algebra or the universal algebra of the
diagram D.

Of course, a similar construction can be performed for the left diagrams.
However, it turns out that the following proposition holds.

Proposition 3.6.7. If A is a split algebra, then the (left) diagram D'(A) can
be obtained from the diagram D(A) by reversing all arrows, or by transposition
of the incidence matriz.

Proof. The algebra A can be assumed to be basic. Then, as we have already
seen, [D(A)] = (tij), where t;; is the dimension of the space e;Ve; (here,
V=R/R? and 1 =¢; + €3 + ... + e, is a decomposition of the identity into
minimal idempotents). Similarly, [D'(A)] = (t};), where t!; is the dimension
of e;Ve;, i.e. ti; = tj;, as required. a
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3.7 Hereditary Algebras

The construction of the universal algebra allows us to give a description of an
interesting class of algebras, viz. of hereditary algebras.
An algebra A is called hereditary if every right ideal of A is projective.?®

Theorem 3.7.1. The following conditions for an algebra A are equivalent:

1) A is hereditary;

2) every submodule of a principal A-module is projective;
3) every submodule of a projective A-module is projective;
4) rad A is projective (as a right module).

Proof. 1) = 2) and 3) = 1) trivially.

2)=>4).f{A=P ®P,®...H P,, where P; are principal modules, then
radA=R=R ®R:® ... ® R, , where R; = rad P;. Thus, since all R; are
projective, R is projective as well.

4) = 3). Let M be a submodule of a projective A-module P. The fact
that M is projective will be proved by induction on ¢(P) = £. For £ = 1, the
assertion is trivial and thus, we assume that the assertion holds for modules
P! with £(P') < 2.

The module P has a principal direct summand P, i.e. P = P, & P,
(possibly with P, = 0). Denote by 7 the projection of P onto Py. If 7(M) = Py,
then, by Theorem 3.3.5, M ~ P, @ N, where N = M N P, is a submodule of
P;,. Since ¢(P;) < £, N (and thus also M) is projective.

fn(M) # Py ,then M C Ri® P, , where Ry = PR is a direct summand of
the radical and thus a projective module. Again, £(R; @ P;) < £, and therefore
M is projective. The theorem is proved. O

Lemma 3.7.2. If an algebra A is hereditary, then every non-zero homomor-
phism f : P; — P; between principal A-modules is @ monomorphism.

Proof. This follows from the fact that Im f is a projective module and, by
Theorem 3.3.5, P; ~ Im f @ Ker f. Thus, if Im f # 0, necessarily Ker f = 0.
O

Corollary 3.7.3. If an algebra A is hereditary, then the diagram D(A) has
no cycles.

Proof. If there is an arrow ¢ in D(A) with the tail at ¢ and the head at j,
then there is a non-zero homomorphism f, : Pj — P; and Im f, C rad P;. Let
A be a hereditary algebra and o109 ...0} a path with both tail and head at
the point 7. Then f = f5, fs, - - - fo, is a monomorphism P; — P; because all

8 In a similar manner, one can define left hereditary algebras. However, in Chapter 8,
we shall see that, for finite dimensional algebras, these two concepts coincide.
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fous fozs- - fo, are monomorphisms, and Im f C rad P;. But by a dimension
argument, this is impossible. O

Now we are going to present a description of the hereditary basic split
algebras.

Theorem 3.7.4. If D is a diagram without cycles, then K(D) is a hereditary
algebra. Conversely, a hereditary basic split algebra A is isomorphic to the al-
gebra K (D), where D = D(A). In this way, there is a bijective correspondence
between diagrams without cycles and basic split hereditary algebras.

Proof. 1t is clear that, in a diagram without cycles, the lengths of paths are
bounded and therefore A = K(D) is a finite dimensional algebra. Write P; =
€;A. The elements of P; are linear combinations ) cqa, where a are the

paths with tails at ¢ (including ¢;). Then rad P; = P;J consists of all linear
combinations ) coa, where a are the paths of non-zero lengths with tails

e
at 7. Therefore P;J = @ oA, where ¢ runs through all arrows with tails at
o

the point . Now, if ¢ : ¢ — j, then assigning to every linear combination
>~ cgB, where B is a path with tail at j (including ¢;), the element Y cgof3,
B B

we obtain, as one can easily see, an isomorphism P; ~ g A. Consequently, P;J
are projective modules, and therefore J = EB P;J is a projective module and

the algebra A is hereditary by Theorem 3. 7 1

It remains to verify that if ] C J2? and A = A/I is a hereditary alge-
bra, then I = 0. Write R = J/I, P; = P;/PiI. Then R = rad A and P;
are the principal A-modules. Besides, A/R ~ A/J and R/R? ~ J/J%. We
shall show by induction on k that also R¥/RF*! ~ Jk/J*+1 Thus, assume

that R¥-1/R¥ ~ Jk=1/J% and let P = P(R*~!/RF) = @ m;P;. Then P =
=1

P(RF 1) by Theorem 3.3.7, and since R¥~! is projective, P ~ R¥~!. There-

fore R* ~ PR and R¥/RF*+! ~ PR/PR? and since P;,R/P;R> ~ P,J/P;J?,

we get that R¥/R*¥+1 ~ J*/J*¥+1 Now it is clear that, in view of the latter

isomorphism, I C J* for all k, and therefore I = 0, as required. (]
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Exercises to Chapter 3

10.

11.

12.

13.

14.

. Find the radical of the algebra T(K).
. Find the radical of the monogenic algebra K[z]/f(z)K[z].

. Prove that every algebra which is not simple contains a maximal ideal whose

annihilator is non-zero.

. Prove that a minimal right ideal is either a principal module or is contained in

the radical of the algebra.

. Let M be an A-module, R = rad A, A= A/R, A=nlU &nlUa®@... 00, U; a

decomposition of A into a direct sum of principal modules and M = M/MR ~
tUr @ 12U @ ... D tU, . Prove that pa(M) = pa(M). Show that pa(M) =
max { [ti - 1] + 1} where [t/n] is the integral part of the number t/n.

n;

. Denote by I(M) the set of all endomorphisms of M whose image is in rad M.

a) Verify that I(M) is a nilpotent ideal of E4(M).
b) Prove that, for a projective module P, I(P) = rad Ea(P).
c) Construct a module M which satisfies I(M) # rad Ea(M).

Prove that an algebra is basic if and only if its nilpotent elements form an ideal.

. Let 1 =e;4+e2+...4+ e, be a decomposition of the identity of an algebra A4 in

which all the idempotents are minimal.

a) Prove that the K-dimension of a faithful representation of the algebra A is
at least n. If A has a faithful representation of K-dimension n then A is
called a minimal algebra of degree n.

b) Let A be a minimal algebra. Let us write ¢ — j if e; Ae; # 0. Prove that —
is a quasi-order relation on the set § = {1,2,...,n},i.e. ¢ — tand i — j,
j — k implies i — k.

c) Prove that a minimal algebra is always a split algebra, and that it is basic
if and only if — is an order relation, i.e. ¢ — j, 7 — 7 implies ¢ = j.

. Assume that there is a quasi-order relation — defined on theset S = {1,2,...,n}.

Construct a minimal algebra A of degree n so that 1 — 7 if and only if e; Ae; # 0.
(Hint: Consider the subalgebra of M, (K) with the basis consisting of the matrix
units e;; with 7 — j3.)

Prove that two minimal algebras of degree n defining on S the same quasi-order
relation are isomorphic.

Find the radical, the diagram and the basic algebra of a minimal algebra. Prove
that an algebra is minimal if and only if its basic algebra is minimal.

Let (rad A)> = 0 and Pi,Ps,..., P, be the principal A-modules. Prove that
Homa(P;, P;) # 0 for ¢ # j if and only if there is an arrow from ¢ to 7 in the
diagram D(A).

Prove that a split basic algebra A with (rad A)? = 0 is (up to an isomorphism)
uniquely determined by its diagram.

Let A be an algebra over the reals IR consisting of 2 x 2 complex matrices of the

form
( )
0 ¢

where a € R, b,c € C. Find D(A) and D'(4).
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15.
16.

17.

18.

19.

20.

3. The Radical

Describe the three-dimensional algebras over an algebraically closed field.

Let ¢ be an endomorphism of an algebra A, T : A — M,(K) a representation
of this algebra and M the corresponding module. Denote by M the module
corresponding to the representation T : A — My (K).

a) Give an intrinsic description of the module M and verify that M (@) ~
(Mp)pand (M®N)p>~Mepd Ne.

b) If ¢ is an automorphism, prove that Py is projective if and only if the
module P is projective. (Hint: Verify that Ay ~ A.)

c) Show that if A is a basic algebra and P and @ are projective A-modules,
then EA(P) ~ Ea(Q) if and only if Q ~ Py for a suitable automorphism ¢
of the algebra A. (Hint: Make use of matrix notation for endomorphisms.)

d) Give an example of a projective module P over a basic algebra A and an
automorphism ¢ of the algebra A such that P % Pe.

A diagram with multiplicities is a diagram D in which a natural number n; is

assigned to every vertex i. Write A = K (D), Pi = ¢iA, P = miP ® o P ®
..®n;P;, A= FEa(P). For the algebra fi, prove an analogue of Theorem 3.6.6,

considering arbitrary split algebras and diagrams with multiplicities.

Prove that for diagrams without cycles, the algebra of Exercise 17 is hereditary
and that every split hereditary (finite dimensional) algebra has such a form.

The socle soc M of a module M is the sum of all its minimal submodules.

a) Show that soc M = M if and only if M is semisimple.

b) Prove that f(soc M) C soc N for every homomorphism f: M — N, and
that f is a monomorphism if and only if the induced map soc M — soc N
is a monomorphism.

¢) Prove that the socles of the right and left regular A-modules are ideals of
A. They are called the right and left socles of the algebra A and are denoted
by r.soc A and l.soc A, respectively.

d) Verify that r.socA= {a € A | aR =0} and l.socA = {a € A | Ra =0},
where R = rad A.

e) Compute the right and left socle of the algebra A = T,(K) and show that
r.soc A # l.soc A.

Let Py, P,,..., P, be pairwise non-isomorphic principal A-modules. Denote by

cij the mult1p11c1ty of the simple module U; = P;/rad P; in a composition series

of P;. The integers c;; are called Cartan numbers and the matrix ¢(A) = (cij)

the Cartan matriz of the algebra A.

a) Prove that c(A) = ¢(B) where B is the basic algebra of the algebra A.

b) If (rad A)? = 0, verify that ¢(4) = E + [D], where E is the identity matrix
and [D] the incidence matrix of the diagram D = D(A4).

c) Write A, = K(D)/J™t. Prove that ¢(4.) = E + [D] + [D]’ + ...+ [D]".

d) Prove that, for a hereditary algebla A, the matrix [D], where D= D(A),

is always nilpotent, ¢(A) = E [D]™, the Cartan number ¢;; is equal to
m=0
the number of paths of the diagram D starting at 7 and ending at j (for
1t # 7) and ¢i; = 1. (Hint: In this case ¢;; = Ztikaj for ¢ # j, i.e.
%

c(A) = [D]e(A) + E, where [D] = (ti5).)
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The Wedderburn-Artin theorem reduces the study of semisimple algebras to
the description of division algebras over a field K. If D is a finite dimensional
division algebra over i and C its center, then C is a field (an extension of
the field K') and D can be considered as an algebra over the field C. In this
way, the investigation is divided into two steps: the study of the extensions of
the field K and the study of central division algebras, i.e. of division algebras
whose center coincides with the ground field. It turns out that these are two
separate problems. However, one can conveniently apply common methods
of investigation based on the concept of a bimodule and tensor product of
algebras.

The present chapter is devoted to a description of these methods and to
their application to the study of central division algebras. Here, the fundamen-
tal role is played obviously by Theorem 4.3.1, from which the main theorems
on division algebras (the Skolem-Noether theorem and the centralizer theo-
rem) follow relatively easily.

4.1 Bimodules

Let A and B be two algebras over a field K. A vector space M endowed with
a left A-module and a right B-module structure which are connected by the
associative law is called an A-B-bimodule; thus

(am)b = a(mb)

foralla € A,be B,m € M.If A= B, then M is called simply an A-bimodule.

For bimodules, one can introduce all concepts which were introduced for
modules in Chapter 1: the concept of a homomorphism, isomorphism, subbi-
module, factor bimodule, direct sum, etc. Moreover, it is easy to see that the
main results of Chapter 1 such as the homomorphism theorem, the parallelo-
gram law and the Jordan-Hélder theorem can be translated word by word to
bimodules. In fact, in the next section, we shall see that the study of A-B-
bimodules is in fact equivalent to the study of modules over a new algebra,
namely over the tensor product of the algebras A and B°.

Let us consider some examples which will play an important role in what
follows and which will illustrate the importance of the concept of a bimodule
for the structure theory of algebras.
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Ezamples. 1. Obviously, every algebra A can be considered as a bimodule over
itself. This bimodule is called regular. Subbimodules of a regular bimodule
are the subspaces I C A which are closed with respect to multiplication by
arbitrary elements a € A both from the left and the right, i. e. the ideals of the
algebra A. From this point of view, simple algebras are those whose regular
bimodule is simple.

Let us clarify the form of the endomorphisms of a regular bimodule. If
f+ A — Aissuchan endomorphism, then f is, in particular, an endomorphism
of the regular module and thus, by Theorem 1.7.1, it has the form f(z) = az,
where a is a fixed element of A. However, f is also an endomorphism of the left
regular module and this means that f(bz) = bf(z) for any b € A; consequently,
abz = baz for all b,z € A and therefore a € C(A). Conversely, if a belongs
to the center, then the same relations show that the multiplication by a is an
endomorphism of the regular bimodule. Hence, we have proved the following
proposition.

Proposition 4.1.1. The submodules of a regular bimodule are the ideals of
the algebra. The endomorphism algebra of a regular bimodule is isomorphic to
the center of the algebra.

2. Let f : B — A be an algebra homomorphism. We shall attach to it a
B-A-bimodule which will be denoted by fA. To construct it, we consider the
regular A-module and define the left B-module structure by ba = f(b)a. It is
clear that the associative law is satisfied and thus A becomes a B-A-module
fA. The previous example can be obtained if B = A and f is the identity
endomorphism.

3. Consider D-bimodules, where D is a finite dimensional division algebra
over K. If M is such a bimodule, then it is, in particular, a vector space
over the division algebra D. The map m — md with a fixed d € D is an
endomorphism of the vector space M, and if we fix an isomorphism M ~ nD,
where n = [M : D], there is a matrix T(d) € M, (D) corresponding to it. One
can verify easily that T(d + d') = T(d) + T(d'); T(ad) = oT(d) for a € K;
T(dd') = T(d)T(d") and T(1) = 1. The correspondence d — T'(d) is called a
self-representation of the division algebra D of dimension n.

In particular, the case n = 1 is of interest. Then T(d) € D and T : D — D
is an automorphism of the division algebra D.

Conversely, for any self-representation of dimension n, one can define a
D-bimodule by considering the vector space nD and putting zd = zT(d),
z € nD. In particular, to every automorphism, there corresponds a D-bimodule
M such that [M : D] = 1.
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4.2 Tensor Products

In Chapter 1, we have attached to the concept of a module one of a repre-
sentation, 1. e. of a linear map compatible with multiplication. We shall try to
establish a similar construction for bimodules.

Let M be an A-B-bimodule. To any pair a,b of elements a € A, b € B, we
attach the endomorphism of the vector space M which sends m into amb. In
this way, we obtain a map 4 x B — E(M) which is easily seen to be bilinear
(i-e. linear in b for a fixed a and vice versa). Thus, leaving multiplication aside
for a moment, we face the problem of classifying bilinear maps U x V — W,
where U, V and W are vector spaces over a field K.

We choose bases {ui,uz,...,un} and {vi1,vs,...,vs} in the spaces U
and V. Then a bilinear map F : U x V — W is uniquely determined by the
values F'(ui,vj) = w;j; here, w;;j can be arbitrary. This leads to the following
definition.

The tensor product of a space U with a basis {uj,us,...,u,} and a space
V with a basis {v1,v2,...,vm} is a vector space U ®V with the basis {u;®uv;},
1=1,2,...,n,7=1,2,...,m and a fixed bilinear map @ : U xV = U RV
defined by ®(ui,v;) = u; ® vj. The image of the pair (u,v) under the map ®
is denoted by u ® v.

The above considerations establish a universal property of the tensor prod-
uct.

Theorem 4.2.1. For every bilinear map F : U x V. — W, there 1s a unique
linear map F: UQV — W such that F = FQ (i.e. F(u,v) = F(u®v)).

Corollary 4.2.2. If ¢ : U x V — Wy 1s a bilinear map such that for every
bilinear map F : U x V — W there 1s a unique map F: Wy — W such that
F¢ = F, then there is a unique isomorphism ¢ : Wy = U ® V such that
u Qv = pd(u,v) for all elementsu € U, v € V.

Proof. From the conditions of the theorem, there exists a unique homomor-
phism ¢ : Wy — U ® V for which u ® v = ¢¢(u,v). On the other hand, it
follows from Theorem 4.2.1 that there is a homomorphism UV — W,y
satisfying ¢(u ® v) = ¢(u,v). But then 0d(u ®v) = pd(u,v) = u ®v, and by
Theorem 4.2.1, p¢ = 1. Similarly, ¢p¢(u,v) = é(u ® v) = ¢(u,v) and thus
¢p =1,1.e. ¢ is the inverse of ¢. O

The existence and uniqueness of the isomorphism ¢ allows us to identify
every space Wy satisfying the conditions of Corollary 4.2.2 with the tensor
product U ® V. In particular, one identifies all the tensor products obtained
for various choices of bases in U and V.

Besides, Theorem 4.2.1 helps to establish basic properties of the tensor
product.
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Proposition 4.2.3. For any spaces U, V, W, there is a unique 1somorphism
f:U®V SV QU such that f(u ®v) = v @ u and a unique 1somorphism
g:(UV)@W S UQ (VW) such that g(u @ v) ®w) = u ® (v @ w).

Proof. Since (u,v) — v ® u is evidently a bilinear map, there is a unique
homomorphism f: U®V — V ® U for which f(u ® v) = v ® u. Similarly,
there is a homomorphism f' : VQU — UQ®V for which f'(v®u) = u®v and, by
Theorem 4.2.1, it follows immediately that f and f' are inverse isomorphisms.

Now, let F' be a bilinear map (U ® V) x W — Z. For a fixed w € W,
it becomes a linear map F,, : U® V — Z, i.e. a bilinear map U x V — Z
depending on w linearly. Hence for a fixed u € U, the map V x W — Z,
assigning to a pair (v,w) the vector F,(u,v), is bilinear and consequently
defines a linear map V @ W — Z depending on u linearly. Therefore, a bi-
linear map U x (V @ W) — Z is defined. Passing to the tensor products, we
associate every linear map (U® V)@ W — Z with an (obviously unique) map
U®(V®W)— Z. Conversely, for every map U ®(V® W) — Z, there corre-
sponds a unique map (U®V)Q@W — Z. Setting subsequently Z = (UQV)QW
and Z = U ® (V ® W), we get, respectively, a required isomorphism ¢ and its
inverse. O

In what follows, we shall identify U@ V with V®U, and also (U® V)@ W
with U @ (V ® W) (and write simply U ® V @ W without brackets).

Every element of U @ V' can be evidently represented uniquely in the form

n
> aij(u; ® v;). If we put Y ajju; = zj, such an element can be written in
i i=1

m
the form ) z; ® v;, and it is easy to verify that this expression is unique.
Jj=1
Similarly, every element from U ® V can be written uniquely in the form
n
ui@yi, yi €V.
i=1
If U' is a subspace of U, then (u',v) — u' @ v is a bilinear map U' @ V —
U ® V which defines a homomorphism f : U' @ V — U @ V. It is clear
that if a basis of U is chosen so that {uj,us,...,uzx} (k < n)is a basis

k
of U', then the image of f consists of elements of the form 3 u; ® y;, and
i=1
thus f is a monomorphism. Consequently, we may consider U’' @ V to be a
subspace of U ® V. Moreover, one can see easily that if U = U’ @ U", then
UV =(U®V)® (U"Q®V). Similar statements hold for subspaces of the
space V.

Now, let A and B be algebras over a field K. Then, for a fixed ap € A
and by € B, the map A x B — A ® B assigning to a pair (a,b) the element
aap ® bby is bilinear and thus defines a linear map F : A® B — A ® B such
that a ® b+ aap ® bby. On the other hand, F depends bilinearly on (aq, bo),
and thus we can, to every element 2 € A ® B, assign a linear map F, which
depends on z linearly and satisfies F,,gp,(a ® b) = aap @ bby .
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Writing Fy(y) = yz, we define a bilinear multiplication in A ® B such
that (a ® b)(ap ® by) = aag ® bby for every a,ap € A and b,bp € B.
Since [(a ® b)(a' @ ¥')](a" @ ") = (ad’' @ bV')(a" ® V") = ad'd" ® V' =
(a®b)(a' @) (a"®Y")] and (a®b)(1Q1) =(1®1)(a®b) = a®b, the space
A ® B becomes an algebra over the field K which is called the tensor product
of the algebras A and B.

It follows from Proposition 4.2.3 that AQ B~B® Aand (A®B)®C =~
AQ® (B ® C) as algebras.

The tensor products allow us to reduce the study of bimodules to the
study of modules.

Let M be an A-B-bimodule. Denote by A° the algebra opposite to A, i.e.
the algebra consisting of the same elements with multiplication a°bt® = (ba)°
(here, a® denotes the element a € A, considered as an element of the algebra
A°). We introduce a module structure over the algebra B ® A° on M by
setting m(b ® a®) = amb. The fact that the structure is well-defined and that
all module axioms are satisfied can be verified easily.

Conversely, every B® A°-module N can be considered as an A-B-bimodule
by setting an = n(1 ® a®) and nb = n(b® 1). In this way, the concepts of an
A-B-bimodule and of a B ® A°-module, in fact, coincide.

In conclusion, we determine the center of the tensor product of algebras.

Theorem 4.2.4 C(AQ B) = C(A) ® C(B).

Proof. Let A' be a complement of C(A) in 4, i.e. A = A' @ C(A) as a
vector space. Then A® B = (A' ® B) & (C(A) ® B). We shall show that
C(A® B) C C(A)® B. Indeed, let c€ C(A®B), c=z+ywithz € A'Q®B
and y € C(A)® B. Then ¢(¢® 1) = (a® 1)c, and thus 2(a ® 1) = (¢ ® 1)z
because y(a ® 1) = (a ® 1)y is satisfied trivially.

Choose a basis {b1,b2,...,bm} of B and write ¢ = > z; ® b; . Since this

=1
form is unique, we deduce that z;a = az; for all a, and hence z; € C(A). But

z; € A and thus z; =0 and z = 0.

Similarly, choosing a basis in C(4) and decomposing C(4) ® B =
(C(A)®C(B)) ® (C(A) ® B'), where B' is a complement of C(B) in B,
we can show that C(A ® B) C C(A) ® C(B). Since the converse inclusion is
trivial, the theorem follows. O

4.3 Central Simple Algebras

An algebra A over a field K is called central if C(A) = K.

Our aim in this chapter is to study central division algebras (finite dimen-
sional over K ). However, as we shall see from what follows, it is convenient to
consider at the same time all central simple algebras, i.e. all algebras of the
form M, (D), where D is a central division algebra.
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From Proposition 4.1.1, it follows that an algebra is central simple if and
only if its regular bimodule is simple and its endomorphism algebra coincides
with K. This yields a characterization of the algebra A ® A°.

Define the homomorphism T of the algebra A® A° into the endomorphism
algebra E(A) of the vector space A by putting T(a ® b°) to be the linear
operator mapping z € A into bza.

Theorem 4.3.1. An algebra A is a central simple algebra over a field K
if and only if the homomorphism T : A @ A° — E(A) defined above is an
1somorphism.

Proof. If A is a central simple algebra, then A can be considered as a simple
module over the algebra A® A° with the endomorphism algebra K. But then,
by Theorem 2.6.7, the homomorphism T : AQ A° — E(A) is an epimorphism
and, since [A ® A° : K| = n? = [E(A) : K], where n = [A : K], T is an
isomorphism.

Conversely, if T' is an isomorphism, then identifying A ® A° with E(A),
we see that A is a simple A ® A°-module, i.e. a simple bimodule, and that its
endomorphism algebra is K. In other words, A is a central simple algebra. 0O

We shall apply Theorem 4.3.1 to investigate the structure of the algebra
A X B, where A is a central simple and B is an arbitrary K-algebra.

Theorem 4.3.2. Every ideal of the algebra AQ B, where A is a central simple
algebra, 1s of the form A ® I, where I is an ideal of the algebra B.

Proof. Evidently, if I is an ideal of B, then A®I is an ideal of AQ B. Conversely,

let J be an ideal of the algebra A ® B. Selecting a basis {a1,az,...,a,} in 4,
n

we can express every element of A® B uniquely in the form Y a; ® b; , where
“~

b; € B. Consider the linear operator T} of the space A ;napping ar into

1 and all the other elements of the basis into 0. By Theorem 4.3.1, T} =

n

T(yk), where yr € A ® A° and thus yx = ) a; ® 27 with z; € A. But then
Jj=1

E(.’L‘_,@l)(z a,-®bi)(aj®1) = E (Z wja,-aj®b,-) = E(al’Tk)®b,‘ = 1Qb.
j=1 i=1 =1 =1

i=1
Thus, if Y a; ® b; belongs to the ideal J, then also 1 ® b € J for every k.
i=1
Let I={be B | 1®@b¢€ J}. Clearly, I is an ideal of the algebra B, and as
we have just seen, every element of J has the form ) a; ® b;, where b; € I,

i=1

i,e. J = A® I, as required. a

Corollary 4.3.3. If A is a central simple algebra, then the algebra A® B is
simple if and only if B is simple.
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Corollary 4.3.4. If A is a central simple algebra, then rad (A®B) = AQrad B
for any algebra B.

The proof follows from the fact that the radical is the intersection of
maximal two-sided ideals. )

Corollary 4.3.5. If A is a central simple algebra, then the algebra A @ B is
semisimple if and only if the algebra B is semisimple.

Theorem 4.3.2, in combination with Theorem 4.2.4 describing the center
of a tensor product, implies also the following corollary.

Corollary 4.3.6. If A is a central simple algebra, then A ® B s a central
simple algebra if and only if B is a central simple algebra.

4.4 Fundamental Theorems of the Theory of
Division Algebras

Theorem 4.4.1 (Skolem-Noether). If f and g are two homomorphisms of
a stmple algebra B into a central simple algebra A, then there is an invertible
element a in A such that g(b) = af(b)a™! for all b € B.

Proof. Consider the B-A-modules yA and ;A (see Sect. 4.1, Example 2). These
are modules over the algebra A® B° which is simple by Corollary 4.3.4. Since
the dimensions of these modules coincide (they are equal to [A : K]), we get,
by Corollary 2.3.5, fA ~ ,A.

Let ¢ be an isomorphism of yA onto 4A. Then ¢ is an automorphism of
the regular A-module and therefore ¢(z) = az, where a is a fixed invertible
element of A. Moreover, ¢ is a homomorphism of the left B-modules, i.e.
@(bx) = byp(z). By the definition of A and 44, (f(b)z) = g(b)¢(z). Taking
z = 1, we obtain af(b) = @(f(b)) = g(b)p(1) = g(b)a for every b € B, i.e.
g(b) = af(b)at. O

The map z — aza™! is obviously an automorphism of the algebra A. Such
an automorphism is called inner. If B is a subalgebra of A, then aBa™! =
{aba=! | b € B} is also a subalgebra. We say that B and aBa™"! are conjugate
in A.

Corollary 4.4.2. Isomorphic simple subalgebras B and B' of a central simple
algebra A are conjugate. Moreover, every isomorphism g : B = B' can be
eztended to an inner automorphism of the algebra A, 1. e. it 1s of the form
g(b) = aba™! for some invertible element a of A.
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The proof follows from the Skolem-Noether theorem if we consider, to-
gether with g, the embedding f of the algebra B in the algebra A.

Corollary 4.4.3. Every automorphism of a central simple algebra is inner.
In particular, every automorphism of the algebra M,(K) is inner.

Let us remark that the algebras A and B appear in the proof of the Skolem-
Noether theorem symmetrically: we have used only the simplicity of the tensor
product A® B° and for that, it is sufficient that one of these algebras is central
simple and the other simple. Therefore, we can formulate a “dual” theorem
whose proof is left to the reader.

Theorem 4.4.4. If f and g are two homomorphisms of a central simple
algebra B into a simple algebra A, then there is an invertible element a in A

such that g(b) = af(b)a™! for all b€ B.

Corollary 4.4.5. Isomorphic central simple subalgebras B and B' of a simple
algebra A are conjugate. Moreover, every isomorphism g : B = B' can be
extended to an inner automorphism of the algebra A, i.e. it is of the form
g(b) = aba™! for some invertible element a of A.

Of course, a counterpart of Corollary 4.4.3 does not hold for non-central
algebras. The most simple example is the complex conjugation which is a non-
inner automorphism of the field of complex numbers considered as an algebra
over the field of real numbers.

The Skolem-Noether theorem is often called the first fundamental theorem
of the theory of division algebras. The second theorem is related to the concept
of a centralizer.

A centralizer of a subset X of an algebra A is the subset of all elements
a € A such that az = za for every z € X. A centralizer of a subset X is a
subalgebra of A which will be denoted by C4(X). In the particular case when
X = A, C4(A) = C(A) is the center of the algebra.

Theorem 4.4.6. Let A be a central simple algebra, B its simple subalgebra
and B' = C4(B). Then

1) B' is a simple algebra;

2) C4(B')=B;

3) [B:K|[B':K]|=[A:K];

4) if B' >~ Mny(D), then A® B° ~ M, (D) where m divides n.

Proof. Consider the B-A-bimodule yA, where f is the embedding of B into A.
By Corollary 4.3.4, the algebra A® B° is simple. Hence, AQ B° ~ M,(D) and
A ~ mU, where U is a simple module over A® B°. Therefore, Eagpe(5A) =
M,.(D).
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Let ¢ be an endomorphism of fA. Then, ¢ is an endomorphism of the
regular module, i.e. ¢(z) = az for some a € A. Besides, ¢(bz) = by(z), which
implies (for £ = 1) that ab = ba for all b € B and thus a« € B’. Conversely, if
a € B', then the map z +— az is evidently an endomorphism of §A. Therefore
B' ~ E(A) ~ M,,(D). The statements 1) and 4) (except the statement on
the divisibility) follow.

Write d = [D : K]. Then U ~ nD, thus [U : K] = nd and [A4 : K] = mnd.
On the other hand, [A: K][B: K] = [A® B° : K] = n?d and [B’' : K] = m?%d.

2
It turns out that [B : K] = % = -7%, i.e. m divides n and [A : K] =
[B: K][B': K|. Hence, 3) and 4) follow.

Finally, let B" = C4(B'). Clearly, B C B". However, the algebra B’
is simple and therefore assertion 3) holds also for B’. This means that
[B": K] =[A: K]/[B': K] = [B : K|]. Consequently, B" = B, completing the
proof of the theorem. a

4.5 Subfields of Division Algebras. Splitting Fields

We shall apply the results of the preceding section to an investigation of sub-
fields of central division algebras. We shall be interested in maximal subfields,
i.e. in subfields which are not contained in any larger subfield.

Theorem 4.5.1. A subfield L of a division algebra D is mazimal if and only
if L = Cp(L). If the division algebra D 1is central, then [D : K| = [L : K|?
and D ® L ~ My,(L), where n = [L: K].

Proof. Clearly, every subfield containing L is contained in Cp(L). Therefore,
if L = Cp(L), then L is maximal. On the other hand, if a belongs to Cp(L)
and does not belong to L, then the set of elements of the form f(a), where
f(z) is a polynomial over the field L, forms a commutative subalgebra in D,
i.e. a subfield properly larger than L. This proves the first statement.

Now, let D be a central division algebra and L its maximal subfield. Then
L = Cp(L) and thus, by Theorem 4.4.6, [D : K] = [L : K]*> and D ® L ~
M,(L) (L° ~ L, since L is commutative). Finally, a dimension argument
yields immediately that n = [L : K]. a

Corollary 4.5.2. The dimension of a central simple algebra is always the
square of an integer.

For a K-algebra A and an extension L of the field K, the algebra A ® L
can be considered as an L-algebra by setting az = (1 ®a), where z € AQ L,
a € L. We shall denote this-L-algebra by Ay . We say that Ay is obtained
from A by extension of the field of scalars. Clearly, [Ar : L] = [A: K].
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Theorem 4.5.1 shows that if L is a maximal subfield of a central division
algebra D, then Dy, ~ M,(L). Obviously, My(D) ® L ~ Mn(L).

If A is a central K-algebra, then Theorem 4.2.4 shows that the L-algebra
Ay is also central. In particular, if A is a central simple K-algebra, then Ap,
is a central simple L-algebra.

A field L is called a splitting field for a central simple algebra A if Af, ~
M, (L). It follows from Theorem 4.5.1 that a splitting field always exists.

However, the splitting fields are not unique; after all, every extension of
a splitting field is also a splitting field. In fact, even minimal splitting fields
(containing no other splitting field) are not uniquely determined.

The following theorem establishes a characterization of splitting fields
which will be useful in the sequel.

Theorem 4.5.3. A field L is a splitting field for a central division algebra
D of dimension d* if and only if [L : K] = md and L is isomorphic to a
subalgebra of the algebra M., (D).

Proof. Let D® L ~ My(L). Consider a simple Dj-module, i.e. a simple L-D-
bimodule U. Thus U is a right vector space over D and multiplication by an
element a € L defines an endomorphism of this vector space. Denoting by
T(a) the matrix of this endomorphism, we obtain a homomorphism (in fact,
since L is a field, a monomorphism) T : L — M,(D), where m = [U : D].

On the other hand, since Dy ~ My(L), U ~ dL and [U : K] = d[L : K].
Taking into account that [U : K] = md?, we get [L: K] = md.

Conversely, let L be a subfield of the algebra A = My, (D) of dimen-
sion md and L' the centralizer of L. Then L' O L and, by Theorem 4.4.6,
[L:K][L': K] =[A: K] = m*d%. From here, [L' : K] = md = [L : KJ; thus
L = L' and therefore A ® L ~ M,(L). We conclude that L is a splitting field
for A, and thus also for D. O

4.6 Brauer Group. The Frobenius Theorem

In Sect. 4.3, we have observed that the class of central simple algebras is closed
with respect to the tensor multiplication. The ground field K plays the role
of identity since A ® K ~ A for any algebra A. Finally, Theorem 4.3.1 shows
that the opposite algebra A° is an inverse of the algebra A in the sense of
this operation. All this allows us to define a group structure on the set of
isomorphism classes of the central division algebras in the following way.

We fix a representative in each isomorphism class of the central division
algebras. If D; and D, are such representatives, then D; @ D; is a central
simple algebra, and therefore isomorphic to M,(D), where D is a central
division algebra. Put D = D;D,. It follows from Sect. 4.2 that DD, =
D, D, and Dy(D;D3) = (D1D;)D;3 . Furthermore DK = KD = D, and by
Theorem 4.3.1, DD° = D°D = K. In this way, our set of central division
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algebras forms a commutative group. This group is called the Brauer group of
the field K and is denoted by Br (K).

If L is an extension of the field K, then for every central division algebra
D also the L-algebra Dy is central simple and thus isomorphic to M,(D'),
where D' is a central division algebra over L. It is easy to verify that assigning
to D the division algebra D', we obtain a group homomorphism Br(K) —
Br (L). The kernel of this homomorphism consists of those division algebras for
which L is a splitting field. This subgroup of the Brauer group is denoted by
Br(L/K). Theorem 5.1 shows that every element of the Brauer group belongs
to some subgroup of the form Br(L/K) and thus Br(K) = UBr(L/K).

A concrete calculation of the Brauer group is, as a rule, rather complex,
and the structure of this group is known only for some fields K. We shall limit
ourselves to the most simple cases: the field of real numbers and the finite
fields (see Chap. 5).

Of course, if K is an algebraically closed field, then there are no central
division algebras (in fact, no division algebras) different from K, and thus the
Brauer group is trivial.

Over the field IR of real numbers, there is at least one proper central field,
viz. the quaternion algebra IH. A remarkable result asserts that this is the
only central division algebra over the field IR.

Theorem 4.6.1 (Frobenius). The only finite dimensional division algebras
over the field R of real numbers are the field IR itself, the field € of complez
numbers and the quaternion algebra IH.

Proof. First, let L be a finite extension of the field IR, a an element of L and
mq(z) the minimal polynomial of the element a over the field IR (see Sect. 1.2).
Since mq(z) is irreducible, it is either linear (and then a € R) or quadratic of

the form z? + 2pz + g, where p? < ¢. In the seiond case, the element a4+ p is a
arp
Vq—p
z? + 1. Therefore the subfield IR[a] is isomorphic to €. Since C is algebraically

closed, L ~ C.

Thus, the finite extensions of the field IR are either IR itself or C. Therefore
C is a splitting field of any central division algebra D over IR. Let D # IR,
d?> = [D : R] and L a maximal subfield of D. Since L # IR, necessarily L ~ C,
and by Theorem 4.5.1,d =[C: R] =2, i.e. [D:R] = 4.

Denote by ¢ an element of the subfield L such that 2 = —1 (the image
of the element ¢ € € in the isomorphism C ~ L). The complex conjugation
determines an automorphism of the field L in which ¢ is mapped to —:i. By
Corollary 4.4.2, there is a non-zero element j in D such that jij~! = —1, i.e.
Jji = —1j.

Since j and ¢ do not commute, j ¢ L and thus 1, ¢, j are linearly
independent. Besides, j%i = —jij = ij%, i.e. j2 € Cp(L) = L. Thus
7> = a + Bi with o, € R. But j2 must commute with j, and thus
Jla+ Pi) = aj + Bji = (a — Bi)j = (o + Bi)j and therefore § = 0. It follows

root of the polynomial 22 + ¢ — p%. Thus, is a root of the polynomial
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that j2 = @ € IR. Clearly, @ < 0 (otherwise a = 4% and (j —v)(j +7) = 0
which is impossible). Replacing j by j/v/—a, we may assume that jZ = —1.
Thus, we have already identified two elements 7 and j such that ;2 = j2 =
—1and ji = —ij. Write k = ij. Then k? = ijij = —i%j% = —1; ik = ¢2j = —j;
ki = iji = —i?j = j. Similarly, jk = —kj = ¢. In other words, the elements i,
7, k have the same multiplication table as the canonic basis of the quaternions
IH. Therefore, there is a homomorphism f : IH — D which is a monomorphism
because IH is a division algebra. But [IH : IR] = [D : IR}, and therefore f is an

isomorphism, as required. 0

Corollary 4.6.2. Br(RR) = Br(C/IR) is the cyclic group of order two.

Exercises to Chapter 4

1. Let D be a finite dimensional division algebra over K. Prove that two D-
bimodules are isomorphic if and only if the corresponding self-representations
are similar (i.e. differ by an inner automorphism of the algebra M, (D)).

2. Let S and T be finite sets with quasi-order relations —, A and B the correspond-
ing minimal algebras over a field K (see Exercises 8-10 to Chap. 3). Introduce
a quasi-order on the Cartesian product § x T by (s,t) — (s',t') if s — s’ and
t — t'. Prove that A® B is the minimal algebra corresponding to this quasi-order
relation on the Cartesian product S x T

3. For the IR-algebra C, prove that C @ € ~ € & C. This example shows that the
tensor product of simple algebras need not be a simple algebra.

4. A linear transformation 8 : A — A is said to be a derivation on the algebra A

if, for arbitrary elements a,b € A, 8(ab) = ad(b) 4+ O(a)b.

a) Show that the map 8, , where z is a fixed element of A, given by the formula
Oza = ax — za is a derivation on the algebra A. This derivation is called
nner.

b) If § is a derivation on the algebra A, prove that the map T : A — M,(A)

given by the formula
_f(a Oa
T@= (g %)

is an algebra homomorphism.
c) Prove that every derivation on a central simple algebra is inner. (Hint: Use
Exercise b) and the Skolem-Noether theorem.)

5. Let A be a simple algebra, B its central simple subalgebra and B’ = C4(B).
Prove that:
a) B'is asimple algebra;
b) [B:K]|B :K]=[A:K];
c) if B~ Mn(D),then A® B° ~ M,(D), where m divides n.
Give an example in which Ca(B’) # B.
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6. Consider the algebra D over the field Q of rational numbers with basis {1,1, 7, k}
and multiplication table

i gk
i =1k [=5
i |—k|[-2[2
k|7 |-2i-2

(verify that, indeed, it is an algebra).

a) Prove that D is a central division algebra.

b) Verify that L1 = Q[:] and Ly = Q[;] are non-isomorphic maximal subfields
of D.

7. Prove that if D; and D, are two central division algebras over K such that
[D1 : K] and [Ds : K] are relatively prime, then D; ® D, is a division algebra.
(Hint: Assuming that D; @ D; ~ My(D), calculate D; ® D, ® D3 in two different
ways and deduce that n divides [D, : K].)

8. (Dickson’s theorem) Prove that two elements of a central division algebra are
conjugate if and only if they have the same minimal polynomials.

9. (Hilbert division algebra) Let L be a field and ¢ an automorphism of L. Consider
N o0

the “power series” of the form E a;t*, where a; € L, t a symbol (variable)
i>—00
and ¢ 3> —oo indicates, as usual, that there is only a finite number of powers

o] .
with negative exponents. Addition of the series is given simply by > ait' +
> —00

Y bit'= Y (a:i +b:i)t' and multiplication by the rules ta = p(a)t (a € L)
i>—00 i>—00
=) X =) X
and a( Z a;t‘) = Z (aa;i)t'.
13> —00 i3> —-0c0

a) Verify that the set of the series with the above operations of addition
and multiplication forms a division algebra L[¢,]. This division algebra
is called the Hilbert division algebra.

b) Let K = {a € L | p(a) = a} and n be the order of the automorphism ¢,
i.e. the least natural number for which ™ is the identity automorphism,
or oo if such a natural number does not exist. Prove that the center of the
Hilbert division algebra is K[t"] if n # oo and K otherwise.

c) Construct an example of a central infinite dimensional division algebra.
(Hint: Take for L the field of rational functions K(z).)
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In this chapter, we shall apply the machinery of bimodules and tensor products
to the study of extensions of a field K, i.e. to Galois theory.

5.1 Elements of Field Theory

In what follows, we shall need some well-known results on the structure of
fields and their extensions.

Let K be any field. Recall that the characteristic of the field K is the least
natural number p such that

pl=14+14...41=0 (if such a number exists).
LN
p times

If there is no number with the above property, i.e. if m1 # 0 for all m, then
K is said to have characteristic 0. Since any decomposition p = mn obviously
implies pl = (m1)(nl), the characteristic of a field is a prime number or zero.

Assume that K is a fleld of characteristic 0. Then the map n — nl is a
ring embedding of Z into K. In fact, considering the ratios nl/ml, we can
embed the entire field @ of rational numbers into K.

If K is of prime characteristic p, then the situation is still simpler: It is
easy to see that in this case the elements of the form nl, where 0 < n < p,
constitute a subfield isomorphic to the field IF(p) of the congruence classes of
the integers modulo p.

The fields Q and IF(p) contain no proper subfields. Fields with this prop-
erty are called prime. A result of our consideration is the following theorem.

Theorem 5.1.1. Every field K contains o prime field which is isomorphic
either to Q if K is of characteristic 0, or IF(p) if K is of characteristic p > 0.

Corollary 5.1.2. If a field K is finite then the number of its elements is p™,
where p 18 a prime.

Proof. The characteristic of a finite field must be non-zero and thus K contains
an isomorphic copy of IF(p) for some prime p. Hence, K is a finite extension
of IF(p), so it is a vector space of finite dimension n = [K : IF(p)] over IF(p).
It is now clear that K contains p™ elements. a
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We are primarily interested in finite extensions of a fixed field K. The
following result plays an important role in the construction and investigation
of such extensions.

Theorem 5.1.3 (Kronecker). Let p(z) be an irreducible polynomial over a
field K and (p(z)) be the ideal of I{[z] consisting of all polynomials which are
multiples of p(z): (p(2)) = {p(2)9(2) | 9(z) € K[z]}. Then K[z)/(p(x)) is
an ezxtension field of K which contains a root of p(z). Conversely, if L is an
extension of a field K in which p(z) has a root a, then K[a] ~ K[z]/(p(z)).

Proof. Write I = (p(z)) and consider a class Z = z + I in the quotient algebra
Klz]/I. In view of the definition of the operations in a quotient algebra, it
follows that p(Z) = p(z) + I = 0, and thus Z is a root of p(z). It remains to
verify that K{z]/I is a field.

Let f = f(z) + I be a non-zero class of K[z]/I,i.e. f(z) ¢ I. Then the
polynomials f(z) and p(z) are relatively prime. Therefore 1 = f(z)h(z) +
p(z)g(z) for some polynomials h(z) and g(z). Denoting h(z) + I by h, we get
fh =1 in the quotient algebra K[z]/I.

Conversely, let L be an extension of a field K and a € L be a root of p(z).
Then p(z) is the minimal polynomial of a over K. Defining the homomorphism
¢ : K[z] — L by the formula ¢(f(z)) = f(a), we get, by the homomorphism
theorem, that K[a] ~ K|z]/I.

Let us remark that the extension K|[z]/I is finite over K. Indeed, if the
degree of p(z) is n, then it is easy to verify that 1,%,z2%,...,zZ" ! is a basis of
K[z]/I over K. O

The Kronecker theorem has the following important consequence. Let f(z)
be an arbitrary polynomial over the field K and let p(z) be an irreducible
factor. Then the polynomial p(z), and thus also the polynomial f(z), has a
root ay in the field K; = K[z]/(p(z)); consequently, by the Bézout theorem,
f(z) = (z — a1)fi(2) for some polynomial fi(z) over K;. Continuing this
process, we can construct a chain of finite extensions K ¢ K; C K, C ...}
such that f(z) has ¢ roots (counting multiplicities) in K;. It follows that if
f(z) is of degree n, then it decomposes into linear factors over K.

A fleld L D K is called a splitting field of the polynomial f(z) over K
if f(z) decomposes into linear factors over L, and does not decompose into
linear factors over any proper subfield of L containing K.

Theorem 5.1.4 For any polynomial f(z) € K[z], there is a splitting field L
of f(z) over K and any two such splitting fields are K -isomorphic, i. e. there
18 an 1somorphism which coincides with the identity on K.

Proof. The existence of a splitting field follows from the argument above; we
can take L as the subfield of K, generated by K and the roots of f(z). The

® Observe that the inclusion in this chain may not be proper. For example, if p(z)
is a linear polynomial, then already K; = K.
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fact that the splitting field is unique will be proved by induction on the degree
n of the polynomial f(z). The result is trivial for n = 1: here L = K.

Let f(z) be a polynomial of degree n, L and L' be splitting fields of f(z)
over K and p(z) an irreducible factor of f(z) (over K). Then p(z) has a root
a in the field L and a root a' in the field L'. By the Kronecker theorem, the
fields K[a] and K[a'] are isomorphic. Identifying them, we can assume that
both L and L' contain a common subfield K; = K]|a].

However, then L and L' are extensions of the field K;. Moreover, they are
splitting fields of the polynomial fi(z) = f(z)/(z — a) of degree n — 1 over
K;. By the induction hypothesis, L ~ L', as required. O

We shall prove that the splitting field L is a finite extension of the ground
field K. Since L is a subfield of a field which can be obtained from K by
constructing a chain of finite extensions, our statement is a particular instance
of the following result.

Theorem 5.1.5. f K = Koy C K; C ... C Kn_y C K, is a chain of fields

in which, for every i, K11 is a finite extension of K;, then K, is a finite
n
extension of K and [K, : K] = [][K;: Ki-1].

i=1

Proof. Obviously, it is sufficient to prove the result for n = 2; in general, it
follows by induction.

Hence, let K C F' C L, with [F': K] = n and [L : F] = m. Choose a basis
{a1,a2,...,a,} of the field F over K and a basis {b1,b2,...,bn} of the field

L over F. Then every element of F has the form Y a;a;, where «; € K, and

=1

every element of the field L has the form )~ 8;b;, where ; € F. Consequently,
Jj=1

n m
writing §; = Z a;ja;, o;; € K, we obtain Z ﬂjbj = Zai]‘a,’b]’, a;; € K
i=1 J=1 5]
and thus {a;b;} is a generating system of the vector space L over the field K.
On the other hand, if } a;ja;b; = 0, then, in view of the linear indepen-
t,J

n
dence of {b;} over F, we get that Y a;ja; = 0 for all j. This shows that

=1
a;; = 0 for all 4,7, since {a;} is linearly independent over K. Thus, we have
constructed a basis {aib;} of the field L over K consisting of nm elements,
and the theorem follows. O
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5.2 Finite Fields. The Wedderburn Theorem

We shall apply the previous results to a description of finite fields (and also
all finite division rings!). First, let us prove a lemma on commutative groups.

Lemma 5.2.1. If ¢ commutative group G contains elements of order m and
n, then there is an element of order k in G, where k is the least common
multiple of m and n.

Proof. Let = be an element of order m and y an element of order n. First
consider the case where m and n are relatively prime. Then ¥ = mn and
(zy)* = z*y* = 1. Conversely, if (zy)¢ = 1, then zf = y~¢ and the elements
z¢ and y*® have the same order. But the order of the element z¢ is a divisor
of m and the order of y¢ is a divisor of n, and thus zf = y¢ = 1. This implies
that £ is divisible by m and n, and therefore also by k.

In the general case decompose m and n into prime factors and, for each
prime number p, choose either in m or in n the factor p!, where t is the
exponent with which p appears in k. In this way we can write m = mom/,
n = non’ such that k¥ = mgny and my and ng are relatively prime.

Now, the elements z' = z™ and Yy = yn’ have orders mg and ng, respec-
tively, and therefore the order of the element z'y’ is mong = k, as required. 0O

An immediate consequence of this lemma is the following theorem.

Theorem 5.2.2. A finite subgroup of the multiplicative group of a field is
cyclic. In particular, the multiplicative group of a finite field is always cyclic.

Proof. Let G be a subgroup of order n of the multiplicative group of a field K.
It follows from Lemma 5.2.1 that there is an element ¢g in G whose order m
is such that the order of any other element of G is a divisor of m. Therefore
a™ = 1 for every a € G, and thus all the elements of G are roots of the
equation z™ — 1 = 0. Consequently, n < m. Hence n = m and g generates the
group G. O

Theorem 5.2.3. For any prime p and any natural number n there i3, up to
an isomorphism, a unique field of p" elements.

Proof. Put K = IF(p) and consider the polynomial f(z) = z?" — z over K.
Let L be its splitting field and S be the set of the roots of f(z) in L. Since
f'(z) = —1, f(«) has no multiple roots, and thus S consists of p" elements.
Now, a € S if and only if a®” = a. Applying the Newton binomial formula,
we see that (a + b)P" = a?” 4 b*" in any field of characteristic p. Since also
(aby?" = a?"b?" and (a=1)" = (a?")”", it follows that S is a subfield of L
containing K. Therefore S = L and L consists of p" elements.

Now, let L' be any field consisting of p® elements and let G be its multi-
plicative group. Then G consists of p* — 1 elements and therefore a?” ~! =1
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for all a € G. Hence a®” = a. Since the last equality holds also for a = 0, we
conclude that the elements of L' are just the roots of the equation z?" —z = 0.
Their number is p”, and thus L' is the splitting field of f(2) and L' ~ L, by
Theorem 5.1.4. O

Theorem 5.2.3 implies, in particular, that two finite fields with the same
number of elements are isomorphic. In combination with the Skolem-Noether
theorem, this leads to the following remarkable result.

Theorem 5.2.4 (Wedderburn). Every finite division ring is commutative,
. e. 1t 18 ¢ field.

Proof. If D is a finite division ring, then its center I is a finite field. Let
[D : K] = d?. For any maximal subfield L of D, [L : K] = d. This means
that all maximal subfields are isomorphic. By the Skolem-Noether theorem,
they are all conjugate. On the other hand, every element a € D belongs,
obviously, to some maximal field. Thus, if G is the multiplicative group of the
division ring D and H the multiplicative group of a maximal field L, then
G = JgHg™', where g runs through all G. We shall show that, for H # G,
g

this is impossible.

Let n be the order of G and m be the order of H with m < n. Then G =
UgHg™?! implies that n < mk, where k is the number of distinct subgroups of
g

the form gHg™! (since all of them contain the identity). On the other hand, if
g1 = gh with h € H, then ngg]_1 = gHg~! and we conclude that k& does not
exceed the index ¢ of H in G. This contradicts the Lagrange theorem asserting
that n = ma.

Thus, we conclude H = G and L = D. The proof of the theorem is
completed. O

5.3 Separable Extensions

We return to the study of finite extensions of arbitrary fields. As in the previ-
ous chapter, an important role is played here by the algebra L ® L (note that
L° = L). Therefore, we shall need some information on the structure of the
tensor products of fields.

We shall consider tensor products over various fields, including the ground
field K and its extensions. The tensor product of vector spaces (or algebras)
over a fleld I D K will be denoted by the symbol ®;. It is not difficult to
verify that the “associativity formula” of Proposition 4.2.3 also holds in this
more general situation. Namely, if L C M are two extensions of the field K,
U is a vector space over L, and V and W are vector spaces over M, then
URLV)QuW ~U®L(V ®u W). The proof of the formula is left to the
reader. In place of ® x we shall write simply ®.
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Consider the simplest situation when one of the factors is monogenic, i. e.

of the form K/a].

Proposition 5.3.1. Let L and F be finite eztensions of the field K and
suppose that F = K[a], where the minimal polynomial of a over K is p(z).
Then L® F ~ L[z]/(p(z)).

Proof. Evidently, L ® F is a monogenic L-algebra: L® F' = L{1 ® a]. There-
fore, we get an epimorphism of L[z] onto L ® F' by mapping f(z) € L[z] onto
the element f(1®a) € LR F.

It follows that L® F' ~ L[z]/(m(z)), where m(z) is the minimal polyno-
mial of the element 1® a over L. However, clearly p(1®a) = 1®p(a) = 0.
At the same time, if n is the degree of p(z), then 1,1®a,...,1®a™"! are
linearly independent over L. We conclude that m(z) = p(z). O

We now clarify the structure of the quotient algebra K|[z]/(f(z)) for an
arbitrary polynomial f(z).

Lemma 5.3.2. If f(z) = fi(2)... fi(z), where the polynomials fi(z),...,
fi(z) are pairwise relatively prime, then K[z]/(f(z)) ~ I_]I Kz]/(fi(z)).

Proof. Write I = (f(z)), I; = (fi(z)). Consider the map which sends each class
g(z) + I of the quotient algebra K[z]/I onto the t-tuple (g(z) + 1, g(z) + I,

t
...,9(z) + I,) € ] K[z]/1I;. This is clearly an algebra homomorphism, and
i=1

also a monomorphism, since whenever g(z) is divisible by each of the fi(z),

it is also divisible by their product f(z). However, the dimension of K[z]/I

equals the degree n of the polynomial f(z) and the dimension of each K|[z]/I;

equals the degree n; of fi(z). Consequently, the dimensions of K[z]/I and
'

of J] K|z]/I; are equal, and thus the above monomorphism is necessarily an

i=1
isomorphism. O

Corollary 5.3.3. The algebra K[z]/(f(z)) is semisimple if and only if the
polynomaial f(z) has mo multiple irreducible factors.

Proof. If f(z) = p1(z)p2(z)...ps(z), where pi(z),p2(z),...,ps(z) are pair-
wise different irreducible polynomials, then K[z]/(f(z)) ~ [ Klz]/(pi(z))
=1

and all K[z]/(pi(z)) are fields (by the Kronecker theorem). Hence the alge-
bra is semisimple. On the other hand, if f(z) = p?(z)g(z), then the class of
the polynomial p(z)g(z) is easily seen to be a non-zero nilpotent element of

Klz]/(f(2))- o
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Corollary 5.3.4. Under the assumptions of Proposition 5.5.1, the algebra
L®F is semisimple if and only if the polynomial p(z) has no multiple irre-
ducible factors.in the field L.

Corollary 5.3.5. Let F' = K|a] be a monogenic extension and let a be a simple
root of its minimal polynomial p(z). Then, for any commutative semisimple
algebra A, the algebra A® F is semisimple.

Proof. Decomposing A, in accordance with the Weierstrass-Dedekind theorem,
into a direct product of fields, we see that it is sufficient to prove the result
for the algebra L ® F, where L is a field. By Corollary 5.3.4, we have to show
that p(z) does not possess any multiple irreducible factors over L.

Assume that g(z) is a multiple irreducible factor of p(z) over the field L
and that L' is an extension in which g(z) has a root b. Then b is a multiple
root of p(z). However, by the Kronecker theorem, K[b] ~ K|a] and thus a is
a multiple root, contrary to our assumption. o

An irreducible polynomial is called separable if p(z) has no multiple roots
in any extension of the field K. The argument given in the proof of Corol-
lary 5.3.5 shows that p(x) is separable whenever it has a simple root in some
extension.

An element of a finite dimensional division algebra is called separable if
its minimal polynomial is separable.

Theorem 5.3.6. The following conditions are equivalent for a finite extension
L of the field K:

1) LQ®L is a semisimple algebra;

2) A®L is semisimple for any commutative semisimple algebra A;

3) every element of L is separable;

4) L = Klay,a2,...,a], where all a; are separable.

Proof. Trivially, 2) = 1) and 3) = 4).

1) = 3). Let a be a non-separable element of L and F = K|[a]. Then a is a
multiple root of its minimal polynomial and, by Corollary 5.3.4, L ® F is not
a semisimple algebra. Thus the algebra L ® L D L ® F is also not semisimple.

4) = 2) can be proved by induction on t. For t = 1, the assertion is Corol-
lary 5.3.5. Denote K[a;] by F. Then the F-algebra Ar = AQ F is semisimple.
But AQ L ~ Ar ®F L and L = Flay,az,...,a:—1]; hence, by induction, AQ L
is semisimple.

The proof of the theorem is completed. a

An extension satisfying the equivalent conditions of Theorem 5.3.6 is called
separable.

Corollary 5.3.7. Consider a chain of fieldls K=K, CK; C...CK,=1L,
where K; is a finite eztension of K;_;. Then L is separable over K if and only
if each K; is separable over K;_;.
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Proof. 1t is sufficient to prove the statement for n = 2. If K; is separable
over K and L is separable over i, then L@ L ~ L &(K; ®k, L) ~ A®k, L,
where A = L® Iy is a semisimple algebra. Therefore, L ® L is a semisimple
algebra, and thus L is separable over I\.

On the other hand, K; @ K is a subalgebra of L ® L and therefore, since
L®L is semisimple, K; ® K; is semisimple as well. Consider the algebra
L®gk, L and the map f : LQL — LQ®g, L assigning to a® b the element
a®k, b. It is easy to verify that f is an algebra epimorphism. Thus L ®, L
is isomorphic to a quotient algebra of L ® L. Since a quotient algebra of a
semisimple algebra is semisimple, the separability of L over K implies the
separability of L over Kj. O

A field R is called perfect if every finite extension of K is separable or, in
other words, if every irreducible polynomial from K/[z] is separable. It is not
difficult to establish the following criteria.

Theorem 5.3.8. Every field of characteristic 0 is perfect. A field K of char-
acteristic p 18 perfect if and only if the equation o = o has a solution in K
for each a € K.

Proof. If f(z) is an irreducible polynomial and f'(z) is its derivative, then
either f and f' are relatively prime, or f divides f'. The latter is impossible
unless f'(z) = 0. Let f(z) = apz™ + anz™ ' + ... + @n, @ # 0; then
fl(z) = nagz™ ' +(n—1)a;2" 2 +. ..+ an—1. If K is a field of characteristic 0,
nag # 0 and thus f'(z) # 0. As a consequence, f(z) has no multiple roots in
any extension of the field I, i.e. f(z) is separable.

If K is a field of characteristic p, then f'(z) = 0 if and only if f(z)
is of the form BgzP* + B12P*~1) 4 ... + Bi. Assume that the equation
z? = B; has a solution 7; € K. Then the binomial theorem shows that
f(z) = (yoz*F +mzF1+ ...+ )", and f is not irreducible. If, on the
other hand, the equation z? = a has no solution for some @ € K, then
f(z) = (= — B)?, where B = a, over the splitting field of the polynomial
f(z) = z? — a. Thus f(=) is not separable in this case. The theorem follows.

[}

Corollary 5.3.9. Every finite field is perfect.

Proof. Let K be a finite field of characteristic p. Then the map ¢ : K — K
which sends « into o is injective; indeed, if o = (P, then @ =  because
aP — 3P = (a — B)P. Since K is finite, ¢ is a bijection, and so each element in
K is a pth power. O
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5.4 Normal Extensions. The Galois Group

We proceed to the main topic of this chapter, namely the study of the automor-
phisms of finite extensions. Recall the connection between the automorphisms
and bimodules established in Chapter 4 (Sect. 4.1, Examples 2, 3). Let L be
a finite extension of the field K and o a K-automorphism of L. Then , L is an
L-bimodule on which the operators from L act from the right as on the regular
L-module and from the left according to the rule az = zo(a). Conversely, if M
is an L-bimodule such that [M : L] =1 !°, then M ~ L as a right L-module.
Assigning to each a € L the endomorphism z + az of the right L-module
M, we get a homomorphism L — Er(M) ~ L, i.e. an automorphism of the
field L. Therefore M ~ , L for some automorphism . It is easy to check that
oL~ :Lifandonlyifoc =r.

In this way, we have established a bijective correspondence between the
set of automorphisms of the field L and the isomorphism classes of the one-
dimensional (over L) L-bimodules. Since a one-dimensional bimodule is obvi-
ously simple, we obtain, by considering it as an L ® L-module, the following
result.

Theorem 5.4.1. There is a bijective correspondence between the K -auto-
morphisms of the field L and the one-dimensional simple components of the

algebra (L ® L)/rad (L ® L).
Counting the dimensions, we get from here the following corollary.

Corollary 5.4.2. The number of distinct K -automorphisms of the field L
does not ezceed [L : K| and can equal [L : K] only in the case when L is
separable.

If an extension L has precisely [L : K] distinct automorphisms, it is
called normal. In view of Theorem 5.4.1, this is equivalent to the isomorphism
L®L ~ L™ A normal extension is always separable.

Corollary 5.4.3. If the extension L of the field K is normal and K C K; C L,
then the eztension L of the field K, is also normal.

Proof. The statement follows from the fact that L ®, L is a quotient algebra
of L®k L (see the proof of Corollary 5.3.7) and every quotient algebra of L™
has again the form L™ for some m < n. O

The K-automorphisms of an extension L of the field K evidently form a
group; it will be denoted by G(L/K). If the extension is normal, G(L/K) is
called its Galois group.

10 A priori, one has to distinguish the left and right dimensions of M over L, however,
due to finite dimensionality, they coincide: both are equal to [M : K]/[L : K].
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An element a of the field L is called an invariant of the automorphism o
if o(a) = a. This is equivalent to saying that, in the bimodule ,L, az = za
for every = € ,L. If H is a subset of G(L/RK), then an invariant of H is every
element a € L which is an invariant of every element o € H. The invariants
of a subset H form a subfield of L. This subfield is called the field of the
invariants of H and is denoted by Inv H.

Theorem 5.4.4. The following conditions are equivalent:

1) the extension L of the field K is normal;
2) InvG(L/K) =K,
3) L is a splitting field of a separable polynomial f(z) € K(z|.

(An arbitrary polynomial is called separable if all its irreducible factors are
separable. )

Proof. 1) => 2). Write K; = InvG(L/K). Then L is an extension of K; and
G(L/K) = G(L/K,), which shows that [L : K] = |G(L/K)| = |G(L/K})| <
[L : K;]. Since K C K, we conclude K = Kj.

2) = 3). Let a be an element of the field L. Apply all automorphisms of
G(L/K) to a and consider the distinct elements which we obtain this way:
a = aj,as,...,a. Consider the polynomial f(z) = (z—a1)(z—az)...(z—ax).
It is invariant under the action of any ¢ € G(L/K). Therefore f(z) € K|z].
Hence, a is a root of a separable polynomial from K[z] which decomposes over
L into linear factors.

Now choose a generating system (for instance, a basis) of L, say L =
K[wi,ws,...,w, and for each w; construct a separable polynomial fi(z)
which decomposes into linear factors over L and has w; as a root. Then L
is the splitting field of the polynomial f(z) = fi(z)f2(2)... fi(z) which is
separable over the field K.

3) = 1) will be proved by induction on the degree d of the polynomial
f(z). For d = 1 (i.e. L = K), the assertion is trivial. We assume that the
implication holds for all polynomials of degree d — 1.

Let L = K[w;,ws,...,w;] where w; are the roots of f(z). Write K; =
K[w;]). Now, L is a splitting field (over K;) of the separable polynomial
f(z)/(z — wy) of degree d — 1, and thus normal over K;: L®gk, L ~ L™.
But LQL ~ (L® K;)®k, L. Consider the structure of L® K;. Let p(z)
be the minimal polynomial of the element w;. It is separable and decom-
poses over L into linear factors: p(z) = (2 — a;1)(z — a2)...(z — a,), where
a; = w, ag,..., a, are distinct and s = [K : K]. Consequently, K[a;] ~ K;
and we get s distinct homomorphisms a; : Ky — L. Accordingly, we can con-
struct s K;-L-bimodules ,,L which are one-dimensional over L. Therefore,
L ® K has a quotient algebra which is isomorphic to L®. A simple dimension
count now shows that L K; ~ L* and L L ~ L* ®j, L ~ L™*. The theo-
rem follows. O
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Corollary 5.4.5. For any separable extension L of the field K, there is a
normal eztension L' containing L.

Proof. Let L = K[wy,ws,...,w], where w; is a root of a separable polynomial
fi(z). Then we can take L' as the splitting field of the polynomial f(z) =
fi()fa(z). .. fi(2). 0

5.5 The Fundamental Theorem of Galois Theory

In this section, we shall prove the central theorems of the theory of fields:
the normal basis theorem and the fundamental theorem of Galois theory. We
begin with the following useful remark.

Lemma 5.5.1. Let A be an algebra over the field K, let M and N be A-
modules, and let L be a finite eztension of the field K. Put Ay = LA,
M =LQ®M and N, = LQ N (obviously, My and N can be considered as
Ap-modules). If M, ~ Np as Ar-modules, then M ~ N as A-modules.

Proof. Consider My, and N, as A-modules. Since L is an n-dimensional vector
space over K, Mj; ~ nM and Ny ~ nN. In view of the Krull-Schmidt
theorem, the isomorphism nM ~ nN implies that M ~ N. a

Now let L be an extension of K, let G = G(L/K), and let KG be the
group algebra of G over the field K (see Sect. 1.1, Example 6). Then L can be

considered as a left K G-module by setting ( > agg)a = ) agg(a) for each
g€eG geG
a€ L.

Theorem 5.5.2. An estension L is normal if and only if L is isomorphic, as
a left KG-module, to the reqular left KG-module.

Proof. If L ~ KG as left KG-modules, then [KG : K] = [L : K]. But
[KG : K] = (G : 1) (the order of the group G), and thus L is normal.
Conversely, let L be a normal extension and consider L @ L as a left module
over the algebra L ® KG ~ LG. In view of Lemma 5.5.1, it is sufficient to show
that LQ L ~ LG.
Now L® L, as a module over itself (or a bimodule over L), decomposes

into a direct sum LQL ~ @ ,L. Let 1 = Y e, be the corresponding
oeG c€G
decomposition of the identity. It is easy to verify that the map z + gz is an

automorphism of the algebra L ® L. Therefore ge, is a minimal idempotent
of that algebra, and so Theorem 2.5.1 implies that ge, = e, for some 7 € G.
In accordance with the definition of L, this means that age, = ge,7(a) for
every a € L.
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Now, for each ¢ = Y a;®b; € LQL, we have gz = Y a; ® gb; and
ar = Y aa; ®b;, agz = gazx for all a € L. Consequently, age, = gae, =
g(eso(a)) = ges(go(a)), and thus 7 = go.

Thus ge, = e4o. This shows that the map which sends o € LG onto e,
gives an isomorphism of LG-modules LG ~ L ® L, as required. O

Observe that the isomorphism of the K'G-modules L ~ KG implies that
there exists an element w € L such that the elements o(w) form a basis of
L as o runs through the group G. A basis of this kind is called normal and
Theorem 5.5.2 is the normal basis theorem.

Corollary 5.5.3. A normal eztension is momnogenic.

Proof. If w is an element such that the o(w) form a basis as ¢ runs through G,
then the o(w) are the roots of the polynomial m,,(z) and the degree of m,(z)
is equal to the dimension of the extension L. It follows that L = K[w]. a

The fundamental theorem of Galois theory follows easily from the normal
basis theorem.

Theorem 5.5.4. Let L be a normal extension of the field K and G = G(L/K).
For each subfield F of the field L containing K, let Inv F' denote the subgroup
of G consisting of all those elements o for which o(a) = a for alla € F. Then

1) for any subgroup H C G, Inv(InvH) = H, and for any field F with
KcFCL Inv(lnvF)=F;

2) the map H — Inv H is a bijective correspondence between the set of sub-
groups of the Galois group and the set of intermediate fields between K
and L; and H D Hy if and only if Inv H C Inv Hy;

3) InvF ~ G(L/F) for any intermediate field F;

4) the intermediate field F is normal if and only if the subgroup InvF is
normal, and then G(F/K) ~ G/Inv F.

Proof. Evidently, Inv(Inv H) D H and Inv(Inv F') D F. We can determine
the degree of the field Inv H over K by using the isomorphism of the left
KG-modules L ~ KG. In this isomorphism, Inv H maps into the subspace
V C KG consisting of the elements = such that oz = z for all o € H. If we
write z in the form 2 = )~ agg,thenoz = 3 a4(og), and thus ay = agy for

g€eG g€G
any o € H and the elements of the form ) og, where g is a fixed element of
o€EH

G, constitute a basis of V. The number of distinct elements of this form is just
the number of cosets of G by H, i.e. (G : H). Hence, [InvH : K] = (G : H).

On the other hand, the field L is normal over every subfield (by Corol-
lary 5.4.3). Consequently, there are [L : F] distinct automorphisms of L leaving
the elements of F' invariant and thus the order of the group Inv F' is equal to
[L:F)

In particular, the order of the group Inv (Inv H) equals
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[L:InvH]=[L:K]/[InvH : K|=(G:1)/(G: H)=(H :1);

so it follows that Inv(Inv H) = H. In a similar way, the degree of the field
Inv (Inv F') over K is equal to

(G:InvF)=(G:1)/(InvF:1)=[L: K]/[L: F]=[F: K],

and this proves that Inv (Inv F') = F. This yields both assertions 1) and 2), and
we also note that along the way we established the isomorphism G(L/F) =~
Inv F.

Next, we determine Inv (g(F’)), where g is an automorphism from G. If
o € Inv(g(F)) then og(a) = g(a) for all a € F, i.e. g7'og(a) = a and
thus g~log € InvF. Consequently, Inv(g(F)) = g(InvF)g~!. f InvF is a
normal subgroup, then Inv(g(F)) = Inv F, which shows that g(F) = F for
any g € G. In this way, every K-automorphism of the field L induces a K-
automorphism of the field F'; moreover, it is easy to see that g and h induce
the same automorphism of the field F' if and only if they are in the same coset
of G by Inv F. Altogether, we obtain (G : Inv F) automorphisms of F' over
K. Since (G : Inv F') = [F : K], it follows that the field F is normal and that
G(F/K)~G/Inv F.

Conversely, if F'is normal, then Theorem 5.4.4 shows that F'is the splitting
field of a separable polynomial f(z) € K|z]. Since every automorphism g of
the field L maps a root of f(z) again to a root of f(z), therefore g(F) = F
and ¢g(Inv F)g~! = Inv F, and thus Inv F is a normal subgroup of G. The
proof of the theorem is completed. O

Corollary 5.5.5. A separable extension L of the field K contains only a finite
number of subfields.

Proof. If L is normal, the corollary is an immediate consequence of the fun-
damental theorem of Galois theory, because a finite group possesses a finite
number of subgroups. In the general case, it is sufficient to embed L into a
normal extension; this is always possible by Corollary 5.4.5. O

Corollary 5.5.6. A separable eztension s monogenic.

Proof. Every extension of a finite field is normal by Theorems 5.2.3 and 5.4.4;
consequently, by Corollary 5.5.3, it is monogenic. Therefore, we can assume
that the ground field K is infinite.

A separable extension L of the field K contains a finite number of subfields.
If a is an element of L which does not belong to any of these subfields, then
clearly L = K|[a]. Therefore, the proof is reduced to the following fact from
linear algebra.

Lemma 5.5.7. A vector space over an infinite field cannot be ezpressed as a
finite union of its proper subspaces.
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Proof. Evidently, a space V cannot be expressed as a union of its two proper
subspaces Vi and V,; for if 3 € V; \ Vo and zo € V2 \ V; then z; + z»

m
does not belong to either V; or V3. Now, let V = |J V;, where V; are proper
i=1
subspaces. We are going to show that one of them is contained in the union
of the remaining ones.

Indeed, otherwise there exist z; and z2 such that z; belongs only to V;
and z2 belongs only to V. Then for every non-zero o € K, z; + az; does
not belong to Vi U V,, and therefore z; + azy € V; for some ¢ > 2. Since K
is infinite, there are two distinct elements o and 3 in the field K such that
z1 + az2 € V; and z; + Bz € V; (for the same ¢ > 2). But then z2 € V;, in
contradiction to the assumption.

As a consequence, we can omit one of the subspaces and obtain V as a
union of m — 1 subspaces. Continuing this process, we arrive finally to two
subspaces, which is impossible. a

5.6 Crossed Products

The Galois theory allows a new approach to the study of central simple al-
gebras. In this section we shall present a construction allowing us to describe
the Brauer group in terms of normal extensions and to construct an algebra
of the form My, (D) for every central division algebra D.

We begin with the following important result.

Lemma 5.6.1 (Noether). Let D be a finite dimensional central division
algebra over a field K. Then there is a mazimal subfield L C D which is
separable over K.

Proof. If the characteristic of K equals 0, then every subfield of D which
contains K is separable over K. Hence, we may assume that K is a field of
characteristic p > 0. In this case, we shall show that there is an element in D
which is separable over K and does not belong to K.

Take an arbitrary element a € D \ K. Let f(z) = mq(z). If a is not
separable over K, then the irreducible polynomial f(z) has a multiple root.
It follows that f'(z) = 0, and thus f(z) = g(2?) for some g(z) € K|z]. The
element a” is a root of the polynomial g(z). If g(z) is not separable over K
then again g(z) = h(z?) for some h(z) € K|[z]. Continuing this process we
reach an element b which is not separable over K such that b? is separable.

Assume that b» € K and consider the map § : D — D which maps
d € D to db— bd. Since b ¢ K, there is a dy € D such that §(dp) # 0,
and 6P(dp) = dob? — bPdy = 0 because ¥* € K. Let m be the least natural
number such that §™(dy) = 0, and let §™1(dp) = t, 6™ 2?(dp) = w and
u = b~'t. Then ¢t = §(w) = wb — bw, and ub = bu because §(t) = 0. But
then b = tu™! = (wb — bw)u™! = wbu™! — bwu™! = (wu"1)b — b(wu?),
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and consequently, b = cb — bc, where ¢ = wu~!. Multiplying by b, we get
c=1+bcb7 1.

The argument used above for a shows that there is an exponent p™ = ¢
such that c? is separable over K. Now ¢? = 1 + bc?b~! and so b does not
commute with ¢?. Hence ¢? € K, as required.

The lemma now follows easily by induction on the dimension [D : K. For
[D : K] = 1, the statement is trivial, so suppose [D : K] > 1. Assume that
the lemma holds for all division algebras whose dimension over the center is
smaller than [D : K].

Choose an element a € D \ K which is separable over K and put F =
Kla] and Dy = Cp(F). According to Theorem 4.4.6, F = Cp(D) and thus
F = C(D,), because F C D;. However, [D; : F] < [D : K], and so there
is a maximal subfield L in D; which is separable over F. Then [D; : F] =
[L: F)® and, using Theorem 4.4.6 again, [D : K] = [D; : K]|[F : K] =
[D:: F)[F: K)> = [L: F’[F : K)* = [L: K)? thus L is a maximal subfield
of D in view of Theorem 4.5.1. Since F' is separable over K, L is also separable
over K by Corollary 5.3.7. This completes the induction and proves the lemma.

0

Corollary 5.6.2 Every simple central algebra has a normal splitting field.

Proof. The statement follows immediately, using Theorem 4.5.1 and Corol-
lary 5.4.5. ]

In terms of the Brauer group, Corollary 5.6.2 reads

BrK =| JBr(L/K),
L

where L runs through all normal extensions of the field K.

Now, let D be a central division algebra with a normal splitting field L. By
Theorem 4.5.3, L is a subalgebra of the algebra A = M,,(D) for some m with
[A:K]=[L:K]’. If o € G(L/K) then o extends to an inner automorphism
of the algebra A by the Skolem-Noether theorem (see Corollary 4.4.2). In other
words, there is an invertible element a, in A such that a,z = o(z)a, for all
z € L. The element a, is obviously determined up to a factor which commutes
with all z € L; since L = C4(L), this means up to a factor from L.

If 7 is another element of the group G = G(L/K), then o7(z) = asrza;}.
Since

1

or(z) = o(arzall) = agarzalla]? = (agar)z(asar) ",

we conclude that ayar = v4,rasr for some v, € L. In this way, we get a
function v, - of two variables 0,7 € G whose values lie in the multiplicative
group L* of the field L. Calculating asara, in two ways, we obtain

(aaa‘r)ap = Yo,rGor0p = Yo,rYVar,pl07Tp »

as(ara,) = ao¥r,parp = 0(¥r,p)0arp = 0(Yr,pYo,rpl0rp »
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which shows that
Yo,rYor.o = 0(Vr,0)Yo,rp - (5.6.1)

A function satisfying the equation (5.6.1) is called a cocycle of the group
G with values in L* (more precisely, a two-dimensional cocycle). Hence, one
can speak about the cocycle group Z(G, L*).

Conversely, let v € Z(G, L*). We shall construct an algebra A = A(G, L,~)
which will be called the crossed product of the group G and the field L relative
to 7.

The elements of the algebra A(G, L,v) are the formal linear combinations

Y~ aseq , where the a, are elements of the field L and the e, certain symbols
oc€G
indexed by G.

The vector space structure of A is defined in the usual “coordinatewise
manner”, and the multiplication is determined by the rules

est = o(r)e; for z € L and eper = Yo r€0r

(the elements of L are multiplied in the usual way). The associativity of this
multiplication follows immediately from the condition (5.6.1) for the cocycle
(the verification of this fact is left to the reader).

Theorem 5.6.3. A = A(G, L,v) is a simple central algebra over the field K
and L s a splitting field of K.

Proof. If an element Y ase, belongs to the center of A, then it commutes

with all elements of L,Uand therefore
Z(aaa)ea = az Agey = (Z a,’e,)a = z Ag€al@ = Z aso(a)es .

This means that whenever a, # 0, then a = o(a) for all a € L, and conse-
quently ¢ = 1. Thus C4(L) = L, and so C(A4) C L. However, if an element
a € L belongs to C(A), then ae, = e,a = o(a)e, for all ¢ € G, and conse-
quently @ € InvG = K. Thus C(4) = K and the algebra A is central.

Now, let I be an ideal of A. Choose a non-zero element z = 5_ aye, of I

(-4
with the least number of non-zero coefficients a,. Multiplying = by e, for a
suitable o, we can assume that a; # 0. Let a be an arbitrary element of L.
Then az — za € I. But

ar — za = Z atges — Z A€ol = Z adyey — Z aso(a)es =
a o a o
= Z(aal7 —o(a)as)eq ,
g

and so aa; — 1(a)a; = 0. Thus, the number of non-zero coordinates of az — za
is smaller than the number in 2. We conclude that az — za = 0 and = €
Ca(L) = L. This shows that z is invertible and so I = A; hence A is simple.

The fact that L is a splitting field of A now follows immediately from
Theorem 4.4.6 because C4(L) = L. a
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Corollary 5.6.4. Let D be a central division algebra and L be its normal
splitting field. Then, for suitable m and a cocycle v € Z(G,L*), Mpn(D) ~
A(G, L, 7).

Proof. Earlier we have constructed in M,,(D) the elements e, whose products
with the elements of L are the same as those of the corresponding elements
es of A = A(G,L,v). This allows us to define an algebra homomorphism
f:A— Mp(D). Since the algebra A is simple, f is a monomorphism. How-
ever, (G : 1) = [L : K], [A : K] = [L: K)? = [Mn(D) : K] (see Theo-
rem 4.5.3), and thus f is an isomorphism, as required. O

A cocycle § € Z(G,L*) is called a coboundary if there is a function s
defined on G with values in L* such that

bor = ,u,,a(,uf)p.;l
for any 0,7 € G.
Theorem 5.6.5. Let v and 1 be cocycles from Z(G,L*). The algebras A =

A(G,L,v) and B = A(G,L,n) are isomorphic if and only if v = én for some
coboundary 6.

Proof. Assume that f: A = B. Then f(L) is a subfield of B which is isomor-
phic to L. Applying Corollary 4.4.2 of the Skolem-Noether theorem, we can
assume that f(a) = a for all a € L. Write f, = f(es) € B. Then

flesa) = foa = f(a(a)es) = o(a)fs,
from which it follows that f, = p,e, for some yu, € Cp(L) = L. But then
f(eae"') = fofr = tooprer = ﬂﬂa(.uf)eaer = ”ad(ur)nﬂ,Tear
= f(’YU,TeUT) = ')’tr,r,ftr-r = Yo,rHor€or

and thus vo,r = peo(ur)p 00,
Conversely, let v = én where §,, = p,0(pr)u;2. Define the map
f:A— Bbyputting f(3" ases) =Y. aspses. It is not difficult to see that f

o o
is an algebra homomorphism. Since A is simple and the dimensions of A and
B are equal, therefore f is an isomorphism, as required. O

1

The coboundaries form a subgroup B(G, L*) of the group Z(G,L*) and
Theorem 5.6.5 together with Corollary 5.6.4 implies that the elements of the
group Br (L/K) correspond bijectively to the respective elements of the factor
group

H(G,L*y= Z(G,L*)/B(G,L").

Theorem 5.6.6. Br(L/K) ~ H(G, L*).

Proof. The proof is based on the following lemma.
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Lemma 5.6.7. A(G,L,y)® A(G,L,n) ~ M,(A(G,L,vn)), where n =
[L: K]

Proof. Write A = A(G, L,v) and B = A(G, L,n). Since L is embedded both in
A and in B, the algebra A ® B contains the subalgebra L ® L. As the proof of
Theorem 5.5.2 shows, there is a unique non-zero idempotent f in L ® L such
that (z® 1)f = f(1® z) for all 2 € L. We want to show that for every o € G,
fles®es) = (€0 ®es)f- Indeed, (es ®es) ! fes ®es) is also an idempotent

in L ® L, moreover,

(e®1)(es®er) " fleo Qo) = (60 ®es) H(o(z) ®1)fles R eg) =
= (eq ®ea)_1f(1 ®a(z))(es ®es) = (eq ®60)_1f(ea Qes )(1®7)

because e,z = o(z)e, , and thus ze;!

(ee ®es) 1 fles ®es) = f, as required.

Now consider the algebra T' = f(A® B)f. The map which sends a € L
into the element @ = f(1® a) = (a®1)f is an embedding of the field L into
the algebra T. Write €, = f(es Qes) = (€5 ® €5)f. Then

= e, 'o(z). This means that we have

ab,
es®er)f(1®a)=(es ®er)(a®1)f = (0(a)®1)(es ®es)f =
= o(a)e,,
€p€r = f(ea ® 60)(61' ® e‘r) = f(erre‘r @ en:re'r') = f('Ya,Tea'r ®7]a,7'ear) =
= f('Ya,r & 1)(1 ® 77:7,1‘)(80'1' ® etr'r) = ('Ya',rﬂa,‘r ® l)f(ear ® ea'r) =

= ﬁa,rﬁa,‘réar .

Qo
il

]

€q

Therefore, the map > ases +— > a@s€, is a homomorphism (and thus, a

monomorphism) from A(G,L,v7) to T.

On the other hand, T ~ E4 g 5(f(A ® B)). However, the decomposition of
the identity in L ® L has the form 1 = Y. f,, where f, is a (unique) idempo-

oG

tent such that z f, = f,o(z) for all z € L. Besides, (1® e,)fs(1®er)"! = fro
(see the proof of Theorem 5.5.2). Therefore all the modules fo(A ® B) are mu-
tually isomorphic and in particular, isomorphic to f(A® B), f = fi. Con-
sequently, AQ B ~ M,(T), and so [T : K] = n? = [A(G,L,vn) : K]. Hence
T ~ A(G, L, vn), which completes the proof. a

The proof of Theorem 5.6.6 now follows from the fact that the map
Z(G,L*) - Br(L/K) is a homomorphism (by Lemma 5.6.7), that its kernel
is B(G,L*) (by Theorem 5.6.5), and that it is an epimorphism (by Corol-
lary 5.6.4). O

Corollary 5.6.8. The algebra A(G, L,7) is isomorphic to M,(K) if and only
if v € B(G, L*).
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Exercises to Chapter 5

1. Let K be a field of characteristic p > 0. Prove that the map ¢ defined by
¢(a) = a® is an endomorphism of the field K. This map is called the Frobenius
endomorphism. Prove that if K is finite, then ¢ is an automorphism. Evaluate
Im ¢ if K = F(t)is the field of rational functions over a field F.

2. Prove that the automorphism group of a finite field is cyclic and that the Frobe-
nius automorphism is its generator.

3. Assume that the characteristic of the field K is not 2. Show that every quadratic
extension L of the field K, i.e. a field satisfying [L : K] = 2, is a splitting field
for a polynomial of the form z? — a, where ¢ € K is not a square. One writes
wsually L = K[y/a]. Verify that K[/a] ~ K[v?] if and only if ab~' is a square
in K.

4. Find a splitting field for the polynomial z® —2 over the field of rational numbers.

5. a) Let K be a finite field of ¢ elements and f(z) an irreducible polynomial of
degree d over the field K. Prove that f(z) divides 27 — z and conversely,

if f(z) divides 29" — z, then d divides n.
b) Denote by ¥(d) the number of irreducible polynomials over the field K of
degree d with the leading coefficient equal to 1. Prove that ¢ = Y di(d).

dln

c) Using the Mobius inversion formula (see e.g. .M. Vinogradov: An Intro-
duction to the Theory of Numbers, Pergamon Press, London, 1955) prove

that 1
n
b(n) =~y ()’

din
where p is the Mdbius function.

6. Let K be a field of characteristic p > 0, F = K[a] a finite monogenic extension
of K and m(z) the minimal polynomial of the element a over K. Prove that

the algebra F'® F is local if and only if m(z) = 2*" — & for an integer k and
some a € K. In this case, the irreducible polynomial m(z) and the element a are
called purely inseparable and the exponent k is called the height of the element a.

7. Let L be a finite extension of a field K. Prove that the following statements are
equivalent:
1) LQ®Lis alocal algebra;
2) for every local commutative algebra A, the algebra A® L is local;
3) every element of the field L is purely inseparable;
4) L = Kla1,a2,...,a:], where all elements a; are purely inseparable.
In the last case, show that the height of any element of the field L is bounded
by the largest of the heights of the elements a1,a2,...,a;.
If these conditions are satisfied, L is called a purely inseparable extension of K.

8. Let K = Ko C Ky C...C K. = L be a chain of finite extensions. Prove that
L is purely inseparable over K if and only if every K; is purely inseparable over
Ki_q.

9. Given a finite extension L of a field K, denote by L, the set of all separable
elements and by L; the set of all purely inseparable elements of the field L.
Prove that:

a) L, and L; are subfields of L and L, N L; = I;
b) L is purely inseparable over L,.
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11.

12.

13.
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Now, assume that L, is normal. Prove that:

¢) L is separable over L;;

d) if {a1,@a2,...,a.} is a basis of L, and {b1,b2,...,bm} a basis of L;, then
{arbj | 1 <k <n, 1<j<m}is abasis of L (over K).

In particular, [L : K] = [Ls : K][L; : K] and L is the least field containing

L, and L;. The subfields L; and L; are called separable and purely inseparable

extensions, respectively.

For a finite extension L of a field K, prove that the following conditions are
equivalent:

1) L is monogenic;

2) L contains only a finite number of subfields.

(Hint: To prove 1) = 2), show that if L = Kla], F a subfield of L and

™ 4+ bhiz™ ! 4+ ... + b,, the minimal polynomial of a over F, then F =
K[b1,b2,...,bm].)
Construct an example of a non-monogenic extension. (Hint: Let K = F(z,y)

be the field of rational functions in two variables over a field of characteristic
p>0)

Let F be a subfield of a finite extension L of a field K and d = [F : K]. Prove
that the number of the homomorphisms F' — L (including the identical one)
is not greater than d and it is equal to d if and only if F is separable and L
contains a subfield F' O F which is normal over K.

Prove that the least normal extension containing a given separable extension is
uniquely determined, up to an isomorphism.

Assuming that the finite extension L of a field K is a join of its subfields L; and
Ly (i.e. the least field containing L; and L), and that L; is normal over K,
prove that L is normal over L; and that G(L/L1) ~ Inv(Li N Ly) C G(L2/K).

The following set of exercises (14 to 22) deals with solving of equations by

radicals. For simplicity, the characteristic of the ground field K is assumed in these
exercises to be 0 ; an exception is Exercise 22 which indicates the changes necessary
for fields of positive characteristic.

14.

15.

16.

17.

Let L be a splitting field for the polynomial 2™ — 1. Prove that L contains a
primitive n-th root of unity, i.e. a root £ of the given polynomial such that all
other roots are powers of £. The number of such roots is ¢(n), where ¢ is the
Euler function. Using this fact, show that G(L/K) is a cyclic group whose order
divides ¢(n).

Assuming that K contains a primitive nth root of unity, prove that L = K[a],
where a is a root of the polynomial z" — a, « € K, is a normal extension,
G(L/K) is cyclic and its order divides n. In particular, if p is a prime, then the
polynomial zf — « is either irreducible or a product of linear factors.

Conversely, let, as before, I contain a primitive nth root of unity £ and let L be
a normal extension of K with a cyclic Galois group of order n. Prove that then
L = K[a], and the minimal polynomial of the element a is of the form z" — c.
(Hint: Take a = w+£a(w)+E20H(w)+...+£" 10" ! (w), where o is a generator
of G(L/K) and w a generator of the KG-module L.)

The field L is said to be a radical extension of the field K if there is a chain of
subfields

I(:LOCLchZC--~CLTﬂ:L
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such that L; = L;_1[ai], where the minimal polynomial of the element a; over
the field L;_; is of the form 2™ —a;; it is obvious that, refining the chain, we may
achieve that all exponents n; be primes. Assuming that I contains primitive
n;th roots of unity, show that every radical extension is contained in a normal
radical extension.

18. An extension L of K is said to be solvable if it is contained in a radical extension
of K. Prove that the splitting field for the polynomial =™ —1 is solvable for every
n. (Hint: Prove by induction, using the results of Exercises 14-16.)

19. Prove that an extension L of K is solvable if and only if the least normal ex-
tension of K containing L (see Exercise 12) is solvable. (Hint: Use the results of
Exercises 17 and 18.)

20. Prove that a normal extension L of K is solvable if and only if its Galois group G
is solvable, i.e. there is a chain of subgroups G =Gy D G1 D G2 D ...0Gn =
{1} such that G; is normal in G;_; and the factor group G;-1/G; is abelian for
all 7. (Hint: We may assume that G;—1/G; is cyclic and L a radical extension,
and use the results of Exercises 15 and 16 ; Exercise 18 allows to adjoin roots of
unity and Exercise 13 controls the behaviour of the Galois groups.)

21. An irreducible equation f(z) = 0, where f(z) € K[z], is said to be solvable by
radicals if it has a root in a radical extension of K. Prove that this is equivalent
to the fact that the splitting field for the polynomial f(z) over K is solvable.

22. Develop a theory producing results similar to those in Exercises 14-21 for fields
of characteristic p > 0. Note that in the definition of a radical extension, one
has to allow also the polynomials of the form z? — z — a. Accordingly, it is
necessary to modify Exercise 16 (for n = p, o € K). Note also that every purely
inseparable extension is radical.

The Exercises 23-27 deal with the important example of crossed products, viz.
cyclic algebras. A well-known result of Brauer, Noether and Hasse states that if
K is a field of algebraic numbers (i.e. a finite extension of the field Q), then this
construction yields all central division algebras over K. All these exercises assume
that L is a normal extension of a field K with a cyclic Galois group of order n; a
generator of this group is denoted by o.

23. Let v € Z(G, L) be a cocycle of the group G with values in L*. Prove that it
belongs to the same coset of the subgroup of coboundaries B(G, L*) as a cocycle
7 of the form

o _{1 ifitj<n,

lotiod = \a ifitj>n,
where a € K*. Denote by A(L,0,a) the corresponding algebra A(G,L,7) (in
general, it depends on the choice of the generator o). (Hint: In the algebra
A(G, L,7), the element e,: can be changed to e}.)

24. Prove that A(L,o0,a) ~ A(L,0,(3) if and only if there is an element A € L™
such that 8 = aN()), where N(\) = Aa(A\)o?(})...0™ 1(N). Verify that N is a
homomorphism from the group L* to the group K™ and deduce that Br(L/K) ~
K*/Im N. The homomorphism N is called the norm.

25. Let K be afinite field and L a finite extension. Prove that thenorm N : L* — K*
is an epimorphism in this case. (Hint: Apply the Wedderburn theorem on finite
division rings.)



26.

27.

28.
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Denote by K = F(t) the field of rational functions over the field F of two
elements. Prove that the polynomial 22 + 2 + 1 is irreducible over the field K.
(It is possible that the exercise may be easier with K being the field F((t}) of
formal power series over the field F.)

Using the notation of the preceding exercise, let L = Kla], where a is a root
of the polynomial z? + & + 1. Prove that if N : L* — K* is the norm (see
Exercise 24), then t ¢ Im N. Making use of the results of Exercise 24, construct a
four-dimensional division algebra D over ' which contains a subfield isomorphic
to K[v/t]; this is an example of a purely inseparable splitting field of a central
division algebra.

Prove the theorem on “independence of automorphisms”: If L is a normal ex-

tension of a field K and G = G(L/K), then for every function f : G — L there

is an element a € L such that f(o)o(a) # 0. (Hint: Use Theorem 5.6.3 by
cEG

considering L as a module over the algebra A(G,L,1), where 1 is the identity

cocycle.)



6. Separable Algebras

Those algebras which remain semisimple under arbitrary ground field exten-
sions play a particular role among the semisimple algebras. They are called
separable. Examples of separable algebras are, on the one hand, central sim-
ple algebras, and on the other, separable fields. It turns out that a general
case represents, in a certain sense, a combination of these two examples. Fur-
thermore, we shall establish the following fundamental properties of separable
algebras: semisimplicity of all bimodules, the Wedderburn-Malcev theorem
on lifting separable quotient algebras (which will be used in Chapter 8 for a
generalization of the “universal algebra” construction of Sect. 3.6) and non-
degeneracy of the principal trace form (which plays an important role in the
study of arithmetical properties of separable algebras).

6.1 Bimodules over Separable Algebras

An algebra A over a field K is called separable if, for every extension L of the
field K, A, = A® L is semisimple.

In particular, every separable algebra is semisimple; however, the converse
is, in general, false: If L is an inseparable extension of a field K, then L
is a semisimple K-algebra, but the algebra L ® L is no longer semisimple
(cf. Theorem 5.3.6).

Generalizing Theorem 5.3.6, we shall give a description of separable alge-
bras and a criterion of separability.

First of all, we are going to establish the following simple result.

Lemma 6.1.1. For every K -algebra A, there is an extension L of the field K
such that the L-algebra AL splits, 1. e.

Ap/rad Ap ~ My (L) x Mn,(L) % ... x My (L).

_ ¢
Proof. Let A = Afrad A ~ [] My, (D;), where D; are division algebras and

i=1
[Dl ZI\’] =d>1.
Since rad A® L is obviously a nilpotent ideal, it is contained in rad A, for
any field L. Consequently, Ay /rad Ay, is a quotient algebra of the algebra Ay,.
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Choose an element a € Dy, a ¢ K. Let p(z) be its minimal polynomial and
F = Kla]. Since p(z) has a root in F, D; ® F is not a division algebra.
Thus, if we write B = My, (D), then the division algebras which appear
in the decomposition of the algebra Bp/rad Br, have F-dimensions smaller
than the dimension [D; : K. Continuing in this “reduction of dimension”, we
obtain finally a field L such that Ay is a split algebra. a

A field L whose existence is asserted by Lemma 6.1.1 is called a splitting
field for the algebra A. Let us remark that it is far from being unique. Even
a minimal splitting field, i.e. such that its subfields are no longer splitting
fields, is not determined uniquely (see Exercise 6 of Chap. 4).

Theorem 6.1.2. The following conditions for an algebra A are equivalent:

1) A is a separable algebra;

2) A® A° is a semisimple algebra;

3) A~ A; X Ay x ... x A,, where A; are simple algebras with separable
centers.

Proof. 1) = 2). Let L be a splitting field for the algebra A. Since Ay is a
semisimple algebra, Ay, >~ My, (L)xMp,(L)X...xMy,(L). Then (AL)®@L(A})
is a direct product of algebras of the form Mi(L)®r Mm(L) ~ Mim(L)
and thus a semisimple algebra. It remains to observe that (AL)®r(A) =
(AQL)QL(LR®A°) ~ AR(LRLL)®A° ~ AQLR®A° ~ (A® A°)L . Finally,
the semisimplicity of (A ® A°); implies that A @ A° is semisimple.

2) = 3). If A® A° is semisimple, then A is semisimple, as well. Hence A =
A; x Ay x...x A, , where A; are simple algebras and A; @ A? are semisimple.
Consequently, the center of A; ® A? is semisimple. However, C(A; ® A?) =
C(Ai) ® C(A?) = C(4;) ® C(4;) and therefore, in view of Theorem 5.3.6,
C(A;) is separable.

3) = 1). Let A = A; x A3 X ... x Ay, where A; are simple algebras and
all centers C; = C(A;) are separable. According to Corollary 5.6.2, there is
a separable extension F' of the field C; such that A; ®c, F ~ Mi(F). If L is
an arbitrary extension of the field K, then (4; 1)®c, F ~ L ® (A; Q¢, F) ~
Mi(L ® F). It follows, by Corollary 5.3.7, that F' is separable over K. This
means that L ® F' and therefore also 4; ®¢, F' are semisimple algebras. From
here it follows immediately that every A; 1 and thus also Ay is semisimple for
an arbitrary field L, i.e. that A is separable. O

Observe that we have establishea, in fact, the following result.
Corollary 6.1.3. An algebra A is separable if and only if A ~ M,, (L) x

My, (L) x ... x My, (L) for some extension L of the field K. In addition, the
field L may be assumed to be separable.

Corollary 6.1.4. If a field K is perfect (for ezample, of characteristic 0 or
finite), then every semisimple K -algebra is separable.
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Moreover, the semisimplicity of A ® A° implies the following result.

Corollary 6.1.5. An algebra A is separable if and only if every A bimodule
1 semisimple.

Obviously, the last assertion can be reformulated in the following way: An
algebra A is separable if and only if every A-bimodule (or equivalently, every
A ® A°-module) is projective. It is remarkable that, in fact, it is sufficient to
verify the projectivity of the regular bimodule, i. e. of the algebra A considered
as an A @ A°-module, alone.

Theorem 6.1.6. An algebra A is separable if and only if the regular A-
bimodule 1s projective.

Proof. Assume that the regular A-bimodule is projective. Choose a splitting
field L for the algebra A; thus, Ap /rad A ~ My, (L)x Mp,(L)x...x My, (L).
In view of Theorem 3.3.5, A4 is a direct summand of a free A ® A°-module F.
But then Af is a direct summand of the free module F; over the algebra
(A® A%)L ~ (AL)®L(AY), i.e. AL is a projective Az-bimodule. In view of
Corollary 3.1.8, the radical of a regular bimodule coincides with the radical
of the algebra. Moreover, a decomposition of the quotient algebra Ay /rad Ay,
into a direct product of simple algebras yields a decomposition of the A -
bimodule Ay /rad AL into a direct sum of simple bimodules (minimal ideals
of that quotient algebra).

By virtue of the relationship between projective and semisimple modules
(Theorem 3.3.6), we obtain a decomposition of Ay, into a direct sum of ideals,
i.e. into a direct product of algebras A;: A = A; x Ay x ... X A, where
A;/rad A; ~ M,(L) with n = n;.

Then, by Theorem 3.3.4, A; ~ M,(B), where B/rad B ~ L (here B de-
pends, in general, on the index ¢). Besides, since A; is a projective A -bimodule
and the components A;, j # i, operate on A; trivially, A; is a projective A;-
bimodule. Now, note that if R = rad B, then I = (R®1, B°)® (B ®1 R°) is a
nilideal of B®p, B® and (B®L B°)/I ~ L® L ~ L. Consequently, by Propo-
sition 3.1.3, I = rad (B ®r B°), B®[ B° is a local algebra, and A; ® A? ~
M,>(B ®r B°) is a primary algebra. According to Theorem 3.3.10, it has pre-
cisely one principal module (obviously, equal to A;), while 4; ®, A? ~n?A; as
an A;-bimodule. But [A4; : L] = n?b, where b= [B: L], [4; ® A? : L] = n*b?
and thus b = 1. It follows that B ~ L, A; ~ M,(L) and A is separable by
Corollary 6.1.3. a

Finally, observe that if (A7) ® (A% ) is semisimple, then the algebra AQ A°
is semisimple as well, and hence we get the following corollary.

Corollary 6.1.7. Let A be a K -algebra. If the L-algebra Ay is separable for
some extension L of the field K, then A is separable.
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6.2 The Wedderburn-Malcev Theorem

Let A be an arbitrary, in general not semisimple, algebra and R its radical.
Let A= A/R and 7 be the (canonical) projection of the algebra A onto the
quotient algebra A. In many problems of the theory of algebras, one requires
to “lift” the quotient algebra A to an isomorphic subalgebra of A. Let us give
the following definition.

An algebra homomorphism ¢ : A — A such that me = 1 will be called a
lifting of the quotient algebra A. Evidently, a lifting £ is always a monomor-
phism and Im e = Ag is a subalgebra of A which is isomorphic to A; moreover,
A= Ay @ R (as a direct sum of vector spaces).

Conversely, if Ag is a subalgebra of A which is isomorphic to A, then
Ap N R = 0 (because Ay is semisimple). Consequently, A = A¢ @ R (because
[A: K] =[40: K]+ [R: K]). Then the restriction of the projection 7 to the
subalgebra Ay results in an isomorphism 7 : 49 = A. Taking ¢ = 771, we
obtain a lifting of the quotient algebra. As a result, the existence of a lifting
is equivalent to the existence of a complement to the radical.

Two liftings ¢ : A — A and : A — A are said to be conjugate if there
is an invertible element a of the algebra A such that n(z) = ae(z)a™? for
all z € A. If, in addition, @ = 1 + r, where r € R (such elements are called
unipotent), we say that ¢ and 1 are unipotently conjugate.

This section will be devoted to a proof of the following fundamental result.

Theorem 6.2.1 (Wedderburn-Malcev). If the quotient algebra A is sep-
arable, then a lifting always exists and any two liftings are unipotently conju-
gate.

Let us remark that without assumption of separability, the statements no
longer hold: a lifting may not exist (see Exercise 4), and two liftings may not
be conjugate (see Exercise 5).

Proof. We shall prove the existence of a lifting in several stages, gradually
extending the class of algebras for which the results hold.

1) First, we assume that A is a split algebra, i.e. that A ~ M, (K) x
My, (K)x...XxM,,(K). Denote by U; asimple A;-module corresponding to the
i-th component of the algebra A and by P; the respective principal A-module
(see Corollary 3.2.9). Then A=nU &®nlUs@® ... ®»n,U, Consequently,
A~nP,®nyPo®... 0 n,P; (Theorem 3.3.6).

Utilizing the isomorphism A ~ E4(A) and matrix notation for the endo-
morphisms of a direct sum (see Sect. 1.7), we find that A is isomorphic to the
algebra of matrices of the form
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where z;; € Homa(njPj,n;P;). In particular, A contains the subalgebra of
all “diagonal matrices” which is isomorphic to E4(n1P1) X Ea(naPa) x ... x
Ea(nsPs) ~ My, (A1) X Mp,(A2) X ... x My, (As) with A; = E4(F;), and
therefore also a subalgebra isomorphic to A. We conclude that a lifting exists.

2) Now, let A be an arbitrary separable algebra with R? = 0. Choose
a basis {aj,as,...,a,} of the algebra A such that {a;,@s,...,am}, where
a; = m(a;), forms a basis of the quotient a.lgeb1a A, and {am+1,am+2,---,an}
a basis of the radical of A. Denote by {ak;} the structure constants of the

algebra A. In other words, a;a; = z a "5 Qk and thus @;a; = E 01 50k -
k—

Being a linear transformation, a hftlng e is determined by the images of basis
n

elements. The condition 7& = 1 means that €(@;) has the form a;+ ), zija;,

j=m+1
where z;; € K. Furthermore, ¢ is a homomorphism if and only if e(a@;a;) =
e(@i)e(@;). However,

m

(@) = ¢(Yabar) = Yok (ot 3 wuete) =

k=1 k=1 I=m+1

n

m
4
0;ae + E a”w“ag,
1 k=1f=m+1

n n

e(@)e(@) = (ai+ Y wuwar)(aj+ D wywar) =

k=m+1 k=m+1

=E ,Jae+ Z wjka,,ae+ Z 1Lak1a[

=1 k,l=m+1 kl=m+1

I
Ma

—~

Here we have used the fact that products of elements from the radical
are zero and that a product of an arbitrary element and an element from the
radical belongs to the radical. Comparing the coefficients of the basis vectors
ag , we obtain a system of linear equations in xx¢:

Ea”:ﬂu—a,,-l- g abTie + E ofTiks 47 =1,2,...,m;

k=m+41 k=m+1
b=m+1,m+2,...,n

Hence, in this case a lifting exists if and only if the system of linear equa-
tions has a solution. Since the coefficients of the equations are the structure
constants, they do not change under ground field extensions. However, if L
is a splitting field for the algebra A, then Ay is a split semisimple algebra
and thus, in view of 1), there is a lifting A — Ap. Therefore our system
of linear equations (with coefficients from the field K') has a solution in the
field L. Here we may apply the following simple lemma whose proof follows
immediately from the Kronecker-Capelli theorem.
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Lemma 6.2.2. If a system of linear equations with coefficients from a field
K has a solution in an extension of the field, then it has a solution in K.

In this way, the fact that there is a lifting over L implies that there is a
lifting for our original algebra (in case that R? = 0).

3) Now, the general case can easily be handled by induction on the dimen-
sion of the radical.

Let R? # 0 and B = A/R?. According to the previous result, there is a
lifting £ : A — B. Denote by A’ the inverse image of Im¢& in the algebra A.
Then A' D R? and A'/R? ~ Imé ~ A is a semisimple algebra. By Proposi-
tion 3.1.13, it follows that R? = rad A'. Since dimR? < dimR, we apply the
induction hypothesis to the algebra A’ and obtain a lifting ¢ : A — A'. But
then ¢ is also a lifting of A into A.

We precede the proof of conjugacy by the following theorem which gener-
alizes Theorem 4.4.4 (“dual” to the Skolem-Noether theorem). This result is
of an independent interest.

Theorem 6.2.3. If f and g are homomorphisms of a central simple algebra
B into an algebra A, then there is an invertible element a in A such that
g(b) = af(b)a~?! for allb € B.

Corollary 6.2.4. Two isomorphic central simple subalgebras B and B' of an
algebra A are conjugate. Moreover, every isomorphism g : B = B' extends to
an inner automorphism of the algebra A, i. e. it satisfies g(b) = aba™1, where
a is an invertible element of A.

In order to give a proof, it is sufficient, as in the Skolem-Noether theorem,
to establish an isomorphism of B-A-bimodules A and jA (see Sect. 4.1, Ex-
ample 2). Both of them, as right A-modules, coincide with the regular module.
The statement of the theorem is thus reduced to the following lemma.

Lemma 6.2.5. Let A be an algebra, B a central simple algebra and M and
N two B-A-bimodules. If M and N are isomorphic as A-modules, then they
are 1isomorphic as B-A-bimodules.

Proof. Let L be a splitting field for the algebra B. Since (AL)®L(B}) ~
(A ® B°)L, it is sufficient, in view of Lemma 5.5.1, to prove that if Mp
and Ny, are isomorphic as Ar-modules, then they are isomorphic as Br-Ap-
bimodules. Hence, we may assume from the beginning that B = M,(K'). Then
AQ B° ~ M,(A) and we need to establish that two M,(A)-modules M and
N which are isomorphic as A-modules are also isomorphic as My (A)-modules.

Write M; = Me;; . Clearly, M; is an A-submodule of M and M = & M;.
i=1
Moreover, M;e;; C M; and multiplications by e;; and ej; are mutually inverse

A-homomorphisms. Consequently, M; ~ M; and M ~ nM; as A-modules. If
M and N are isomorphic as A-modules, then by the Krull-Schmidt theorem,



110 6. Separable Algebras

so are M, and Ni. Let ¢ be such an isomorphism. Note that every element
z € M has a unique form = = 1 + zz€12 + ... + Tne1n, Where z; € M.
Define the map ¢ : M — N by

B(2) = p(31) + @)1z + - + P(Tn)ern

It is easy to show that 1 is a homomorphism of M,(A)-modules and that,
since ¢ is one-to-one, % is also a one-to-one correspondence, as was to be
shown. a

Now we return to the proof of the Wedderburn-Malcev theorem. Let € and

n be two liftings of A into A. We need to find an element a =1+ 7, r € R,
such that ae(z)a™! =n(z), i.e. ag(z) = n(z)a, for all z € A. Again, choosing
bases in A and rad A, we can write r with “indeterminate coefficients” r =

n

>~ =z;a; and turn the equality into a system of linear equations with respect
i=m+1
to z;. In view of Lemma 6.2.2, it suffices to find a solution of this system, or
equivalently to prove unipotent conjugacy of € and 7, in an extension L of the
field K. Of course, we should take a splitting field L and reduce the problem
to the case of split algebras.

Hence, we can assume that A = M, (K) x Mp,(K) x ... x My (K).
Denote by e . the matrix units of the kth component of the algebra A,
k=1,2,...,81 ] 1,2, ..,nk, and put ef; = (e A = n(&f;). Then
E Z ek = E E * are two decompositions of the identity of the
k=1i=1 k——l =1
algebra A with e, kA. By Theorem 3.5.1, there is an invertible element a
in the algebra A such that % = aeka? for all k=1, 2 ,850=1,2,...,nk.

Applying the prOJect1on 7r, we obtam ek = aeka!, when & = m(a), and
thus @ = 3 ;&% with ai # 0 for all 4,k. Put b = Y aire. Then b is
ik ik
an invertible element commuting with all ef. and thus ab™! is a unipotent
element with fk = (ab ek (ab™ 1) . Hence, in what follows, we may assume
that e¥, = fE for all 4, k.

) )
Writeer = 3. e¥ . Then & = ) &k is a central idempotent of the quotient
i=1 ]

=1
algebra A. Taking into account that ei = ef,ef]ef] and i = ek ,"]e;‘] , L.e.

that e - and f" lie in Ay = erAer, we can see that by restricting € and 7 to
A = eLAek, we obtain homomorphisms €y, : Ap — Ag and T A — A .
Since Aj is a central simple algebra, then by Theorem 6.2.3, there is an
invertible element a; € Aj such that ni(z) = akek( Jai! for all z € Ag.
Applying the projection 7 again, we get z = arza, for all z € Ay ; where
ar = m(ag). Thus ax = arer for some ar € K. Replacing a; by o aL , we
may assume that a; = ri + e, where ri; € R. But then, taking a = Z ak,
k=1
we get that n(z) = ae(z)a™!, where @ = 1+ r with » € R. The proof is
completed. O
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6.3 Trace, Norm, Discriminant

Let T be a representation of an algebra A. Consider the characteristic poly-
nomial det (zE — T(a)) of a matrix T(a). Since characteristic polynomials of
similar matrices coincide, it is determined by the corresponding A-module M.
This polynomial is called the characteristic polynomial of the element a with
respect to the module M (or representation T') and is denoted by Xas,.(z).

Similarly, the trace and the norm of an element a with respect to a module
M are, respectively, the trace and the determinant of a matrix T'(a). The trace
and norm are denoted, respectively, by Tra(a) and Nps(a).

It follows immediately from the definition that the trace is a linear map
A — K such that

Try(a + b) = Try(a) + Trp(b); Trm(ea) = aTry(a), o € K.

In addition, Tra(ab) = Trar(ba), Na(ab) = Nps(a)Na(b) and, for arbi-
trary o € K,

Xma(2) = (z —a)% Try(a)=de; Ny(a)=al,

where d = [M : K].
The following simple statement reduces computation of characteristic
polynomials, traces and norms to the case of simple modules.

Proposition 6.3.1 Let M = My D M; D ... D M, = 0 be a composition
series of the module M and U; = M;/M;4, its simple factors. Then, for an
element a € A,

XM,a(z) = qug,a(m); Try(a) = ZTI”U;(G); Num(a) = HNUf(a)-

Proof. This follows immediately from the fact that a representation 7' corre-
sponding to a module M can be brought to the form

Tl(a) O

T(a) = Ta(a)

* Ts(a)
where T; is a representation corresponding to the module U;. 0

Corollary 6.3.2. If an element a belongs to rad A, then Xpq.(z) = z9,
Trp(a) = Ny(a) =0, where d = [M : K].

Indeed, if U is a simple module, then ua = 0 for all u € U, i.e. a is mapped
in the corresponding representation to the zero matrix.
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Proposition 6.3.3. For every extension L of a field K,
Xy a01(T) = Xma(z), Tray(a®1)=Try(a), Npp(a®1) = Npy(a).

Proof. If {my,ma,...,mq} isa K-basisof M, then {m;®1,m,®1,...,ms®1}
is an L-basis of M and the matrix of the elements a and a ® 1 with respect
to these bases is the same. O

As we shall see in the sequel, sometimes it is convenient to consider to-
gether with representations of an algebra A over a ground field K also its
representations over an extension L of the field K, or, equivalently, represen-
tations of the L-algebra Ay, i.e. Ap-modules. We shall identify an element
a € A with the element a®1 € Ap and write X p,0(z), Trar(a), Ny (a) instead
of Xar,e01(z), Trm(a® 1), Npys(a ® 1) for an Ar-module M.

In general, the coefficients of Xps,.(z), and in particular, Tras(a), and
Nar(a) are elements of the field L. If they belong to K for every element
a € A, we call the module M proper (using this ad hoc term only in the
present section).

A trace form on an algebra A corresponding to an A-module M is the
function Bps(a,b) = Trpr(ad) with a,b € A. In view of the properties of the
trace, By is a symmetric bilinear form on the space A. The discriminant of
the form By, i.e. the element

Try(era1) Trp(aras) ... Try(aian)
Ay = Trym(aza1) Try(azaz) ... Tru(azan) ,
Try(anar) Try(anaz) ... Tru(anan)
where {aj,a2,...,a,} is a basis of A, is called the discriminant of the mod-

ule M. Clearly, Aps is defined up to a square of a non-zero element of K. If the
form is non-degenerate, i. e. if Aps # 0, we call the module M non-degenerate.

The preceding definitions allow us to formulate the following criterion of
separability.

Theorem 6.3.4. A K -algebra A is separable if and only if there ezists a non-
degenerate Ar-module M for some extension L of the field K. Moreover, the
field L can be chosen separable and the module M proper.

Proof. If a € rad A, then, by Corollary 6.3.2, By(a,b) = Trar(ab) = 0 for
every b € A, and the form By is degenerate. Hence, if M is a non-degenerate
Ap-module, then the algebra Ay, is semisimple. Now, Proposition 6.3.3 implies
that the discriminant of the Ap-module M is equal to Aps for any extension
F of the field L. This means that M is a non-degenerate Ap-module and the
algebra A is semisimple. Hence Af and, by Corollary 6.1.7, also the algebra
A is separable.

Conversely, let the algebra A be separable and L be its splitting field.
Then A ~ A; X Az x ... X Ay, where Ay = M,,(L). Let U be a simple
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Ap-module. Then, for every matrix ar € Ai, the polynomial Xy, q,(z) is
a characteristic polynomial of the matrix a;. Denote by M the direct sum
U1 Uz @... 8 U,. By Proposition 6.3.3, the polynomial X s 3(z), where b =
(a1,a2,...,as) belongs to Ay x Az x...x A,, is a product of the characteristic

S
polynomials of the matrices ax. In particular, Trps(b) = 2 trar and Nps(b) =

H det ax . Considering the basis of Ay, consisting of the matrix units ef ; (here,
k_..

k=1,2,...,s indicates the component index and i,j = 1,2,...,n), we have,
tr1v1ally, TrM(e") =1 and Trp(ef;) = 0 for i # j. From here,

1 fk=4i=tandj=r
T ’ ’
rm (eu rt) { 0 otherwise.

Thus, there is precisely one 1 in every row and every column of the deter-
minant Aps and all other entries are 0. We conclude that Ay = £1 # 0 and
the module M is non-degenerate.

The fact that L can be chosen separable follows from Corollary 6.1.3. We
are going to show that M is proper, i.e. that the coefficients of Xps,4(z) be-
long to the field K for every a € A. First, observe that Xps .(z) does not
depend on the choice of the splitting field L: This is a consequence of Propo-
sition 6.3.3 for every field containing L; if F is any other splitting field, then
one can always construct a field containing both F' and L. Therefore, in view
of Proposition 5.4.5, L can be assumed normal. Write G = G(L/K).

The group G acts on the algebra A, by the formula o(a ® A\) = a ® a()),
where a € A, A € L. We are going to show that for an element b € Ay,

Xm,o)(z) = 0 (Xmp(2)), (6.3.1)

where o (f(z)) denotes the polynomial whose coefficients are o-images of the
coefficients of f(z). Once this formula is established, we obtain, for arbitrary
a € A, that 0 (Xpm,a(2)) = Xag,0(a)(%) = Xp,a(z) and therefore, by Theo-
rem 5.4.4, all coefficients of X7,4(z) lie in the field K; thus, M is a proper
module.

In order to establish (6.3.1), note first of all, that if b = (a1, az,...,a,) €
Ap, then Xpr5(z) = Xprpr(2), where ¥’ = (ay,,a4,,...,a,) for any permuta-
tion (t1,%2,...,t5) of (1,2,...,5). Since Ap = o(A;) x 0(A2) X ... x o(4,), it
follows by Theorem 2.5.2 that o(Ax) = Ay, for a permutation (t1,12,...,1,).
In particular, ny = n;,. Denote by o} the restriction of ¢ to A and con-
sider the isomorphism &y, : AL — Ay, mapping the matrix (A;;) to the matrix
(o (Aij))- The composition &} ' oy is an automorphism of the algebra A; which
is identwal on its center L. By the Skolem-Noether theorem (or, rather, Corol—
lary 4.4.3) this is an inner automorphism and thus 5; 'ox(a) = urauy® for
some ug € Ag. Therefore o4(a) = vidi(a)v; ", where vp = G4(ur) and o has,
up to a permutation of components, the form

(a1,02,...,as) — (v151(a1 o7}, v252(az)vy L, . . ., 0555 (as)vyt).
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Now, the characteristic polynomial of the matrix 6(ax) and therefore
also of the matrix vi&x(ax)v; ! is obviously obtained by applying o to the
coefficients of the characteristic polynomial of the matrix a, and the required
formula (6.3.1) follows. The proof of the theorem is now complete. 0

Let us remark that making use of an extension of the ground field in
Theorem 6.3.5 is essential. In Exercise 9, an example of a separable algebra A is
given such that every A-module is degenerate. If the field K is of characteristic
0 or if the algebra A is commutative, then a non-degenerate A-module always
exists (see Exercise 6 and Example 1 below).

The polynomial Xz 4(z), where M is the module constructed above, is
called the principal polynomial of the element a € A and is denoted by P,(z).
The trace Trps(a) and the norm Njs(a) are called, respectively, the principal
trace and the principal norm of the element a and are denoted by Tr(a) and
N(a). If there is a need to specify the algebra, one writes Py o(z), Tra/k(a)
and N4,k (a). The bilinear from B(a, b) = Tr(ab) is called the principal trace
form and its discriminant A(A/K) the discriminant of the separable algebra A
(recall that it is determined up to the square of a non-zero element of K). In
the course of the proof of Theorem 6.2.4, we have established the following
fact.

Theorem 6.3.5. The coefficients of a principal polynomial, and in particular
the principal trace and the principal norm, belong to K. The principal trace
form of a separable algebra is always non-degenerate, i.e. A(A/K) # 0.

In addition, since M is a proper module and every matrix is a root of its
characteristic polynomial, we get the following proposition.

Proposition 6.3.6. Every element of a separable algebra 1is a root of its prin-
cipal polynomial.

Furthermore, let us remark that the structure of M and the formula
(A® F)®r L ~ A® Lfor L D F,immediately imply the following statement.

Proposition 6.3.7. For every element a € A, and every eztension F of K,

Pap/Fa(®) = Pask,a(2), Trap/r(a) =Tra x(a), Nag/r(a)=Ng/k(a).

Now, we present two examples of computation of the principal polynomial.

Ezamples. 1. Let F' be a separable extension of a field K. Then, for any
splitting field L, F®L ~ L™, where n = [F : K], and the principal polynomial
coincides with the characteristic polynomial of the regular module. Clearly,
this holds also for any commutative separable algebra A.

2. Let A be a central simple algebra of dimension d?, and L its maximal
subfield. Then A ® L ~ My(L) and P,(z) is the characteristic polynomial of
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the matrix corresponding to the element @ ® 1. If X,(z) is the characteristic
polynomial of the regular module, then X,(z) = (P.(z))¢ because the regular
Ar-module s a direct sum of d simple modules. In particular, N 4(a) = (N(a))?
and Tr(a) = dTr(a).

Exercises to Chapter 6

10.

. Given two modules M, N over an algebra A and an extension L of the ground

field, prove that Homa, (ML, N.) ~ Homa(M,N) ® L. (Hint: One may use
the theorem on the structure of solutions of a homogeneous system of linear
equations.)

. Call an A-module M separable if the Ar-module My, is semisimple for every L.

Prove that M is separable if and only if M is semisimple and the algebra E4(M)
is separable.

. Find necessary and sufficient conditions in order that

a) the algebra Ap be simple for any L;
b) the Ar-module My be simple for any L (such a module is called absolutely
simple, and the corresponding representation absolutely irreducible).

. Let F be a field of characteristic 2, I = F(t) the field of rational functions

over F, A = K[z]/(z* —¢*). Find R = rad A and A/R. Verify that A4 has
no subalgebra isomorphic to A/R. Construct a similar example for a field of
arbitrary characteristic p > 0.

Let F and K be defined as in the previous exercise, L = K[z]/(z* — t) and 4
be the L-algebra with a basis {1,7}, 7? = 0. Considering A as a K-algebra,
establish that A/rad A ~ L and find two distinct subalgebras of A isomorphic to
L (since A is commutative, these subalgebras are not conjugate in A). Construct
a similar example for a field of arbitrary characteristic p > 0.

. Prove that an algebra A over a field of characteristic 0 is semisimple if and only

if its regular A-module is non-degenerate.

. Using the result of the preceding exercise, deduce that there is a polynomial

F(mfj) with integral coefficients in n® variables a::‘], ,5,k = 1,2,...,n, such

that an algebra A over a field of characteristic 0 with structure constants 'yfj is
semisimple if and only if F(‘y,"l) #0.

. Let K be a field of characteristic p and A = M,(K). Verify that the regular

A-module is degenerate. Carry over this result to an arbitrary central simple
K-algebra of dimension p®.

If D is a central division algebra of dimension p® over a field of characteristic p,
prove that every D-module is degenerate (an example of such a division algebra
is in Exercise 27 to Chap. 5). Thus, in Theorem 6.3.4 it is, indeed, necessary to
consider Az-modules and not only A-modules.

Let A be an algebra over a field K with a basis {a1,as,...,a,} and structure
constants 'y,k] Consider the algebra A over the field FF = K(t1,t2,...,tn) of
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11.

12.

13.

14.
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rational fl}znctions in n variables with the same basis and structure constants.!!

Let @ = E t;a; and P(z,t1,12,...,t,) = ma(z) be the minimal polynomial of
i=1

the element @ (obviously, this is a polynomial in n + 1 variables z,t1,%2,...,t5).

n
If a = ) aja; is an arbitrary element of the algebra A, then the polyno-

i=1
mial Pao(z) = P(z,a1,a2,...,a,) is called the principal polynomial of the
element a.
a) Prove that P4 . does not depend on the choice of a basis of the algebra A.
b) Verify that Pa; ,ag1(z) = Pa,.(z) for every extension L of the field K.
c) Establish that for a separable algebra A, the present definition of a principal
polynomial coincides with the one given in Sect. 6.3.

Keep the notation and definitions of the previous exercise. If Pa,, = 2™ +

frz™ ' + ...+ Bm, Bi € K, put Trasx(a) = —p1 and Ny k(a) = (-1)™Bm,

and call them the principal trace and the principal norm, respectively.

a) Verify that the principal trace is a linear form on the space A and that
TI‘A/K(ab) = TI‘A/K(ba) and NA/K(ab) = NA/K(a)NA/K(b).

b) Prove that an algebra A is separable if and only if the bilinear form
Tra,k(ab) on the space A is non-degenerate.

Let L be an extension of a field K. If a is an element of an L-algebra A, prove
that
Pask,a(2) = Npoy/ k() (PA/L,a(w)) s Trasx(a) =Tr/k (Trase(a)),
Na/x(a) =Np/x (Najz(a)).
Prove that if an ideal I of an algebra A has a basis consisting of nilpotent

elements, then I C rad A. (Hint: Use the fact that the trace of a nilpotent
matrix is 0.)

Prove that if A/rad A is separable, then rad (A® B) =rad A® B+ A ® rad B.

1We can define the tensor product of infinite dimensional algebras and see easily

that A= AQ F.



7. Representations of Finite Groups

In this chapter we shall apply the general theory of semisimple algebras and
their representations to obtain basic results of the classical theory of repre-
sentations of finite groups.

7.1 Maschke’s Theorem

A representation of a group G over a field K is a homomorphism of this
group into the group GL(V') of all invertible linear transformations of a vector
space V over the field K. In other words, a representation T assigns to every
element ¢ € G an invertible linear operator T(g) € GL(V) in such a way
that T(gh) = T(g9)T(R) for all g, € G. As in the case of representations of
algebras, the concepts of similarity, reducibility, indecomposability, etc. are
defined for group representations. In fact, the study of representations of a
group G is equivalent to the study of representations of its group algebra (see
Sect. 1.1, Example 6).

Recall that a basis of the group algebra K'G consists of the elements of the
group G with multiplication given by the group product. If T': KG — E(V)
is a representation of the group algebra and ¢ € G, then T(¢)T(¢7!) =
T(gg~') = T(1) = 1. Therefore T is an invertible transformation and thus,
restricting T to G, we get a representation of the group G. Conversely, let
T : G — GL(V) be a representation of the group G. We extend T to the

algebra KG “by linearity” defining T agzg)= ay,T(g). Evidently, we
€G ! €G !
9 9

obtain a representation T : KG — E(V) whose restriction to G coincides
with the original representation. Thus, group representations and group alge-
bra representations are essentially the same.

In this chapter, all groups under consideration will be finite. The following
remarkable result, known as Maschke’s theorem, plays a decisive role in the
theory of representations of finite groups.

Theorem 7.1.1. If K is a field whose characteristic does not divide the order
of the group G, then the group algebra KG is separable.

Proof. In view of Theorem 6.3.4, it is sufficient to show that there is a non-
degenerate K G-module. In fact, in our situation, the regular K G-module is
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non-degenerate. Indeed, consider the basis {g1,g2,.-.,gn} of the algebra KG
consisting of all elements of the group G (the order of G equals n). If g #
1, then g;g # g; for all ¢ = 1,2,...,n and therefore Tr(g) = 0 (here, Tr
denotes the trace of the regular representation). On the other hand, Tr(1) =
[KG K] = n. Hence, Tr(gig;) = 0 for g; # g; ! and Tr(gig;) = n for g; =
g] . Consequently, each row and each column of the discriminant A of the
regular representation has exactly one non-zero element (note that n = nl # 0
since K is of characteristic 0 or prime to n). This implies that A # 0 (in fact,
A = +n") and the algebra KG is separable. O

Corollary 7.1.2. If K is a field whose characteristic does not divide the order
of the group G, then every representation of the group G over the field K is
completely reducible.

It turns out that a converse to Maschke’s theorem holds, as well.

Theorem 7.1.3. If K is a field whose characteristic divides the order of the
group G, then the algebra KG is not semisimple.

Proof. Consider the element s = 3 z of the algebra KG. Obviously, gs =
z€G
sg = s for every g € G. Therefore s belongs to the center of the algebra KG.

On the other hand, s> = 3 zs = ns = 0 (since the order of G is divisible by
ze€G

the characteristic of K'). According to Corollary 2.2.8, the algebra K G is not

semisimple. ]

As a consequence, the theory of group representations splits effectively into
two fundamentally different theories: classical (when the field characteristic
does not divide the group order) and modular (when the field characteristic
divides the group order). In this chapter (with the exception of a few exercises)
we shall deal only with the classical representation theory. Therefore, we have
a standing assumption that K is a field whose characteristic does not divide
the order of the group G.

7.2 Number and Dimensions of Irreducible
Representations

Maschke’s theorem and the theory of semisimple algebras and their represen-
tations yield relatively easily the following important results on the number
and dimensions of irreducible representations.

Theorem 7.2.1. If dy,ds,...,d, are dimensions of all (pairwise non-isomor-
phic) representations of the group G over an algebraically closed field K, then
@ +di+...+d2=n, where n = (G:1).
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Proof. By the Wedderbum—Artin theorem (or rather, by Corollary 2.4.4) and
Theorem 2.6.2, KG ~ H My, (K), where dy,ds,...,ds are the dimensions of
all irreducible representatlons of the algebra KG, and thus n = [KG : K] =

E dz. o
=1

As before, let the field K be algebraically closed. Then the center of the
algebra K G is, by Corollary 2.4.2, isomorphic to K*, where s is the number
of simple components of K G, or equivalently, the number of non-isomorphic
irreducible representations. Hence, the number of irreducible representations
and the dimension of the center of the algebra K G are equal. But an element
a= Y, a,;z belongs to the center of KG if and only if ga = ag, i.e. gag™! = a,

z€G

for every g € G. Since gag™?

= Y a,(grg™!), this means that the coefficients
z€G

of £ and gzg™! in the element a are equal.

Recall that the elements z and gzg™? are called conjugate in the group G.

The group G is partitioned into pairwise disjoint conjugacy classes Ci,Cs,

.., Cs. It follows from the above argument that the elements ¢; = Z z,

z€C;

1= 1,2,...,s, form a basis of the center of the group algebra KG. We can

therefore formulate the following theorem.

-1

Theorem 7.2.2. The number of irreducible representations of a finite group
G over an algebraically closed field K is equal to the number of conjugacy
classes of the group G.

Corollary 7.2.3. A group G is abelian if and only if all irreducible represen-
tations of G over an algebraically closed field are one-dimensional.

Indeed, it is sufficient to remark that a group is abelian if and only if
every conjugacy class consists of a single element and thus that the number
of irreducible representations equals, by Theorem 7.2.2, the group order. Ap-
plying Theorem 7.2.1, we can see immediately that this is possible only when
all irreducible representations are one-dimensional.

Corollary 7.2.4. If G and H are abelian groups of the same order and K is an
algebraically closed field, then the group algebras KG and KH are isomorphic.
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7.3 Characters

Let T be a representation of a group G over a field K and M the corresponding
K G-module. Then the trace Trps(a) with respect to the module M is defined
for every element a € KG (Sect. 6.3); it is the trace of the matrix T(a) (in
any basis). In particular, for every element z € G, we get the field element
x(z) = Trm(z). The function x : G — K is called the character of the
representation T'. If T is irreducible, then y is called an irreducible character.
The character of the regular representation is called the regular character and
is denoted by xreg -

Proposition 7.3.1.

ve@) = {§ TrZZ

The proof is obvious.

Proposition 7.3.2. For every character, x(gzg™!) = x(z). In other words,
a character is constant on each conjugacy class.

Proof. For every representation T, T(gzg~') = T(¢9)T(z)T(g9)~!, and the
similar matrices T(z) and T(gzg~!) have the same trace. 0

Observe also that, as an immediate consequence of Corollary 2.6.3, we get
the following theorem.

Theorem 7.3.3. Let K be a field of characteristic 0. Then every representa-
tion i3 determined uniquely by its character, 1. e. equality of characters implies
stmilarity of representations.

Now, let the field K be algebraically closed and x1,X2,--.,xs be all the
irreducible characters of the group G over the field K. Denote by yxi; the
element x(g;), where g; € C; (Cy,C4,...,C; are the conjugacy classes of the
group G). The square matrix X = (yx;;) is called the chamcter table of the

group G over the field K. Let us remark that KG ~ GB d; M; , where M; is
the module of the ¢th irreducible representation and d = [M; : KJ; hence,
Xreg = Z} dix; .

As lv;:: have already pointed out, the elements ¢; = Y, z,7=1,2,...5,

IEC,‘
form a basis of the center C of the group algebra K'G. On the other hand,
C ~ K* and therefore, if 1 = ¢; + €5 +...+ e, is a decomposition of the iden-
tity of the algebra C, then {e1,e2,...,€e,} is also a basis of C. Consequently,

8
there are elements a;; and §;; in the field K such that ¢; = > ajje; and
i=1
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S
ei = Y, Bijcj; and thus the matrices A = (a;;) and B = (f;;) are reciprocal.
=1
It turns out that the coefficients a;; and f;; are closely related to the character
table.

Proposition 7.3.4. Denote by d; the dimension of the irreducible represen-
tation with character x; and hj the number of elements in the class C;. Then

h; d; _
aij = = Xji, Bij=—xi(g;"), where g; €Cj.
7

Proof. Observe that the element e; acts on the jth irreducible representation as
identity, while the elements e, (k # j) act on it trivially. Therefore xj(er) =0
for k # j and xj(e;) = d;. From here,

8 8
xile) = x; (D amer) = D awxler) = dja.
k=1 k=1

On the other hand, x;(c;) = hix;; and the formula for a;; follows.
£

In order to compute f;;, we use the fact that X = > dixi. Ob-
i=1

serve that xreg(crg) = 0 if g7 ! ¢ Cr and xreg(crg) = n if g~! € C} (this

follows from Corollary 7.3.1). Therefore, if g; € C;, then Xreg(eigj_l) =

xreg(z ﬂikckgj_l) = nf;j . On the other hand, x,eg(eigj’l) =3 dek(e,'gj"l)
k=1 k=1

= cliXi(g]TI) because Xk(eigj_l) =0 for k # ¢ and Xi(eigj_l) = X,'(gj"l). The
formula for §;; follows. O

Taking into account that the matrices A and B are reciprocal, we obtain
immediately the following “orthogonality relations” for characters.

Theorem 7.3.5.

% > hixi(gr)xilgrt) = {0 fori#j,
k=1

1 fori=j;
1¢ _ 0 fori# 7,
;;Xk(gi))(k(gj = {1/,“ forz-ij»,

Corollary 7.3.6. A representation T of a group G over an algebraically closed
field of characteristic 0 is irreducible if and only if its character x satisfies

1< )
m > hix(gr)x(grt) = 1.
k=1
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Proof. Decompose the representation T into a direct sum of irreducible repre-
S

sentations. Correspondingly, the character x can be expressed as x = ), m;z;,
=1
where x1, X2, ..., Xs are irreducible characters. But then

1 8 _ 1 S _ 8
-~ > hex(gr)x(ort) = - S mim; Y hexilgr)xs(ort) = »_mi,
k=1 i,J k=1 =1

and this sum is equal to 1 if and only if x = x; for some ¢, i.e., in view of
Theorem 7.3.3, if T is an irreducible representation. O

If K = C is the field of complex numbers, then the orthogonality relations
can be given a slightly different form. To that end, we introduce the following
lemma.

Lemma 7.3.7. If x is the character of a d-dimensional representation of a
group G over the field of complez numbers, then, for every g € G, x(g) 13
a sum of d n-th roots of unity and x(¢7!) = x(g), where as usual, Z 1s the
complez conjugate of the number z.

Proof. Since g™ = e, we get (T(g))" = F for every element g € G. Since the
polynomial £® — 1 has no multiple roots, it follows that the matrix T(g) is
similar to the diagonal matrix

€ O

T(g) ~ .. , wheree] =1.

0 a

T(g~') ~

This results in
X =er et ey =T+ E 4. +Ea = x(9).

a

In particular, x,-(gj_l) = X;; and the orthogonality relations of Theo-
rem 7.3.5 take the form
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1g _ 0 foris#j,
Eghkxzkxjk—{l for i = j;

li"_“‘ 0  fori#j,
n & XkiXkj = 1/h; fori=7j.

7.4 Algebraic Integers

In this section we shall need some properties of algebraic integers. Recall
that an algebraic integer is, by definition, a (complex) root of an equation
™ 4+ a1z™ ! 4+ ... 4+ @, = 0 with integral coefficients a; .

Proposition 7.4.1. A rational number which is an algebraic integer is an
integer.

Proof. Let z be a root of an equation z™ + a;z™" ! + ... + a,, = 0 with
integers a; and z = p/q with relatively prime integers p and ¢ > 1. Passing to
a common denominator, we get p™ = —a1qp™ ! — az¢?p™ % — ... — amq™.
This is impossible because p and g are relatively prime. a

The following lemma provides a convenient criterion for a number z to be
an algebraic integer.

Lemma 7.4.2. In order that z be an algebraic integer, it i3 necessary and suffi-
t
cient that there exist complex numbers y1,ys,...,y: such that zy; = Y ajy;,
Jj=1

where all a;; are integers and not all y; are zero.

Proof. If z is a root of an integral equation 2™ + a;z™ ! + ...+ a;, = 0, then

we may take, trivially, y1y = 1, yo = 2, ..., ym = 2™ L.
Conversely, let y1,y2,...,y: have the required property. Denote by A the
matrix (ai;) and by Y the column vector whose coordinates are y1,yz2,...,¥:.

Then (zE — A)Y = 0 and thus det (2E — A) = 0. However, the determinant
det (2E—A) = 2z +a12'"1+.. .+ a;, where a; are integral linear combinations
of products of elements of the matrix A and thus integers. We conclude that
z is an algebraic integer. O

Corollary 7.4.3. The sum and product of algebraic integers are algebraic
wntegers. In other words, the algebraic integers form a ring.

t
Proof. Let y1,ys,...,y: be complex numbers such that zy; = ) aijy; (with
j=1

integers a;;) and y},y5,-.., Y’

T
such that 2'y! = a’.y' (with integers al,).
r Yi ) ijdj g ij
]:
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Then one can see easily that the numbers {y,—y;- [ 7 =1,2,....4 J =
1,2,...,r} satisfy similar conditions for the numbers z + z' and zz'. a

Since the roots of unity are obviously algebraic integers, we obtain the
following corollary of Lemma 7.3.7.

Corollary 7.4.4. If x is a character of a group G over the field of complex
numbers, then x(z) is an algebraic integer for every z € G.

We shall now employ the notation of the previous section. In particular,
let X = (xij) be the character table of a group G over the field of complex
numbers.

Theorem 7.4.5. All numbers a;; = %in are algebraic integers.
J
Proof. Note that, for all ¢ and j, c;c; is an element of the center of the algebra

CG. On the other hand, c;c; is an integral linear combination of the elements of
the group G. It follows that ¢;c; = >~ vijrck , where ¥;jx are integers. Besides,
k

CiC; = (E :O‘iP%) (§ :O‘jqeq) = E :aipajpep
P q P

and cx = ) agpep; thus cicj = Y vijkakpep and aipajp = . Yijkakp . Writing
P k,p k

z = aip, Yj = ajp (for a fixed p), we can apply Lemma 7.4.2 and conclude

that a;p is an algebraic integer. o

Corollary 7.4.6. The dimensions d; of irreducible complez representations
divide the order of the group.

Proof. Rewrite the list of the orthogonal relations of Theorem 7.3.5 to the
form

“< hrXik 1 n
k=1 di Xl(gk )_ di.

: ik - . n .
Since kXik a; and x;(g7!) are algebraic integers, also the number — is
d k 8 g 7
t

1
an algebraic integer. As a rational number, it must be an integer, as required.
0

7.5 Tensor Products of Representations

In addition to usual module theoretical constructions, one can define yet an-

other operation for group representations, viz. the tensor (or Kronecker) prod-
uct.
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Let M and N be two modules over the group algebra KG. Considered as
vector spaces, their tensor product can be endowed with K G-module structure
by defining (m ® n)g = mg ® ng for every element ¢ € G. The module
constructed in this way is called the tensor product of the KG-modules M
and N and the respective representation of the group G the tensor product of
the representations corresponding to the modules M and N.

We are going to compute the character of a tensor product of represen-
tations. Let T be a representation corresponding to a module M which, in a
basis {u1,u2,...,un}, has the form

11(9)  p12(9) - P1m(9)
T(g) = w21(9)  @22(9) ... @am(g) ’
em1(9) Pm2(9) - Pmm(9)

and S a representation corresponding to a module N which, in a basis
{v1,v2,...,v,}, has the form

Yi1(9) i12(9) ... 1al(g)
S(g) = Y21(9) a2(g) ... 2n(yg)

Pn1(g) ¢n2(g) cor Pan(g)

The tensor products u; ®vj, 1 =1,2,...,m; 7 =1,2,...,n, form a basis
of M @ N, and
(4 ®@vj)g = uig @ vjg = (Z soz‘k(g)Uk) ® (Z 1/);‘((9)0() =
k ¢
=" wilg)bje(g)(ur ®ve).
k.

Thus, the elements of the matrix (T'® S)(g) corresponding to ¢ in this
representation'? are all possible products of the elements of T(g) and S(g).
In particular,

Te(T®S)9) = ) > piila)bsi(g) = (Tr T(g)) (Tr S(g)) -
i=1 j=1
We have just proved the following proposition.

Proposition 7.5.1. The character of a tensor product of two representations
18 equal to the product of the characters of these representations.

2 This matrix is called the Kronecker or tensor product of the matrices T(g) and

S(g) and is denoted by T'(g) ® S(g).
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Corollary 7.5.2. Let x1, X2, ., Xs be the irreducible characters of a group G.

k]
Then there ezist natural numbers nyji such that x;x; = > nijexk for any i, j.
k=1

Proof. Let My,M,,..., M, be the simple K(G)-modules. Then M; ® M; =~
? nijr My for some natural numbers n;;; and from here, everything follows.

o

Now, let G = G; x G4. Every representation T of one of the factors (say,
of G1) can be considered as a representation of the entire group G if we
set T(g1,92) = T(g1). In particular, if T is a representation of G; and S a
representation of G, we may construct their tensor product 7'® S which is a
representation of the group G and the following theorem holds.

Theorem 7.5.3. Let K be an algebraically closed field. If T is an irreducible
representation of G1 and S an irreducible representation of G2, then the rep-
resentation T ® S is an irreducible representation of G = G; X Gy and every
irreducible representation of the group G 1s obtained this way.

Proof. Let M be the KGj-module and N the KGj-module corresponding
to the representations T and S, respectively. Since K is algebraically closed,
Ekg,(M) = Exg,(N) = K and, by Theorem 2.6.7, the linear map u — ua
(u € M) attached to every @ € KG; defines an epimorphism of the algebra
KG;1 onto E(M).

Choose a basis {u1,uz,...,un} of the module M and consider a non-zero
element z = > u; ®v; , with v; € N, from M @ N. Without loss of generality,

i=1

T
assume that v; # 0. Let a = Y ajg;, a; € K, g; € G be an element of K G,
Jj=1

such that the corresponding endomorphism of M maps u; into a prescribed

element v and all the other us,us,...,uy,, into zero. Then
T m T m
xZaj(gj,l) = ZZaj'uigj Qv = Zum@vi =u®u;.
j=1 i=1 j=1 i=1

Similarly, given v € N, there is an element b € K G such that (u®v;)b = u®u.
Consequently, the submodule generated by the element z is the entire M @ N,
i.e. M ® N is a simple module.

Two elements (g1, g2) and (g}, g4) are conjugate in the group G = G1 x G2
if and only if g1 and g} are conjugate in Gy and g2, g5 are conjugate in Gz:
Therefore, if Cy,Cs,...,Cs are the conjugacy classes of Gy and Dy, Ds, ..., D,
are the conjugacy classes of G, then C; x D;, 1 =1,2,...,s; j=1,2,...,¢,
are the conjugacy classes of G; X G3. In particular, the number of these classes
is st, and therefore, if we show that, for simple modules, the isomorphism
M®N ~ M @N' implies M ~ M' and N ~ N', we can conclude, in view of
Theorem 7.2.2, that every simple K G-module has the form M @ N.



7.5 Tensor Products of Representations 127

Denote by x, x', £ and €' the characters corresponding to the modules M,
M', N and N', respectively. Without loss of generality, let M % M'. Choose a
representative g; in the class C;, f; in the class Dj, and let n; be the number
of elements in G, h; in the class C; and k; in the class D;. Then the number
of elements of G is n3ny and the number of elements in the class C; x D; is
h;k; ; moreover, (gi, f;) is a representative of the class C; x D; . The character
corresponding to M ® N is x£ and the character corresponding to M’ ® N' is
x'¢'. Then

ikix€E(gi F)X'€ (gt f71) =

-1 Z;ziij(gi)f(fj)x'(gsl)g'(f;‘>=

ning

_thXQIX ] Zkff] )— ’

and thus, in view of Theorem 7.3.5 and the fact that x£ and x'é’ are irreducible
characters, x¢ # x'¢’ and hence M @ N 2 M’ ® N'. The proof is completed.
O

Thus, if we know the representations of the groups G; and G2, we can
construct all representations of the direct sum G x G2 .

We shall apply the construction of the tensor product of representations
to prove the following result which strengthens Corollary 7.4.6.

Theorem 7.5.4. Let C be the center of a group G. The dimension of every
irreducible representation of G over the field of complez numbers divides the

indez (G : C).

Proof. Let d be the dimension of an irreducible representation T' and M the
corresponding module.

If g € C, then T(g) commutes with all matrices of the representation 7'
and, by Schur’s lemma, it is scalar: T((g) = A(g)E. Consider the representation
Tr of the group G x G x ... x G given by M @ M ® ... ® M (m times). If
elements g; belong to C, then Tin(g1,92,---,9m) = AMg1)A(g2) ... Mgm)E
Thus, in particular, if g1g2...9m = 1, then T1n(g1,92,-..,9m) = E. Now,
the elements (g1,92,...,9m) with g; € C and ¢1g2...gm = 1 form a normal
subgroup H of G x G x ... x G. Consequently, T}, can be interpreted as a
representation of the quotient group (G x G x ... x G)/H whose order is
n™[c™~! (here n = (G : 1) and ¢ = (C : 1)). Now, by Corollary 7.4.6, the
dimension d™ of the representation Ty, divides n™/c™™ !, i.e. n™/c™~1d™ is
an integer for every m. Denoting by ¢ the rational number n/cd, this means
that cg™ is an integer for every m. This is possible only if ¢ is an integer and
thus d divides n/c, as required. O
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7.6 Burnside’s Theorem

In this paragraph we are going to present an application of the theory of repre-
sentations to establish the existence of normal subgroups and consequently to
prove the non-simplicity and solvability of certain classes of groups. All along
this section, representations are considered over the field of complex numbers.

Let T be an irreducible representation of dimension d of a group G and
x be its character. According to Lemma 7.3.7, the number x(g) is, for every
g € G, asum of d nth roots of unity, where n = (G : 1). Besides, if the matrix
T(g) is not scalar, these roots are distinct and then

Ix(9)| =ler +e2+...+eal <lex| +le2| + ...+ |eq| = 4.

Denote by @ the field of rational numbers, by ¢ a primitive nth root of
unity and L = Q[¢]. Then L is a splitting field of the polynomial 2™ — 1, and
thus, by Theorem 5.4.4, a normal extension of the field Q. Denote by I its
Galois group. Note that for every element o € I" and every root ¢; of 1, o(¢;)
is also a root of 1. In particular, o(x(g)) is also a sum of d roots of unity and
therefore |0(x(g))| < d. These considerations yield the following result.

Theorem 7.6.1. Let C be a conjugacy class of G whose number of elements
h s relatively prime to the dimension d of an irreducible representation T.
Then esther all matrices T(g) (g € C) are scalar or the character x of T
satisfies x(g) =0 for all g € C.

Proof. By Theorem 7.4.5, g-x(g), where g € C, is an algebraic integer. At the

same time, x(g) is also an algebraic integer. Since d and h are relatively prime,
there exist integers z and y such that 2d + yh = 1. Then

s = yhx() + mxo) = L E 2y ) = X9

is an algebraic integer. If T(g) is not a scalar matrix, we have shown that
|z| < 1. On the other hand, for every o € I', the number o(z) is an algebraic
integer (satisfying the same equations as z does) and |o(z)| < 1. Consequently,

also the number ¢ = [] o(z) is an algebraic integer and |q| < 1. However,
o€l

evidently, o(¢q) = ¢ for all o € I" and thus ¢ € Q (by Theorem 5.4.4). In view

of Proposition 7.4.1, ¢ is an integer, and thus necessarily g = 0. Therefore also

z = 0, as required. a

Let us point out that the scalar matrices form a normal subgroup of the
group of non-singular matrices. Therefore, those elements g € G for which the
matrices T(g) are scalar, form a normal subgroup N(7T') of G. If T is irreducible
and not one-dimensional, then N(T') # G. These arguments suggest an appli-
cation of Theorem 7.6.1 to establish the existence of normal subgroups. We
are going to prove two theorems of Burnside in this direction.
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Theorem 7.6.2. If there is a conjugacy class C # {1} of G whose number of
elements is h = p', where p is prime, then G is not simple, i. e. G contains a
non-trivial normal subgroup.

Proof. Let T1,T3,...,Ts be all irreducible representations of G, dy,da,...,ds
their dimensions and x1,X2,...,Xs their characters. We shall assume that
Ti(g) = 1 for all g. Then x1(g) = 1 for all g. If there is yet another one-
dimensional T;, then its kernel is a non-trivial normal subgroup of G. There-
fore, we may assume that d; > 1 for all i # 1.

Let ¢ € C. If Ti(g) is a scalar matrix, then again there is a non-trivial
normal subgroup of G. Otherwise, if d; is not a divisor of p, then x:(¢g) = 0,

by Theorem 7.6.1. If all d; divide p, we shall use the formula x;eg = Z = d;xi

=1

and apply Proposition 7.3.1. We get

Xreg(g) =0=1+ ZdiXi(g) =1+pz,

=2
where z is an algebraic integer. Since z = —=, we get, in view of Proposi-
tion 7.4.1, a contradiction. The proof of the theorem is completed. a

Theorem 7.6.3. If (G : 1) = p®q¢®, where p and q are primes, then the group
G is solvable.®

Proof. The proof will be given by induction on the order of the group G. We
shall make use of the following well-known results from the theory of finite
groups:

a) If the order of G is a power of a prime, then G has a non-trivial center.

b) If the order of G is divisible by p?, where p is a prime, then there is a
subgroup of order p* (Sylow’s theorem).

Choose a subgroup H of order p® in G and take g # 1 from the center of H.
Denote by H = {z € G | zg = gz} the normalizer of g in G. Evidently, H D H
and therefore (G : H) divides (G : H) = ¢*. Now, the number of conjugates of
g equals (G : H) and thus is a power of g. Hence, by Theorem 7.6.2, there is
a non-trivial normal subgroup N in G. By induction hypothesis, both N and
G/N are solvable and therefore G is also solvable. This completes the proof
of the theorem. a

!3Recall that a group G is called solvable if there is a series of subgroups G = Gy D
G1 D ... D Gm = {1} such that G;41 is a normal subgroup of G; and the quotient
group G;/G;41 is abelian for all ¢ = 0,1,...,m — 1.
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Exercises to Chapter 7

Except in Exercises 18-22, K is always assumed to be a field whose charac-
teristic does not divide the order of the group G.

1. Let G = {g1,92,--.,9a} be a finite group, M and N two KG-modules and
f: M — N a linear transformation. Prove that the map f : M — N given by
the formula

fm) = =3 fmg e

i=1
is a homomorphism of K'G-modules.

2. Derive from Exercise 1 the fact that in this situation every submodule N C M is
a direct summand. (Hint: Apply the construction to a projector of the space M
onto the subspace N and use Theorem 1.6.2.) This result provides a new proof
of Maschke’s theorem, independent of results in Chapter 6.

3. Establish the isomorphism KG ~ KG1 ® KG2 if G =G, x G».

In Exercises 4-6, the field K contains a primitive nth root of unity, where n =
(G :1) (i.e. K is a splitting field for the polynomial 2™ — 1). The group G is always
assumed to be abelian.

4. Prove that the group algebra KG is a split algebra and that the group G has
n distinct irreducible representations which are all one-dimensional (i.e. all are
homomorphisms G — K*, where K™ is the multiplicative group of the field K).

5. Denote by G the set of all irreducible representations of the group G over the
field K (these are the characters of G over K). For arbitrary characters f; and

fz put (12 £2)(9) = fi(9)f2(g), where g € G. A

a) Verify that fi f» is also a character of G over K and that G is an abelian
group of order n with respect to this operation.

b) Prove that, for a fixed element g € G, the map § : G — K given by the
formula §(f) = f(g) is a character of the group G.

c) Prove thatthemapé:G — G given by 6(g) = § is a group homomorphism.
d) Establish that Keré = {1}, i.e. that é is a monomorphism and thus, since

(G:1) = (G : 1), that é is an isomorphism.

6. Using the fact that every abelian group G can be written as a direct product
of cyclic groups, compute explicitly all its characters and show that G ~ G (in
contrast to the isomorphism 6 of the previous exercise, this isomorphism depends
substantially on an explicit decomposition of the group G into a product of cyclic
groups).

7. The subset {e,1,j,k, —e,—1,—3,—k} of the quaternion algebra (see Sect. 1.1,
Example 4) is called the quaternion group. Verify that these eight elements
.indeed form a multiplicative group. Find all non-trivial representations of this
group over the fields of real and complex numbers. (Hint: In the latter case, one
can use the results of Exercise 3 to Chap. 1.)
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8. The dihedral group D, is a group generated by a and b subject to the defining
relations a® = b2 =1, ba = a~'b.
a) Prove that D, is a group of order 2n.
b) Verify that the correspondence

cos 2Zk  _ gip 22k 0 1
ar . ork 2rk » b=
sin =% cos == 10

n

[N

(with an integer k) is a representation T} of the dihedral group Dy, and that
for different k satisfying the inequality 0 < k < n/2, these representations
are irreducible and not similar.

¢) Find the one-dimensional representations of the group D, and prove that
these representations together with the representations Tk, 0 < k < n/2,
from part b) constitute all irreducible representations of D, over the fields
of complex and real numbers. (Hint: Use Theorem 7.2.1.)

The following exercises (9-13) deal with the representations of the symmetric
group Sn, 1. e. the group of all permutations of the set {1,2,...,n}. Recall some facts
concerning the structure of this group. The permutation (71,22, .. ., 2r) which maps i;
toip, 42 to 13, ..., 1k to 2; and all the other numbers into themselves is called a cycle of
length k. Here, all numbers i1, 22,...,i; are distinct. In case k = 1, the respective cy-
cle is evidently the identity permutation. Two cycles (21,42, ...,%) and (j1,72,...,J¢)
are said to be independent if the sets {i1,%2,...,2x} and {j1,J2,...,J¢} are disjoint.
Every permutation o can be decomposed into a product of non-intersecting cycles
o = (ill,---,ilkl)(iﬂ,---,izkz)---(itl,---,itkt), where ki + ko 4+ ... + ks = n; in
fact, this decomposition is unique (up to an order of the factors since, obviously,
independent cycles commute). The collection of lengths (ki1,k2,...,k:) is called the
cycle type of the permutation o.

9. Prove that two permutations are conjugate in S, if and only if they have the
same cycle type. In this way, a conjugacy class of S, is uniquely determined by
a partition of n into a sum of natural summands n = k1 + k2 + ...+ k.

In what follows, we always assume that k1 > k2 > ... > k:. Such a cycle type
is conveniently described by the so-called Young diagram, i.e. an arrangement of n
cells into ¢t rows with k; cells in the :th row.

Examples (for n = 5):

5=4+1 5=3+1+1 5=2+2+1

[ [ ] [ ]

A position on a Young diagram is an arbitrary distribution of the numbers
{1,2,...,n} into the cells of that diagram. The Young diagram corresponding to
the partition (k1,k2,...,k,) is said to be higher than the diagram corresponding to
(£1,£2,...,et) if ky > 81, ork, = Zl, but ks > g'_v, or ky = {4, ko = {5, but k3 > {3
etc. (lexicographical order).
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11.

12.

13.

14.

15.

16.
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Let D1 and D, be positions on two Young diagrams, the first of which is higher

than the second one.

a) Prove that there are numbers 7 # j such that both appear in the same row
of the first diagram and in the same column of the second diagram.

b) Prove that for any permutation o, there are transpositions (i.e. cycles of
length 2) 7 = (41, 2) and 72 = (j1, j2) such that o = 072 and the numbers
11,72 are in the same row of the position D; and the numbers ji,J2 in the
same column of the position D; .

For a given position D on a Young diagram, denote by Pp the set of all per-

mutations which map numbers of a given row only into numbers of that row,

and by @p all the permutations which map numbers of a given column into the
numbers of that column.

a) Verify that Pp and @Qp are subgroups of S, and that Pp N Qp = {1}.

b) Prove that if D, and D, are positions on the same Young diagram, then
either there is a pair of numbers 7 # j which are in the same row of D; and
in the same column of D5, or by applying a suitable permutation from Pp,
to Dy and a suitable permutation from p, to D; one obtains the same
position.

c) Prove that, for an arbitrary position D and an arbitrary permutation o,
either there are transpositions m € Pp and 12 € @p such that o = o7,
or 0 = £n, where £ € Pp and 5 € @p, and such a decomposition is unique.

Given a position D on a Young diagram, the element c¢p of the group algebra
A = K S, defined by the formula

o= Y sgn(nkén,
£E€EPp
n€EQD

where sgn (7) is the signature of the permutation 7 (equal to 1 for 7 even and
—1 for 1 odd), is called the Young symmetrizer corresponding to D.

Prove that if 0 € Pp, then ocp = cp and if 0 € Qp , then cpo = sgn(o)cp .
Conversely, if a € A is an arbitrary element satisfying the above conditions, then
a = acp for some a € K. (Hint: Use the result of Exercise 11.c).)

Write Mp = cpA, where cp is a Young symmetrizer and A = K'S,, .

a) Prove that Eo(Mp) = K. (Hint: Use the result of the preceding exercise.)

b) Under the assumption of Exercise 10, prove that Homs(Mp,, Mp,) = 0.

¢) Deduce the following statement: If D runs through all positions on Young
diagrams, Mp runs through all simple A-modules; moreover, Mp, ~ Mp,
if and only if D; and D, are positions on the same diagram.

Let A= KG, M and N be two arbitrary A-modules and 7 and % the characters
of the corresponding representations. Using the notation of Theorem 7.3.5, prove
that

—71; > hex(9)¥(9;") = dimHom a(M, N).
k=1

Using Corollary 7.2.3 and 7.4.6, deduce that every group of order p?, where p is
a prime, is abelian.

Let M be a module over the group algebra KG, and M* the space of all lin-
ear forms on M, i.e. M* = Homg (M, K). Defining (fg)(m) = f(mg™") for
arbitrary f € M*, m € M, g € G, verify that M* turns into a KG-module. If
T is the representation corresponding to M, then the representation T* corre-
sponding to M* satisfies T*(g) = T(g™")’, where ' denotes the transpose of a
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matrix. In particular, if x is the character of the representation 7" and x* the
caharcter of the representation T*, then x*(g) = x(¢7?), and if KX = C, then

x*(9) = x(9)-

A representation T of a group G over the field of complex (or real) numbers is

called unitary if all matrices T'(g) are unitary.

a) Prove that every complex (real) representation of a finite group G =
{91,92,---,9n} is similar to a unitary one. (Hint: On the corresponding
module M, choose a scalar product (u,v) turning M into a unitary (Eu-

clidean) space and put (u,v) = > (ugi,vg:). Then M is a unitary space
i=1

with respect to the scalar product {u,v); furthermore, (ug,vg) = (u,v) for
all ge G.)

b) From here, deduce yet another proof of the fact that every representation
of G over IR or over C is completely reducible.

c) Considering an infinite cyclic group, show that the conclusions of part a)
do not hold for infinite groups.

In the final exercises, we shall assume that the characteristic p of the field K

divides the order n of the group G.

18.

19.

20.

21.

22.

Let H be a subgroup of G such that the index (G : H) and p are relatively
prime; let N be a submodule of a K'G-module M which, as a ' H-module has a
complement. Prove that N has a complement as a KXG-module. (Hint: Choose
representatives of the cosets of H in G and proceed as in Exercise 1 and 2.)

Assume that G is a p-group, i.e. n = p*. Write I = {E aggl dSag = O}.
9€G g

Prove that I = rad KG and KG/I ~ K. (Hint: Use the results of Exercise 13
to Chap. 6.)

a) Let M be an irreducible representation of a p-group G. Prove that [M : K]
=landmg=mforallme M,geG.

b) Prove that every representation of G over K is similar to a unipotent tri-
angular representation, 1.e. to a representation of the form

1 *

T(g) =

0 1

¢) Deduce from part b) that every finite p-group G is isomorphic to a group
of unipotent upper triangular matrices over the field of integers modulo p.

d) Prove that every finite p-group G is nilpotent, i.e. there is a chain of normal

subgroups G = Go D G1 D ... D G = {1} such that the factor group
Gi41/Gi is in the center of G/G; for each 1 = 1,2,...,k.

Describe the indecomposable representations of a cyclic p-group over a field of
characteristic p; check that the number of these representations equals the order
of the group.

Let G be a non-cyclic group of order p” (i. e. a direct product of two cyclic groups
of order p). For arbitrary even d, construct an indecomposable representation
of dimension d of the group G. (Hint: If a and b are generators of the cyclic
summands of G, set
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r@= (g5 5) T®=(§ %)

where E is a unit and X an arbitrary matrix.) If K is infinite, verify that there
is an infinite number of non-similar representations of dimension d of the group
G. Translate this result to an arbitrary non-cyclic p-group.

Let G be a direct product of three cyclic groups of order p with generators a, b
and c¢. Taking

= (¢ 7). T0=(g &) T@=(§ &)

where X and Y are arbitrary square matrices, we get a representation T = Tx,y
of the group G; moreover, Tx,y and T+ y: are similar if and only if the pairs of
matrices X,Y and X',Y” are similar, i. e. if there is a matrix C such that X’ =
CXC7' and Y' = CYC™. Let us remark that S.A. Krugljak has constructed
for p > 2 a representation Sx,y for an arbitrary non-cyclic p-group G which
depends on a pair of matrices X,Y and such that Sx,y and Sx/ y’ are similar if
and only if the pairs of matrices X,Y and X’,Y"’ are similar. The classification of
pairs of matrices with respect to similarity is one of the most difficult problems
of linear algebra which has not been solved so far.



8. The Morita Theorem

In Sect. 2.3 we have noted that modules over a division algebra D and modules
over the simple algebra M,(D) are “equally structured”. Results of Sect. 2.6
show that, in general, modules over isotypic semisimple algebras possess the
same properties: such modules have isomorphic endomorphism rings, etc. In
Sect. 3.5 these results have been extended to projective modules over arbitrary
isotypic algebras (Lemma 3.5.5). It turns out that one can remove the require-
ment of projectivity: All modules over isotypic algebras are equally structured.
However, in order to formulate this statement properly, it is necessary to intro-
duce a number of concepts which presently play an important role in various
areas of mathematics. Above all, it is the concept of a category and a functor,
as well as the notion of an equivalence of categories, which appears to be a
mathematical formulation of the expression “equally structured”.

The Morita theorem which we are going to prove in this chapter just
asserts that two algebras are isotypic if and only if their module categories are
equivalent. Techniques applied to proving the theorem (tensor product, exact
sequences) turn out to be useful also for many other problems. In particular,
in Sect. 8.5 we shall construct the tensor algebra of a bimodule generalizing
the concept of the path algebra of a diagram and playing a similar role in
describing non-semisimple algebras (which are not necessarily split).

8.1 Categories and Functors

A category C consists of the following data:

1) a set ObC whose elements are called the objects of the category C;

2) a set Mor C whose elements are called the morphisms of the category C;

3) there is an ordered pair of objects (X,Y") of the category C associated
with every morphism f € Mor(C (we write f : X — Y and say that f is a
morphism from the object X to the object Y; X is the initial object and YV
is the terminal object of the morphism f; the set of all morphisms from X
to Y is denoted by Hom(X,Y) or, if one needs to specify the category, by
Hom¢(X,Y));

4) for every triplet of objects X,Y,Z € ObC and every pair of morphisms
f:X —-Y and g:Y — Z there is a uniquely defined morphism gf : X — Z
which is called the composition or product of the morphisms f and g;
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5) multiplication of morphisms is associative, i.e. for every triplet of
morphisms f,g,h we have h(gf) = (hg)f, provided that the products are
defined;*

6) for every object X € ObC, there exists a morphism 1x € Hom(X, X)
such that fl1x = f and 1xg¢ = g for all morphisms f : X — Y and g:2— X.

It is easy to see that a morphism 1y with the above properties is unique.
It is called the identity morphism of the object X.

Ezamples of Categories. 1. The category Sets of sets. Objects of this category
are sets and morphisms f : X — Y are maps of the set X into the set Y.
Composition of morphisms is the usual composition of maps. It is evident that
all category axioms are satisfied.!®

2. The category Gr of groups. Objects of this category are groups, mor-
phisms f : X — Y are homomorphisms of the group X into the group Y and
composition is the usual product of homomorphisms.

3. The category of vector spaces over a field K (denoted by Vect or, spec-
ifying the field, by Vecty), the category of K -algebras Alg (or Algy), the
category mod-A of right modules and the category A-mod of left modules over
the algebra A, etc. are defined analogously. In all these examples, morphisms
are some maps of the sets with the usual composition. However, the following
examples show that there are categories of a different kind.

4. Every semigroup P (with identity) can be regarded as a set of morphisms
of a category consisting of a single object. Here, composition of morphisms
naturally coincides with their product in the semigroup P.

5. The category Mat of matrices. Objects of this category are natural
numbers; the set of morphisms Hom(m, n) is defined to be the set of all n x m
matrices with entries from a field K. Composition of the morphisms is the
usual product of matrices. Here a verification of all axioms is also trivial.

6. Let M be a partially ordered set. Consider it as the set of objects of
a category in which Hom(z,y) consists of a single element when = < y and
it is empty otherwise. Composition of the morphisms is defined in a natural
manner.

7. The path category. Let D be a diagram (see Sect. 3.6). One can associate
with D the following category Cp. Put ObCp = D and for i,j € D, let
Hom(z,j) be the set of all paths from i to j. Composition of the paths is
defined, as in Chapter 3, by concatenation and 1; is the “empty” path with
both starting and terminal object at i (see Chap. 3). Again, we get a category
which is called the path category of the diagram D.

41t is easy to see that if one of the sides of this equality is defined, so is the other;
this happens if and only if the terminal object of f coincides with the initial object
of g and the terminal object of ¢ with the initial object of h.

13Of course, in this definition Ob (Sets) and Mor (Sets) are not sets. However, for
all practical purposes this is not essential: We can always restrict ourselves to
the subsets of a fixed set (and their maps). This remark also refers to the other
analogous examples.
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8. The dual category. For any category C, one can construct a new cate-
gory C° in the following way: ObC® = ObC, Mor(C® = MorC and the initial
(terminal) object of a morphism f in the category C° is its terminal (initial)
object in the category C. The product gf in the category C° is defined to be
the product fg in the category C. The category C° is said to be dual (opposite)
to the category C. Evidently, C°° = C.

In order to avoid any confusion, objects and morphisms of the category
C° are usually marked by a little circle: X°, f°, etc. Then the above defi-
nitions can be written in the form Ob(C° = (Ob(C)°, MorC°® = (Mor(C)°,
Home(X°,Y°) = Home(Y, X)° and ¢°f° = (fg)°.

In every category one can define the concept of an isomorphism. Indeed,
a morphism f : X — Y is said to be an isomorphism if and only if there is
a morphism f~! : Y — X such that f~!f = 1x and ff~! = 1y . Evidently,
these conditions define the morphism f~! uniquely. The morphism f~! is
called the inverse of f. Of course, f~! is also an isomorphism and (f~!)~! = f.
Moreover, it is easy to see that a composition of isomorphisms f and g (if
defined) is again an isomorphism and that (¢f)~! = f~1g7!.

As much as the concept of a homomorphism plays an important role in the
study of groups, algebras and modules, a central concept of category theory
is that of a functor.

A functor F from a category C to a category D is a pair of maps
Fob : ObC — ObD and Fyor : MorC — Mor D satisfying the following condi-
tions:

Dif f: X =Y, then Fuo:(f) : Foo(X) — For(Y);

2) Fmor(1x) = 1ru(x);

3) if gf is defined, then Fior(¢f) = Fmor(g)Fmor(f)-

Usually, instead of Fior(f) and F,p(X) one simply writes F(f) and F(X).

Ezamples of functors. 1. Let C be a category. Fix an object X € ObC and
construct the functor hx : C — Sets in the following way. If ¥ € ObC,
define hx(Y) = Hom(X,Y). If f : ¥ — Z, then hx(f) is the map of the
sets Hom(X,Y) — Hom(X, Z) assigning to every morphism ¢g : X — Y the
morphism fg : X — Z. The conditions 1) and 2) are satisfied trivially and 3)
follows from the associativity of multiplication of morphisms.®

If C = mod-A (or A-mod), where A is an algebra over K, then all sets
Hom(X,Y) are vector spaces over K and one can see easily that, for any f,
the map hx(f) is a homomorphism. Therefore hx can be considered in this
case as a functor to the category Vect of vector spaces over the field K.

2. Forgetful functors. Let C = Gr, D = Sets. Define the functor F : C — D
by F(X) = X and F(f) = f for every X € C and f € MorC. In other
words, we forget the group structure on X and consider X simply as a set
and homomorphisms as set maps. This functor is called the forgetful functor
from the category of groups to the category of sets.

16 The reader not familiar with category techniques is advised to verify the conditions.
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In a similar way, we may construct a variety of examples of forgetful
functors taking for C a category of sets with “more” structure and for D a
category of sets with “less” structure.

Take, for example: a) C = Alg,., D = Vectg; b) C =mod-A, D = Vect;
c) C=Alg;, D= Algy, where L is an extension of the field K, etc.

3. Let A be an algebra, B = M,(A). Construct a functor G : mod-4 —
mod-B in the following way. For every A-module M, put G(M) = nM. We
endow G(M) with a B-module structure in a natural way: Considering an
element z € G(M) as an n-dimensional vector with coordinates from M, define
zb for b € B using the ordinary matrix multiplication rule. If f : M — N is
an A-module homomorphism, define G(f) : G(M) — G(N) coordinatewise:
For z = (z1,%2,...,2,) we put G(f)z = (fz1, fr2,...,fzn). It is easy to
verify that G(f) is a homomorphism of B-modules and that this construction
indeed defines a functor.

4.If L is an extension of a field K, then it is possible to construct a functor
F : Algy, — Alg; defining F(A) to be the L-algebra A, = A® L and F(f),
where f : A — B, to be the L-algebra homomorphism f®1: A — By .

5. Let C be a semigroup with identity regarded as a category with a single
object (Example 4 of a category). Let us clarify the meaning of a functor from
the category C into the category Vect - . Since ObC consists of a single element,
Foy, is determined by a single vector space V. Then, for every element a of
the semigroup, F(a) € E(V); moreover, F(1) = 1y and F(ab) = F(a)F(b).
Hence, Fi,o; is a representation of the semigroup C on a vector space V.

6. If C° is the dual (opposite) category of a category C, the functors
F : C° — D are called contravariant functors from the category C to the
category D (and in order to emphasize that it preserves the direction of ar-
rows, the ordinary functors from C to D are called covariant functors). Since
there is a one-to-one correspondence between Ob(C° and Ob(, and also be-
tween MorC® and MorC, the maps Fyp and Fpo; for a contravariant functor
can be interpreted also as maps ObC — Ob D and MorC — Mor D. However,
then the axioms in the definition of a functor take on the following form:

19yif f: X - Y, then F(f) : F(Y) —» F(X) (i.e. F “reverses the
arrows” );

2°) F(1x) = 1p(x);

3°) F(gf) = F(f)F(g) (i-e. F “reverses the order of the arrows”).

An important example of a contravariant functor is obtained in analogy
to Example 1. For a fixed object X € Ob(, one can construct the functor

% : C° — Sets by setting 1% (Y°) = Hom(Y, X) and defining h%(f°) with
f:Y — Z to be the map Hom(Z, X) — Hom(Y, X) assigning to a morphism
g : Z — X the morphism gf : ¥ — X. If C = mod-A (or A-mod), then h%
can be interpreted as a functor C° — Vect.

Categories of modules over algebras (and many other categories) have an
additional structure: they are linear in the following sense.

A category C is called a linear category over a field K (or K-linear or
simply linear if there is no danger of misunderstanding) if, for every pair
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(X,Y) of its objects, the set of morphisms Hom(X,Y") is endowed with the
structure of a vector space over K and the composition of morphism is K-
linear, 1. e.
(f+9)h=fh+gh,
flg+h)=fg+ fh and
(Aflg = f(Ag) = A(f9g)
for any morphisms f,g,h such that the corresponding formulae make sense,
and for any A € K.
Of course, a K-linear category with one object is just a K-algebra (cf.

Example 4 above). If a category C is K-linear, then so is its dual C° (with the
same linear structure).

A functor F' : C — D between two linear categories is said to be linear
(K -linear if we need to specify the field K) if

F(f+g)=F(f)+ F(g) and
F(Af) = AF(f)

for any morphisms f,g such that f + g is defined, and for any A € K. One
can easily check that for every object X of a linear category C the functors
hx and h% (considered as functors to Vect) are linear.

An important property of linear functors is the fact that they preserve
direct sums. Namely, we have the following “categorical” characterization of
direct sums of modules.

Proposition 8.1.1. M ~ M; @ M, & ... ® M, if and only if there exist
morphisms 1y : My — M and pr : M — My for all k = 1,2,...,n such that
Prik = 1p, , prie =0 4f k # £ and i1py +12p2 + ...+ inpn = 1M

Proof. f M ~ M; ® My ® ... ®» M, , we can take for ix and pi the natural
embedding M — M and projection M — Mj, respectively. On the other
hand, given ¢; and pi, the homomorphisms

y41
P2 :Mﬁkéla M and (il,iz,...,in):ké My — M
.. =1 k=1

Pn
are mutually inverse isomorphisms. O
Now we are able to define a direct sum of objects My, Ms, ..., M} of any

linear category C as an object M such that morphisms i : My — M and
pr : M — M, satisfying the relations of Proposition 8.1.1 exist. One can
easily verify (and we recommend to do it) that such M is defined up to an
isomorphism (in C).

Corollary 8.1.2 Let F: C — D be a linear functor between two linear cate-
gories and M = & My in C. Then F(M) = ® F(M;) in D.
k=1 k=1
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In what follows, all categories and functors will be assumed to be linear
and we shall use Corollary 8.1.2 frequently without any reference.

8.2 Exact Sequences

In what follows, we shall often consider situations when one deals simultane-
ously with a number of modules and their homomorphisms related by various
conditions. In order to describe such situations, “the language of diagrams
and exact sequences” becomes very convenient. For instance, let M; and N;
(3 = 1,2,3) be modules and f; : M; — N; (: = 1,2,3), g : My — M,
h:M; — Mj,g': Ny = Ny and A’ : Ny — N3 homomorphisms. In this case,
we speak about a diagram of modules

M, L M, M M

f1l le fal (8.2.1)

NS N, S N

The diagram (8.2.1) is called commutative if fo9 = ¢'fi and fsh = h'fs.
In other words, given two paths connecting a pair of modules in the diagram,
the products of the homomorphisms taken along each of these paths are equal.
The concept of a commutative diagram in a general case is defined similarly.
It is clear that such a terminology allows to describe efficiently rather complex
situations.

Consider a sequence (finite or infinite) of modules and homomorphisms

fie1 fi
. — i—1 — ‘Mi — i+l (8.22)

We say that such a sequence is ezact at M; if Ker f; = Im f; ;. If the
sequence (8.2.2) is exact at all M;’s, then it is called ezact.

We are going to give some examples illustrating this terminology.

Ezamples. 1. A sequence 0 — N ENYY) (the first morphism is obviously zero)
is exact if and only if Ker f = 0, i.e. if f is a monomorphism. Similarly, a
sequence M % N — 0 is exact if and only if ¢ is an epimorphism.

2. We shall clarify the meaning of a sequence 0 — N LM 5 L tobe
exact. As before, since the sequence is exact at N, f is a monomorphism. In
other words, N can be considered (identifying it with Im f) as a submodule
of M. Since it is exact at M, Im f = Kerg, and thus N can be identified with
the kernel of the homomorphism of g.

Similarly, the fact that a sequence N ER M % L — 0 is exact means
that g is an epimorphism and L can be identified with the factor module
M/Im f (this factor module is called the cokernel of the homomorphism f
and is denoted by Coker f).
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3. Finally, a sequence
0—N-L ML 0

is exact if and only if f is a monomorphism, g is an epimorphism and N can
be identified with a submodule of M and L with the factor module M/N.

4. Let us reformulate one of the definitions of a projective module (see
Theorem 3.3.5) in the language of diagrams and exact sequences: A module
P is projective if and only if every diagram

P
/|
M 4 N — 0
whose row is exact can be completed to a commutative diagram
P
]
M 4L N — 0

(recall that exactness means that g is an epimorphism and commutativity
means that f = gf).

An exact sequence
0—N-LmMLL 0

is said to be split if there are homomorphisms f: M — N and §: L — M
such that ff =1y and g5 = 1.

In view of Proposition 1.6.2, it is sufficient to require the existence of f
(or §) only; in this case, M can be identified with the direct sum N @ L, f is
the canonical inclusion N — N @ L (mapping z € N into (z,0)) and ¢ the
canonical projection of N & L onto the second summand.

Finally, let us formulate a diagram lemma which will be often used in the
sequel.

Lemma 8.2.1 (Five Lemma). Let
VL VAR . N VA N VA LN VA
<ml ‘P:l val wl S"sl (8.2.3)
Ny 5N 2N BN, BN

be a commutative diagram with ezact rows and isomorphisms @;, 1 =1,2,4,5.
Then 3 is also an isomorphism.

Proof. Let © € M3 belong to the kernel of 3 , i.e. let 3z = 0. Then @4 fzz =
gsp3z = 0 and thus, since o4 is an isomorphism, fzz = 0, i.e. z € Ker f; .
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Now, in view of the exactness at M3, Ker f3 = Im f> . This means that there
is an element y € M, such that ¢ = foy. In addition, gop2y = p3foy =
w3 = 0. Thus, w2y € Kergy = Img;, i.e. p2y = ¢12 for some z € N;.
However, ¢; is also an isomorphism and therefore z = ¢ju with u € M; and
p2fiv = g1p1u = g1z = ay; from here fiu =y and z = foy = foiu =0
(exactness at M>). Consequently, Ker o3 = 0 and so ¢3 is a monomorphism.

Now, choose an element a € Nj3. Since ¢4 is an isomorphism, there is
b € M, such that p4b = gza. Moreover, s f1b = g4p1b = gagsa = 0 and thus
fab=0and b € Kerfy = Im f3. Hence b = fsc, where ¢ € M;. Put a =
a — p3c. Since gzpse = @4 fsc = b = gaa, gsa =0 and @ € Kerg; =Imyg.
Thus @ = gsd for some d € N;. Furthermore, d = ¢,¢ for ¢ € M. Then
@3fa€ = gop2C = god = a and we get a = @ + p3c = p3(fac+¢) € Imyp;s . It
follows that (3 is an epimorphism, and therefore an isomorphism. a

The following are the most common applications of the Five lemma.
1) Given a commutative diagram

0 — M1 - M2 — M3 — 0
LPll Lpzl 503‘[
0 — N] — N2 — N3 — 0

with exact rows and isomorphisms ¢; and @3, then (3 is also an isomorphism.

This follows immediately from Lemma 8.2.1 if we complete the diagram by

the (zero) homomorphisms of the zero modules to the form of diagram (8.2.3).
2) Given a commutative diagram

M] — M2 e M3 —_— 0
LPtl ¢2l ‘Psl
Ny — N, — N3y — 0

with exact rows and isomorphisms ¢; and 3, then 3 is an isomorphism, as
well. Clearly, one can complete this diagram to the diagram

M — M, — My — 0 — 0
e e
NNy — Ny — N3 — 0 — 0

by the zero homomorphism.
3) Similarly, given a commutative diagram

0 — Ml e M2 a— M3
‘Pll ‘P2J{ ‘PSJ(
0 _ Nl —_— N2 —_— N3

with exact rows and isomorphisms ¢, and @3, then ¢, is an isomorphism, as
well.
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8.3 Tensor Products

In this section we shall introduce a new important functor on a module cate-
gory, namely the tensor product of modules.

Let A be an algebra, M a right and N a left A-module. In the vector
space M @ N, consider the subspace T generated by all elements of the form
za®y—zQ®ay, wherez € M,y € N and a € A. The factor space (M Q N)/T
is called the tensor product of the modules M and N over the algebra A and is
denoted by M ® 4 N. Denote by 7 the canonical projection MQN — M ®4 N.
The composition of 7 with the bilinear map ® : M x N — M ® N (assigning
to (z,y) the element z ® y) results in a bilinear map @4 : M x N — M ®4 N.
The image of (z,y) is t sy =7(z Q@ y).

The map ® 4 possesses an additional property which will be called the
“inner A-bilinearity”: za® 4y = £ ® 4 ay. Moreover, since ® is a universal bi-
linear map, ® 4 is a universal inner A-bilinear map in the sense of the following
statement.

Theorem 8.3.1. Let F : M x N — V be an inner A-bilinear map into a
vector space V. Then there is a unique linear map f : M @4 N — V such that
F(z,y) = f(2®4y) forany 2 € M andy € N.

Proof. Since F is bilinear, there is a unique linear map ¢ : M ® N — V such
that F(z,y) = ¢(2 ®y) for any ¢ € M and y € N (Theorem 4.2.1). However,
p(za®y -z ®ay) = p(za @ y) — p(z @ay) = F(za,y) — F(z,ay) = 0 in
view of inner A-bilinearity of F'. Therefore T C Ker ¢ and ¢ induces a unique
map f: M ®a N — V such that ¢ = fr, and thus f(zQay) = fr(z Qy) =
p(z ®y) = F(z,y). o

Obviously, a universal inner A-bilinear map is unique up to a canonical iso-
morphism. The universality permits rather easily to establish basic properties
of tensor products.

Proposition 8.3.2. For every pair of A-module homomorphisms f : M — M’
and g : N — N' there 1s a unique linear map fQ@ag: M@sa N — M' @4 N'
such that (f®49)(2Q®ay) = fr@agy. If f' : M' — M" and ¢' : N' - N"
15 another pair of homomorphisms, then (f' @49 ) fQ®ag)=ff®agd'g.

Proof. Consider the map FF : M x N — M'®4N' such that F(z,y) =
fz ®4 gy. It is easy to see that F is an inner A-bilinear map. Therefore, there
is a unique map f®49: M®a N — M'®4 N' such that (f@49)(zQay) =
F(z,y) = fz ®4 gy. The second statement is trivial. O

The preceding property allows us to consider tensor product as a func-
tor on a module category. More precisely, let us fix a left A-module N and
construct the functor —®4 N : mod-A — Vect as follows. Assign to every
right A-module M the vector space M ® 4 N and to every homomorphism
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f:M — M’ the linear transformation f®41: M ®4 N — M'®4 N. Propo-
sition 8.3.2 shows that the axioms for a functor are satisfied. Similarly, we
may construct the functor M ®4 — : A-mod - Vect (for a fixed right A-
module M).

The fact that tensor product is a functor enables us to turn sometimes
M ®a N again into a module. Let, for instance, N be an A-B-bimodule (or,
as one often says, consider a situation M4, 4Ng). Then every element b € B
induces an A-module homomorphism N — N assigning to every y € N the
element yb, and thus a vector space transformation M @ 4 N — M @4 N as-
signing to every £ ® 4 y the element z ® 4 yb. Clearly, in this way M ® 4 N turns
into a B-module. A similar situation pMa, 4N (i.e. M is a B-A-bimodule
and N a left A-module) defines on M @ 4 N a left B-module structure by
b(z®4y) = bz ®4 y. Finally, in a situation pM4, 4Nc, the tensor product
M ®4 N becomes a B-C-bimodule. This allows to iterate the tensor product
operation and define (in an appropriate situation) a product of three or more
modules. As the following statement shows, the order in which the products
are taken is immaterial.

Proposition 8.3.3. In a situation My, 4N, gL there is o canonical iso-
morphism

(M@aN)®p LM ®4(N®pL)
assigning to (t@4y)®p z the element T R4(y @5 2).

Proof. Fix an element z € L and define themap F, : M xN — M @ 4(N ®p L)
by F.(z,y) = 2 ®4(y ®p 2). Clearly, this is an inner A-bilinear map and there-
fore there is a unique linear transformation f, : M @4 N — M ®4(N ®p L)
assigning to z®4y the element z®4(y®pz). Varying z, we obtain an
inner B-linear map F : (M®4N) x L - M®a(N®pL) assigning to
a pair (z®4Yy,2) the element 2®4(y ®p 2z). In turn, F defines a unique
linear transformation f : (M ®4N)®pL — M ®s(N®pL) such that
f((z®4y)®Bz) = 2®4(y®p2). In a similar manner, we can construct
a linear transformation ¢ : M ®4(N®pL) — (M®4a N)®p L such that
g(z ®Raly®s z)) = (z®a4y)®p z. Since all possible elements of the form
z ®4(y ®p 2) (respectively, (z ® 4 y) @ g z) generate the space M @ 4(N ®p L)
(respectively, (M ® 4 N)®p L), f is an inverse of g, as required. O

We can see immediately that in a situation cM4, 4Ng, pLp the above
isomorphism is, in fact, a C-D-bimodule isomorphism.

We can also establish a relationship between the functors ® and Hom.

For instance, observe that in a situation g M, , N4 the space Hom 4(M, N)
can be turned into a B-module by (fb)m = f(bm). Similarly, in a situation
My, BN4, Homg(M, N) becomes a left B-module and in a situation My,

cNa, it becomes a C-B-bimodule. Moreover, we have the following “adjoint
formula”.
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Proposition 8.3.4 (Adjoint isomorphism). In a situation M4, aNp,
Lp, there is a canonical isomorphism

Homp(M ®4 N, L) = Homy4 (M,Homp(N, L)),

138igning to a homomorphism ¢ : M @ 4 N — L the homomorphism @ : M —
Homp(N, L) such that ¢(z)(y) = p(z Qa4 y).

Proof. The fact that ¢ is an A-module homomorphism is trivial. We shall
sonstruct an inverse map. Let ¥ : M — Homp(N,L) be an A-module
aomomorphism. Then, as we can see immediately, the map M x N — L
sending (z,y) into ¢(z)(y) is an inner A-bilinear map, and therefore de-
ines a unique map ¢ : M®4 N — L such that ¥(z®4y) = ¥(z)(y).
Now, % is clearly a B-module homomorphism and the constructed maps
Homp(M ®a N, L) 2 Homy4 (M, Homp(N, L)) are mutually inverse isomor-
>hisms. O

An important property of the functors ® and Hom is their “exactness”.

Proposition 8.3.5. 1) A sequence of A-modules
0— M; L M, 2 M, (8.3.1)

18 ezact if and only if, for any A-module N, the sequence

0 — Hom (N, My) "™ Hom4(N, M) "9 Hom o(N, M)  (8.3.2)
18 ezact.
2) A sequence of A-modules

My LMy S My —0 (8.3.1')
s ezact if and only if, for any A-module N, the sequence
0 —s Homa(Ms, N) "*9 Hom 4 (Ma, N) "™ Hom o(M;, N)  (8.3.2))

18 exact.

Proof. Assume that the sequence (8.3.1) is exact. Then f is a monomorphism,
and if An(f)(¢) = fo =0, where ¢ : N — M, then also ¢ = 0. Thus, hn(f)
s a monomorphism and the sequence (8.3.2) is exact at Hom 4(N, M;). Since
mf = Kerg, gf = 0, and therefore An(g)hn(f) = hn(gf) = 0. Conse-
juently, Im hn(f) C Kerhn(g). Now, let ¢ € Ker hn(g), where p : N — M,.
[n other words, hn(g)(¢) = g = 0. Then Im¢p C Kerg = Im f. In view of
;he isomorphism M; ~ Im f, ¢ can be written as a composition f, where
p: N — M,. Hence, ¢ = hn(f)(¢) € Imhn(f) and the sequence (8.3.2) is
2xact at Hom 4 (N, M>).

Conversely, let the sequence (8.3.2) be exact for every N. Taking N =
Ker f, we see that the map Homa(Ker f,M;) — Homa(Ker f,M;) is a
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monomorphism. Thus, if ¢ is the embedding of Ker f into M;, fo = 0 and
¢ = 0. Therefore Ker f = 0 and f is a monomorphism.

Now, let N = M;. Then f = fly = An(f)(1n) € Imhn(f) = Ker hn(g).
Thus gf = An(g)(f) = 0 and Im f C Kerg. Finally, taking N = Kerg
and denoting by ¢ the embedding of N in M,, An(g)(¢) = g¢ = 0. Thus
¢ € Kerhn(g) = Im hn(f). Therefore ¢ = fip, Kerg = Im¢ C Im f, and the
sequence (8.3.1) is exact.

The other statement, 2), is proved similarly. a

Using the adjoint isomorphism, we can carry over exactness properties to

tensor products.

Proposition 8.3.6. If a sequence of right A-modules
My - M; - M3 -0 (8.3.3)
18 ezact, then, for any A-B-bimodule N, the sequence of B-modules
My ®aN > MaQ@aN - M;QaN —0 (8.3.4)

18 also ezact.

Proof. In view of Proposition 8.3.5, we need to verify the exactness of the
sequence

0 — Homp(M; ®4 N,L) —» Homp(M2 ® 4 N, L) —» Homp(M; ®4 N, L)

for any B-module L. By Proposition 8.3.4, the latter sequence can be rewritten
as

0— HomA(Mg,HornB(N,L)) — HomA(Mg,HomB(N,L)) —
Hom 4 (M1 ,Homp(N, L))

and thus its exactness follows immediately from Proposition 8.3.5. a

The above properties are often expressed by saying that the functor Hom
is left ezact and that @ is right ezact, or more precisely, that hy and h%; are
left exact and —®4 N is right exact. Of course, the functor M ® 4 — is also
right exact (a proof is similar to the one of Proposition 8.3.6).

In conclusion, we record the following simple fact.

Proposition 8.3.7. The map M — M ®a A assigning to every m € M
the element m®4 1 is an isomorphism of right A-modules. The map N —

A®a N assigning to every n € N the element 1 @4 n s an isomorphism of
left A-modules.

Proof. 1t is sufficient to observe that the map M x A — M, sending
(m,a) into ma, is evidently an inner bilinear map and that the induced
map M ®4A — M is a homomorphism which is an inverse of the map
M — M ®4 A under consideration. O
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8.4 The Morita Theorem

In this section, we shall establish which algebras A and B have the property
that their module categories mod-4 and mod-B are “equally structured”. To
do that, we have to define first the meaning of being “equally structured”,
that is to say, to define which categories will be considered equal. To try to
define an isomorphism of categories C and C' as a functor F' : C — C’ which
possesses an inverse functor G : C' — C,i.e.suchthat GF = 1¢ and FG = 1¢/,
turns out to be not satisfactory. First of all, functors which appear naturally
do not possess, as a rule, this property and secondly, some categories which
are intuitively “equal” would not be isomorphic according to this definition.
Take, for example, the category Mat of matrices and the category Vect of
vector spaces. The situation is quite clear: The category of matrices describes
the vector spaces “up to an isomorphism” whereas there are many “isomorphic
copies” of each space in the category Vect. Thus, no bijective correspondence
between these two categories is possible.

The following approach utilizing the concept of an isomorphism of func-
tors rather than their equality, appears to be more natural. We are going to
introduce rigorous definitions.

Let F and G be two functors from a category C to a category C'. A mor-
phism from the functor F to the functor G is a map ¢ which assigns to every
object X € ObC a morphism p(X) : F(X) — G(X) (of the category C'!)
in such a way that, for every morphism f : X — Y of the category C, the
following diagram commutes:

Fx) 9N g

F(f)l G(f)l
Fy) Y g

We shall write p : F — G.

If H: C — (' is another functor and ¢ : G — H is a functor mor-
phism, then the composition ¥y : F — H is defined by setting (v¢)(X) =
P(X)p(X). It is easy to see that the set of functors from a category C to a
category C' together with their morphisms forms, with respect to this defi-
nition, a category: the functor category Func(C,C'). In addition, a morphism
¢ : F — G is an isomorphism in this category if and only if, for every object
X € ObC, the morphism ¢(X) is an isomorphism. In this case, we say that
¢ is an isomorphism of the functors and write ¢ : F 5 G, or F ~ G.

It is not difficult to see that the isomorphisms constructed in Proposi-
tion 8.3.3 and 8.3.4 are, in fact, isomorphisms of the corresponding functors.

An equivalence of the categories C and C' is a pair of functors F: C — ('
and G : ' — C such that GF ~ 1 and FG ~ 1l¢. If there is such an
equivalence, the categories C and C' are called equivalent.

In the sequel, we shall find useful the following obvious properties of equiv-
alent categories.
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Proposition 8.4.1. If a pair of functors F : C — C' and G : C' — C is an
equivalence of categories, then

1) the correspondence Home(X,Y) — Home (F(X),F(Y)) mapping f to
F(f) s bijective;

1') the correspondence Home:(U,V) — Home (G(U),G(V)) mapping g to
G(g) is bijective;

2) @ morphism f € MorC is an isomorphism if and only if F(f) is an is0-
morphism;

2"} a morphism g € Mor(C' is an isomorphism if and only if G(g) 1s an
1somorphism;

3) ewery object X € ObC is isomorphic to an object of the form G(U), where
U e ObCl;

3') ewery object U € Ob (' is 1somoarphic to an object of the form F(X), where
X € ObC.

Proof. We shall prove the assertions 1) and 1'), leaving the other statements
as an easy exercise to the reader.
Let f: X — Y be a morphism of the category C. Denote by ¢ an isomor-
phism of the functors GF ~ 1¢ and consider the commutative diagram
X
cr(x) X x
|
GF(N) | f‘[

ery) 29 v.

Since ¢(X) is an isomorphism, f = o(Y)GF(f)p~1(X). It follows that
F(f) = F(f') implies f = f', and thus the map from Home¢(X,Y) to
Home: (F(X), F(Y)) is injective. In a similar way, the map Home/ (U, V) —
Hom¢ (G(U), G(V)) is injective.

Finally, consider an arbitrary monomorphism ¢ : F(X) — F(Y). Let f =
o(Y)G(9)¢~}(X) and ¢' = F(f). Then, as before, f = o(Y)G(¢')p 1 (X),
and thus G(g) = G(g'). Consequently, g = ¢’ = F(f), and thus the map
Home¢(X,Y) — Home: (F(X), F(Y)) is bijective. O

Now, consider module categories. Let a pair of functors F, G be an equiv-
alence of the categories mod-A and mod-B. Combining Proposition 8.4.1 with
the exactness criterion (Proposition 8.3.5), we obtain the following proposi-
tion.

Proposition 8.4.2. 1) A sequence of A-modules
0— M, L0, L My
18 ezact if and only if the sequence of B-modules
0— F(My) "0 p(,) 2D P(0y)

18 ezact.
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2) A sequence of A-modules
My L My % My —0

18 exact if and only if the sequence of B-modules

F(My) 20 Py 29 P(My) — 0
18 ezact.
3) An A-module P is projective if and only if the B-module F(P) is projec-
tive.

Proof. Here we shall prove 3), leaving the proofs of 1) and 2) to the reader.
We shall use the “diagrammatical” definition of projectivity (see Sect. 8.2,
Example 4). Assume that F((P) is projective. Let

P
|7
M S N — 0

be a diagram of A-modules with exact row. Applying the functor F', we obtain
the following diagram of B-modules

F(P)
lF(f)
Fy) 2@ pvy — 0

with exact row (in view of statement 2)). It can be completed to a commutative
diagram

F(P)

s / lF(f)

F(M F(N) — 0,
(M) s (V)
in which, by Proposition 8.4.1, g = F(f) for some morphism f:P— M.But
then F(nf) = F(m)F(f) = F(r)g = F(f) and hence nf = f. Consequently,
the diagram

P
s
M = N — 0

is commutative and P is projective.

Conversely, if P is projective, then the isomorphic module GF(P) is pro-
jective, and by what we have just proved, F((P) is projective. O
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Corollary 8.4.3. Let F,G be an equivalence of the categories mod-A and
mod-B and P = G(B). Then P is a projective A-module, E4(P) ~ B and,
for any A-module M, there is an epimorphism nP — M (for a suitable n).

We say in this case that P is a generating A-module (a generator).

Proof. The fact that P is projective follows from the projectivity of the B-
module B and Proposition 8.4.2. Moreover, by Proposition 8.4.1, E4(P) ~
Eg(B) ~ B. Finally, every A-module M is isomorphic to a module of the
form G(N) for a suitable B-module N and there is an epimorphism nB — N,
which induces an epimorphism G(nB) ~ nP — G(N) ~ M, as required. O

Now, let P be a projective A-module and B = E4(P). We shall say that B
is a minor of the algebra A. We can define two functors F' : mod-A — mod-B
and G : mod-B — mod-A by F(M) = Homu(P, M), and G(N) = N®pP
(P is considered as a left B-module). Moreover, we can define also functor
morphisms ¢ : 1,,,4.5 — FG and ¢ : GF — 1,,,4 4 in the following
way. For every B-module N, define ¢(N) to be the homomorphism N —
Hom (P, N ® p P), mapping every element z € N into the A-homomorphism
z: P - N®pgP such that Z(p) = 2 ®p p. For every A-module M, define
(M) to be the homomorphism Homs(P,M)®p P — M, mapping f ®pp
(where f € Hom4(P, M) and p € P) into f(p) € M. It is easy to verify that
o and ¢ are, indeed, functor morphisms.

Observe that in general, not every A-module is isomorphic to a module
of the form G(N). Indeed, there is always an epimorphism f: nB — N. Let
N' =Ker f and let ¢ be an epimorphism mB — N'. Then the sequence

mB-4nB-L N 0

is exact. Consequently, the sequence

G(mB) 9 ¢(nB) Y 6(v)— 0

is exact. However, G(nB) ~ nP and G(mB) ~ mP, and thus, if M ~ G(N),
then there is an exact sequence of the form

mP —-nP —- M — 0. (8.4.1)

Therefore, it is natural to consider the category mod-P of all those A-
modules for which there is an exact sequence of the form (8.4.1) together with
all possible homomorphisms of such modules.

Theorem 8.4.4. A pair of the functors F = Homu(P,—) and G = —®p P
18 an equivalence of the categories mod-P and mod-B.

Proof. We shall show that ¢ : 1 .4 p = FG and ¢ : GF 5 1,,4.p- Indeed,
©(B) is the natural isomorphism B = Homu4(P, P) = Homs(P,B ®p P) =
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FG(B). Thus, also ¢(nB) is clearly an isomorphism. Furthermore, as we have
seen above, for any B-module N, there is an exact sequence

mBi)nBi)N——eo.

Apply the functor F'G. Since G is a right exact functor and F' is exact (because
of projectivity of P), we obtain the following commutative diagram with exact
rows:

mB 4, nB £, N — 0
1&#(1113) lsa(nB) l&p(N)
FGmB) 29 remB) ™Y FeN) — 0.

Now, since p(mB) and ¢(nB) are isomorphisms, it follows from the Five
lemma (Lemma 8.2.1) that ¢(/N) is also an isomorphism.

In a similar manner one can show that, for an module M € mod-P, the
homomorphism (M) is an isomorphism. O

The following result follows from Theorem 8.4.4 and Corollary 8.4.3.

Theorem 8.4.5 (Morita). The categories mod-A and mod-B are equivalent
if and only if there is a projective generating A-module (progenerator) P such
that E4(P) = B. In this case, an equivalence of the categories 1s realized by a
pair of functors F = Homs(P,-) and G = —®p P.

The equivalence of categories has the following simple interpretation. Let
A>~kiPi®kPo®...0 kP, be a decomposition of the regular A-module into
a direct sum of principal A-modules subject to P; % Pj for i # j. If Pis a
projective generating A-module, then there exists an epimorphism nP — A,
and thus nP ~ A@® M. Consequently, by the Krull-Schmidt theorem, P has to
contain all modules Py, Ps,..., P; as direct summands. Since every projective
module is a direct sum of principal ones, we deduce that projective generators
are those projective modules which contain every principal A-module as a
direct summand. Taking into account Theorem 3.5.6, we can see that the
module categories mod-A and mod-B are equivalent if and only if the algebras
A and B are isotypic, that is to say, if and only if their basic algebras are
isomorphic. In particular, the Morita theorem allows us to restrict the study
of A-modules to the case when A is a basic algebra. Moreover, the results of
Sect. 3.5 make it possible to oversee all algebras whose module categories are
equivalent.

8.5. Tensor Algebras and Hereditary Algebras

In this section we are going to present a generalization of the construction of
a “path algebra” (see Sect. 3.6). Such a generalization is a tensor algebra of a
bimodule.
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Let B be an algebra and V a bimodule over B. Then V®? = VgV is
again a B-bimodule. Iterating this procedure, we can construct B-bimodules
V@ for all k > 2 by putting V& = V®~1@p V. It is convenient to set
V® = B and V® = V. The associativity of tensor multiplication implies that
VOk@p VOm ~ Y®(k+m) In what follows, we shall identify V®* @ g V®™ and
VO(k+m)

Now, consider the direct sum T(V) = ngo V®*_ Elements of T(V) are finite

sums Y i, where t; € V@ The isomorphism constructed above allows us
k

to define, for any elements tx € V®* and t,, € V®™, the product by setting
titm = tr @ptm € VOKE+m) Thig multiplication can be extended by linearity
to the entire T(V'), and T(V') becomes in this way an algebra (in general,
infinite dimensional). It is called the tensor algebra of the bimodule V.

By construction, T(V) contains the subalgebra B = V®° and the B-
bimodule V = V®!. Moreover, as the following theorem shows, T(V) is a
universal algebra with this property.

Theorem 8.5.1. Let » : B — A be an algebra homomorphism and f : V — A
a homomorphism of B-bimodules.'” Then there ezists a unique algebra homo-
morphism F : T(V) — A such that the restriction of F on B and V coincides
with ¢ and f, respectively.

Proof. The homomorphism f induces B-bimodule homomorphisms f®* :
VOk . A®% Moreover, multiplication in the algebra A induces a bimod-
ule homomorphism A®* — A such that the image of a1 ®pas @p...Qpay is
ayas ...ar . Thus, we obtain a family of homomorphisms fi : V®* — A4 such
that fr(vi ®Bv2®B...Q@Bvk) = f(v1)f(v2)...f(vi). Evidently, we obtain
in this way an algebra homomorphism F : T(V) — A (we put fo = ¢ and
fi = f). Moreover, F is unique; this follows immediately from the fact that
T(V) is generated (as an algebra) by the elements of B and V. O

As usual, the universal property which is formulated in Theorem 8.5.1,
determines the algebra T'(V') up to an isomorphism.
There is a distinguished ideal in the algebra T(V'), namely, J = J(V) =

k?é V@ We shall call it the fundamental ideal of the tensor algebra T(V).
=1

The ideals I C T(V) such that J2 D I D J* for some k, will be called
admissible ideals.

The most important case in our study will be that of a semisimple (and
also separable) algebra B. In this case, it turns out that tensor algebras of
B-modules play the role of “universal covers”, in analogy to what happens for
path algebras in the split case (see Theorem 3.6.6).

Theorem 8.5.2. Let A be a finite dimensional algebra, R = rad A and B =
A/R. Assume that the algebra B is separable. Then the algebra A is 1somorphic

" A becomes a B-bimodule by setting byabs = @(b1)ap(bs) for any a € A, by,bs € B.
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to a quotient algebra of the algebra T(V') by an admissible ideal, where V =
R/R?.

Proof. By the Wedderburn-Malcev theorem (Theorem 6.2.1), A has a sub-
algebra A ~ B. Hence, it is possible to define an algebra monomorphism
¢ : B — A and consider A as a B-module. In addition, A = A ® R (as a
B-module). Since B ® B° is a semisimple algebra (Theorem 6.1.1), every B-
bimodule is semisimple. In particular, R contains a B-subbimodule R such
that R = R @ R?. Evidently, R ~ V and we may use this isomorphism to
define a B-bimodule monomorphism f : V — R.

By Theorem 8.5.1, there is a homomorphism F' : T(V) — A which restricts
on B to ¢ and on V to f. Thus F induces an algebra isomorphism T'(V)/J? ~
A/R?. This implies that I = Ker F C J2. On the other hand, F(J) C R, so
F(J*) C R¥ and, since R is nilpotent, F(J*) = 0 for some k. As a consequence,
J¥ C I and thus I is an admissible ideal.

Now, observe that F(B) = ¢(B) = A and FV)=f(V)= R. Thus, every
element r € R is of the form r = F(z) + ', where € J and ' € R%. It
follows readily that, for every element r € R, r = F(z) + r' with z € J*
and r' € R'*!. In view of the nilpotency of the radical, we get the equality
F(J) = R. Consequently, F is an epimorphism and A ~ T(V)/I. The theorem
follows. O

The pair (B,V), where B = A/R, V = R/R?, will be called the type of
the algebra A. If B is a separable algebra, we shall say that A is an algebra
of separable type. Obviously, the type determines the diagram D(A) of the
algebra A (see Sect. 3.6). We shall therefore call this diagram the diagram of
type (B,V).

Clearly, if B is a semisimple algebra and V a finite dimensional B-
bimodule, then every quotient algebra T'(V')/I, where I is an admissible ideal,
is finite dimensional and it is of type (B, V). In particular, the quotient algebra
T(V)/J? is the least (dimensional) algebra of the given type.

As we have already mentioned, the algebra T(V') is, in general, infinite
dimensional. It is not difficult to give a condition under which it will be finite.

Proposition 8.5.3. Let B be a semisimple algebra and V a finite dimen-
stonal B-bimodule. In order that the algebra T(V') be finite dimensional, it is
necessary and sufficient that the diagram of type (B,V') has no cycles.

Proof. Evidently, T(V') is finite dimensional if and only if V®™ = 0 for some m.
Decompose B into a direct product of simple algebras B = By X Ba X...x B,,.
Let 1 =e; + €2 + ...+ e, be the corresponding central decomposition of the
identity and V;; = e;Ve;. In a diagram D of type (B, V), there is an arrow
from the point ¢ to the point j if and only if V;; # 0. Observe that V = @ V;;

1,]
(as B-bimodules) and that Vi; ® g Vie # 0 if and only if V;; # 0, Vi # 0 and
j = k. Consequently, e;V®2¢; # 0 if and only if there is a path of length 2
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from the point ¢ to the point j. Similarly, e;V®™e; # 0 if and only if there is
a path of length m from ¢ to j, and this implies our assertion. O

We shall now apply the above technique to describe the hereditary alge-
bras, i.e. the algebras whose right ideals are all projective (see Sect. 3.7).

Theorem 8.5.4. A finite dimensional hereditary algebra A of separable type
(B, V) is isomorphic to T(V). Conversely, if there are no cycles in a diagram
of type (B, V), then T(V) is a finite dimensional hereditary algebra.

Proof. First, verify that T = T(V) is a hereditary algebra. Observe that,
since T(V)/J = B is a semisimple algebra and J™ = 0 for some m (by
Proposition 8.5.3), J = rad T' (by Proposition 3.1.13). Let 1 = e;+ea+...+en
be a minimal decomposition of the identity of the algebra B (clearly, it will
be also a minimal decomposition of the identity of the algebra T').

P, =eT=® eV, then PJ = e;J = & ;V® = ¢;V @5 T. Since
k=0 k=1
e;V ~ é; s;U;, where U; are simple B-modules, P;J ~ 5) s;(U; @ T) ~

GB s]P is a projective module. Consequently, J = EB e,J 1s a projective
j=1
module and T is a hereditary algebra (by Theorem 3. 7 1)

In view of Theorem 8.5.2, it remains to prove that if A = T/I is a hered-
itary algebra with an admissible ideal I, then I = 0 (note that, according to
Corollary 3.7.3, there are no cycles in the diagram of a hereditary algebra).
Write R = J/I = rad A and denote the principal modules by P; = P;/P;I. By
induction on k, we are going to prove that R¥/RF+1 ~ Jk/Jk+1 For k = 1,
this is 1mmed1a.te from the fact that I C J2. Thus, assume that R*~1/RF ~
Jk- I/J" k > 2 and consider the projective cover P = P(R¥~1/R¥). Let

P~ @ siP;. By Theorem 3.3.7, P = P(R*-!). Since R*~! is a projec-
tive n;&iule, P ~ R*1 Then R* ~ PR and R*/R¢+! ~ PR/PR?. How-
ever, since R/R* ~ J/J? and P = P(J*"1/JF) ~ é'a siP;, we get that
R¥/R*!' ~ PR/PR? ~ J*/J**t!  as required. ConseqtiZIlltly, I C J* for any

k > 2 and thus, since J is nilpotent, I = 0. The proof of the theorem is com-
pleted. a
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Exercises to Chapter 8

1. Prove that each of the following categories is equivalent to its dual category:
a) the category of finite dimensional vector spaces;
b) the category of finite abelian groups. (Hint: Use Exercise 5 to Chap. 7.)

2. Let the commutative diagram

M1 —_— M2 — Ala —_— M4

I

N — N — N3 — N

have exact rows. Prove the following statements:
a) If oy is an epimorphism and both a2 and a4 are monomorphisms, then as
is a monomorphism.

b) If as is a monomorphism and both @; and as are epimorphisms, then a
is an epimorphism.

3. (3 x 3 lemma) Prove that if in the commutative diagram

0 0 0
1 | 1

0 b M1 g N1 b L1 g 0
1 ! |

0 b ]\42 - N2 — Lz g 0
l | 1

0 — M3 — N3 — L3 — 0
| | |
0 0 0

all columns and any two of the three rows are exact, then the remaining row is
exact.

4. A commutative diagram

x L
I
M L

is said to be a Cartesian square (pull-back) if for any commutative diagram

y £
nl *’l
M LN

there is a unique homomorphism ¢ : ¥ — X such that £ = fy and = gp. Prove
that a Cartesian square can be constructed for any given pair of homomorphisms
f:M — Nandg:L — N.(Hint: Consider the submodule {(z,y) | f(z) =
g(y)} of M @ L.) Is such a square unique?
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5.

8. The Morita Theorem

Let
0—-L—-M-—-=N-—=0
be a given exact sequence, and ¢ : N’ — N a homomorphism. Consider the
diagram 5 g
0 — [ — M — N — 0

A
0 — [ L. M = — 0
where the right square is Cartesian and f' is given by relations f = ¢'f’ and
g'f' = 0 (in view of the uniqueness of the Cartesian square, f' is fully determined

by these relations). Prove that the upper row of the diagram is exact (it is called
a lifting of the given exact sequence along ¢).

(Schanuel’s lemma) Given two exact sequences
0— N — P Lhm—o0

and s
0—>Ng—}P3 2M——rO

where P, and P» are projective modules, prove that P, @ No ~ P, @ N;. (Hint:
Consider a lifting of the first sequence along f» and the second one along fi.)

. Prove that the category of left projective A-modules is equivalent to the category

dual to the category of right projective A-modules. (Hint: Apply the functor
h; = HomA(—,A).)

Prove that, for any A-module M, there is an exact sequence
plup Loy —o

where P; and P, are projective modules, Ker fo C rad P, Ker fi C rad P, and
such that, given another sequence

@ HQ M —0
with these properties, there is a commutative diagram
p LR LM — 0
9011 <pko 1“1
@ Q@ & M — 0

where ¢o and ¢; are isomorphisms.

. (M. Auslander) Given an A-module M, let

plup LM —o

be an exact sequence satisfying the properties listed in the preceding exercise.
Put
Tr (M) = Coker h3(f1)
(see Example 6 of functors in Sect. 8.1 and Exercise 7).
a) Prove that, up to an isomorphism, Tr (M) does not depend on the choice
of the exact sequence with the above properties.
b) Verify that the exact sequence

ho(Py) — h%(Py) — Tr (M) —0

possesses also the properties listed in Exercise 8.

¢) Prove that Tr (M) has no projective direct summands.

d) Establish that for M = P®N, where P is projective and N has no projective
direct summands, Tr (Tr (M)) ~ N.
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Let U and U’ be simple A-modules. Using the notation of Theorem 8.4.4, prove
that if F(U) # 0, then F(U) is a simple B-module. Moreover, U % U’ implies
that F(U) % F(U').

Let 1 = e1 +e2 + ...+ en be a minimal decomposition of the identity of an
algebra A, n > 2. Prove that the algebra A is semisimple (separable) if and only
if for any pair of indices ¢ # j, the algebra eAe, where e = e; + ¢, is semisimple
(separable).

Let A be a hereditary algebra, P a projective A-module and B = E4(P). Prove
that B is hereditary.

Denote by D a diagram of the form

and let A be the quotient algebra of the path algebra K'(D) by the ideal generated
by the element Z oi7; . Prove that the algebra A is not hereditary but that every

i=1
algebra eAe, where e is an idempotent, e # 1, is hereditary. (Hint: If D’ is a
diagram consisting of some (but not all) vertices of the diagram D and of all
arrows connecting them, and e is the sum of all paths of lengths 0 in D’, then

ede ~ K(D').)

The following set of exercises (14-19) deals with an application of tensor prod-

ucts, viz. the theory of induced representations of groups. Let H be a subgroup of
a group G, and let N be a K H-module. Then the induced K G-module Ind§(N) is
defined to be N @y IKG. If T is the representation of the group H corresponding
to the module N and x its character, then the representation of G corresponding to
the module Ind$,(N) is called the representation induced from T and its character
Ind§ x the character induced from x. Of course, every K G-module M can be viewed
as a K H-module: As such, it will be denoted by Res% (M) and called the restriction
of M to a subgroup H.

14.

15.

(Frobenius reciprocity theorem) Let M be a KG-module, x its character and N
a K H-module and ¥ its character.

a) Prove that Homkg (Indf(N), M) ~ Homiu (N, Res§;(M)).

b) Ifn=(G:1), m = (H:1), prove that

=Y ndf@os ™) = = 3 w(hResGx(h ™).

9€G h€H

(Hint: Use Exercise 14 to Chap. 7.)

c) If the characteristic of the field K does not divide the order of the group
G and if M is a simple KG-module and N a simple K H-module, use a) to
deduce that the multiplicity of M in Indg(N) is the same as the multiplicity
of N in Res§(M).

Let F O H be two subgroups of G. Prove that Ind§(N) ~ Ind%(Ind%(N)) for
any I{ H-module N.



158

16.

17.

18.

19.

8. The Morita Theorem

(Mackey’s formula) Let F and H be two subgroups of G and ¢1,03,...,0, a set
8
of representatives of the double cosets of G by F and H (i.e. G = |J HoiF,

i=1
where the cosets are pairwise disjoint). Write H; = (¢, Ho;) N F. Every K H-
module N can be considered as a K Hi-module by defining z(o; ' ho;) = zh for
every h; denote this K H;-module by N;. Prove that

Res&(Ind§N) ~ & Indf, (N:)
i=1

for every K H-module N. (Hint: As a I{ H-K F-bimodule, KG is a direct sum
é V;, where V; is the subspace with basis {ho:f | h € H, f € F}. Verify
i=1

that Vi ~ Indf;,(I{H;) as a K F-module and extend this isomorphism to all
K H-modules along the lines of the proof of Theorem 8.4.4.)

a) Using the results of Exercise 14 and 16, prove that if K is a field of charac-
teristic 0, then the K G-module Ind§(N) is simple if and only if the K H-
module N is simple and, for every 4, the K H;-modules N; and Resfi,(N)
have no isomorphic direct summands (here H; and N; are defined as in
Exercise 16 for F = H).

b) If H is a normal subgroup, deduce that the representation Ind$(T) is ir-
reducible if and only if T is an irreducible representation which is not iso-
morphic to any representation T, , where Ty (h) = T(c " 'ha), o0 ¢ H.

a) Prove that every indecomposable representation of a subgroup H of a
group G is isomorphic to a direct summand of a representation of the form
Resy(T), where T is an indecomposable representation of G.

b) In the case that the characteristic p of the field K does not divide the index
(G : H), prove that every indecomposable representation of the group G is
isomorphic to a direct summand of a representation of the form Ind§(T),
where T is an indecomposable representation of H. (Hint: For a KG-module
M, construct an epimorphism 7 : M Qg KG — M of KG-modules which
splits as an epimorphism of K H-modules and use Exercise 18 to Chap. 7.)

Using the results of the preceding exercise and those of Exercise 21 and 22 to
Chap. 7, prove that a group has a finite number of indecomposable representa-
tions over a field of characteristic p > 0 if and only if its p-Sylow subgroup is
cyclic (Higman’s theorem).



9. Quasi-Frobenius Algebras

The duality which exists between the categories of the right and left modules
plays an important role in the theory of finite dimensional algebras. In the
present chapter we shall introduce this duality, investigate its properties and
apply the obtained results to the study of two classes of algebras, viz. to quasi-
Frobenius algebras introduced into the theory by T. Nakayama and to serial
algebras, or principal ideal algebras, which were studied first by K. Asano.

9.1 Duality. Injective Modules

First, we shall establish the duality between the category of left modules and
the category of right modules over a finite dimensional algebra A.

To every (finite dimensional) right A-module M we assign a left A-module
M* constructed as follows. As a vector space, M* is the space Hom(M, K) of
linear functionals on M (the conjugate space); operators from A act on M*
according to the formula (af)(m) = f(ma)foralla € A, f € M* and m € M.
It is easy to verify that M* becomes in this way a left A-module.

Similarly, if M is a left A-module, then the conjugate space M* becomes
a right A-module.

Every linear map ¢ : M — N induces a conjugate map p* : N* — M*
defined by

(¢" £)(m) = f(om).

We can check readily that if  is a homomorphism, so is ¢*. Moreover,
(p)* = ¥*p* and 1* = 1.

Hence, assigning to every module M the module M* and to every ho-
momorphism ¢ the homomorphism ¢*, we get a contravariant functor (see
Sect. 8.1). More precisely, we get two contravariant functors: one from the
category mod-A4 of right A-modules to the category A-mod of left A-modules,
and the other in the opposite direction. We shall call them the duality functors.

Recall that there exists a natural map 637 : M — M** assigning to every
vector m € M the linear functional ép(m) : M* — K such that §p(m)(f) =
f(m). Evidently, 65 defines a morphism from the identity functor to the
composition of the duality functors defined above. It is a well-known fact from
linear algebra that the map 837 is an isomorphism for every finite dimensional
space M. Thus, our observations can be formulated in the following way.
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Theorem 9.1.1. The duality functors define an equivalence of the categories
mod-A and (A-mod)°. In particular, these functors are ezact and M* = 0
implies M = 0.

Corollary 9.1.2. A module M is simple if and only if the module M™** is sim-
ple. Moreover, if M ~ eA, where A= A/rad A and e is a minimal idempotent
of A, then M* ~ Ae.

Proof. Since M ~ M** it is sufficient to verify that if M is not simple,
neither is M*. However, if N is a non-trivial submodule of M, consider the
exact sequence

0-N->M-M/N-QO0,

and apply the duality functor. In the exact sequence
0— (M/N)" - M* - N*=0,

both (M/N)* and N* are non-zero modules, and thus M* is not simple.
Now, let M ~ eA, where e is a minimal idempotent. Then Me # 0 and

there is a functional f € M™* such that f(Me) # 0. Since f(me) = (ef)m, we

get eM* #£ 0. Consequently, M* ~ Ae. a

Corollary 9.1.3. There is a bijective correspondence between the submodules
of M and those of M*, reversing the inclusion.

Proof. In order to prove the corollary, we note that every submodule N ¢ M
defines an epimorphism = : M — M/N and thus a monomorphism 7* :
(M/N)* — M*, that is, a submodule of M*. This submodule has a sim-
ple interpretation: it coincides with the “orthogonal complement” N1 =
{f € M* | f(N)=0}. Moreover, M*/N+ ~ N*. O

Let us mention the following obvious formulae:
(N1+N2)J_=N1'LQN2J_, (NlnNz)J_:NlJ_-l-NzJ_. (911)

A correspondence satisfying (9.1.1) is called an anti-isomorphism of lat-
tices.

In what follows, we shall often deal with the submodule (rad M) C M*.
Since rad M is the intersection of all maximal submodules of M, (rad M )J‘
is the sum of all minimal submodules of the module M*. It is called the socle
of the module M* and is denoted by soc M*. Note that the socle of a module
can be defined also by the formula

socM ={mée M | m(rad A) = 0}.

Furthermore, we can write soc M* ~ (M /rad M)*.

We have already seen the importance of projective and, in particular, of
principal modules in the study of the structure of algebras. It is natural to ex-
pect that their dual modules will be found also useful in the investigations. By
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“inverting the arrows” in the theorems on projective modules (Theorem 3.3.5
and Example 4 of Sect. 8.2), we get immediately the following result.

Theorem 9.1.4. The following conditions for a module Q are equivalent:

1) Q* is projective (in other words, Q ~ P*, where P is a projective module);
2) Q s a direct summand of the module nA* for some n (A* is the module
dual to the regular module and will be called coregular);
3) Q~@kiP}, where P; are principal modules;
1

4) every diagram of the form
0o — M % N,
al
Q
in which the row is ezact, can be completed to a commutative diagram

0 — M 2 N;
wlﬂ
Q

in other words, the equation zp = 1 has a solution for every b : M — Q
and for every monomorphism ;

5) every monomorphism Q — M splits, i.e. Q is a direct summand of any
module which contains Q as a submodule.

The modules satisfying the property 4) of Theorem 9.1.4 are called injec-
twe. In this way, Theorem 9.1.4 provides a characterization of the injective
modules over finite dimensional algebras.

The above theorem implies, in particular, that indecomposable injective
modules are just the modules dual to the principal ones. We shall call them
coprincipal modules.

The following corollary is a consequence of Corollaries 9.1.3, 3.2.5 and
3.2.9.

Corollary 9.1.5. If Q is a coprincipal A-module, then its socle is a sim-
ple module. Assigning to Q the simple module soc @, we establish a bijective
correspondence between the coprincipal and the simple modules.

In an analogy to the projective cover, we can introduce the concept of an
injective hull of M as the least injective module containing a given module M
as a submodule. More precisely, an injective module Q is the injective hull of
a module M if there is a monomorphism ¢ : M — @Q such that Im ¢ D socQ,
or equivalently, for any submodule X of @, Imp N X = 0 implies X = 0. We
shall write in this case Q = Q(M).



162 9. Quasi-Frobenius Algebras

The existence and properties of injective hulls follow immediately, in view
of the duality, from the respective results on projective covers. We shall for-
mulate the facts which will be needed in the sequel in the following theorem
whose proof is left to the reader.

Theorem 9.1.6. 1) If P is a projective cover of M*, then P* is an injective
hull of M.

2) Q(M) = Q(soc M).

3) QM: @ My) = Q(My) & Q(My).

4) If¢v: M — Q' is a monomorphism and Q' is an injective module, then

Q' =Q8Q:1, where Q ~ Q(M) and Imy C Q.

Corollary 9.1.7. If soc M s a simple module and ¢(M) > £(Q;) for any
coprincipal module Q; , then M 1s a coprincipal module.

Proof. The statement follows from the fact that, if Q = Q(M), then soc@ ~
soc M. Therefore @ is a coprincipal module. a

Observe that £(Q;) = £(Q7), and Q} is a principal module. Therefore the
maximal length of right coprincipal A-modules coincides with the maximal
length of left principal A-modules (but, in general, does not coincide with the
maximal length of right principal modules; see Exercise 1 to this chapter).

9.2 Lemma on Separation

In this section we investigate properties of modules which are simultaneously
projective and injective. Such modules are called bijectivel®. Note that in gen-
eral, for a given algebra A, there will be no A-bijective modules (see Exercise 2
to this chapter). However, the existence of a bijective module allows to reduce
the study of A-modules to the study of modules over some proper quotient
algebra of A. This is a property which can be found useful for studying some
classes of algebras and their modules.
First we shall establish the following simple but important fact.

Proposition 9.2.1. If P is a projective and M a faithful module, then for
some n, there is a monomorphism P — nM. Similarly, if Q is an injective
A-module, then there is an epimorphism mM — Q.

Proof. Let E = E4(M). Considering M as a left E-module, we can con-
struct an epimorphism nE — M for some n. Applying the left exact functor
Hompg(—, M), we get a monomorphism ¢ : Homg(M, M) — Hom(nE, M) ~
nM. In fact, since M is an E-A-bimodule, ¢ is also an A-module homo-
morphism. Now assigning to every a € A the map f(a) : M — M, whose

18 The usual English terminology for these modules is projective-injective
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value at m is ma, we get a homomorphism f : A — Hompg(M, M). Clearly,
Kerf = Ann M = 0 because M is faithful. The composition ¢f is there-
fore a monomorphism A — nM. In order to obtain the statement for any
projective P, it is sufficient to note that P is a submodule (in fact, a direct
summand) of the free module kA for some k, and hence the homomorphism
kA — knM = k(nM), coinciding on every component with ¢ f, is obviously
also a monomorphism.

Now, the statement on injective modules follows by duality (since M* is
faithful if and only if M is faithful). O

From this result we can derive the following fundamental lemma.

Lemma 9.2.2 (Separation Lemma). Let W be a bijective A-module. Then
there is a non-zero ideal I C A such that every A-module M decomposes
into a direct sum My, & Ms, where AnnM; D I, and every indecomposable

direct summand of the module M, is isomorphic to a direct summand of the
module W.

Proof. Evidently, it is sufficient to verify that, for every indecomposable mod-
ule M which is not isomorphic to a direct summand of W, AnnM D I.
Therefore we may take for I the intersection of the annihilators of all inde-
composable A-modules which are not isomorphic to direct summands of W;
denote the class of such modules by M. It remains to prove that I # 0.

Let us assume that I = 0. Since A is finite dimensional, A cannot
t
have an infinite chain of subspaces. Consequently, I = ()| Ann M;, where

=1
My, M, ..., M, is a finite number of modules from M. But then I = Ann M,
where M = My & My & ... ® M,, and thus M is a faithful A-module. By
Proposition 9.2.1, there is a monomorphism W — nM, since W is a projec-
tive module. However, W is also injective. It follows that nM ~ W @ X and
thus, according to the Krull-Schmidt theorem, every indecomposable direct
summand of W is isomorphic to one of the M;’s. However, the latter contra-
dicts our assumption, and thus the lemma is proved. O

Hence, if W = by W, ® koW & ... @ kW, , where W; are (pairwise non-
isomorphic) indecomposable modules, then every A-module has the form M; &
LW, B LWy & ... 8 ¢, W,, where M; is a module over the quotient algebra
A/I. We shall denote this quotient algebra by A~ (W).

The Separation lemma has a particularly simple formulation in the case
when the module W is indecomposable (such module will be called biprinci-
pal): Every A-module M has the form M ~ M; @ kW, where M; is a module
over A7(W). In this case, the converse statement holds, as well.

Lemma 9.2.3. Let W be an indecomposable A-module such that every A-
module M s of the form M, @ kW, where M; is a module over a proper
quotient algebra B of the algebra A. Then W is a bijective module.
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Proof. Since both the regular and the coregular (right) A-modules are faithful,

they are not B-modules. Consequently, they must possess a direct summand

isomorphic to W. Therefore W is both projective and injective, as required.
O

Now let us fix a biprincipal A-module W. We shall describe the princi-
pal and coprincipal modules over the quotient algebra B = A~ (W) in more
details.

Proposition 9.2.4. Every principal B-module is either a principal A-module
(distinct from W), or a factor module of W by a minimal submodule W,
(unigque by Corollary 9.1.5). Every coprincipal B-module is either a coprin-
cipal A-module or a mazimal submodule W, of the module W (unique by
Corollary 3.2.5). Conversely, if W is not a simple module, then W/W; is a
principal and Wy is a coprincipal B-module.

Proof. Clearly, W/W; is a B-module. Write P = Pg(W/W}). Then the epi-
morphism W — W/W; extends to an epimorphism ¢ : W — P which is not
an isomorphism (because W is not a B-module). Therefore Ker¢o D W; and
£(P) < {(W/W1), which implies that P ~ W/W; . Similarly, W, ~ Qg(W>).
Besides, W/W; possesses a unique maximal submodule and is therefore inde-
composable. Also W, is indecomposable, since it has a unique minimal sub-
module.

Now, let P be an arbitrary principal B-module, and P' = P4(P). If
P’ 2 W, then P’ is a projective B-module, and therefore P' ~ P. If P' ~ W,
then the epimorphism W — P is not an isomorphism and can be factored
through an epimorphism W/W; — P, from where P ~ W/W; . The state-
ment on the coprincipal modules follows by duality. O

Proposition 9.2.4 and Lemma 9.2.2 yield immediately the following con-
sequence.

Corollary 9.2.5. Let W be a biprincipal A-module, and let A = P, @ P,
where Py ~ nW and P, has no direct summands isomorphic to W. Then
soc P; s an ideal of A and A~(W) = A/soc P; .

Proposition 9.2.6. An algebra A has a simple bijective module W if and
only if A >~ A1 x Ay, where Ay ~ M,(D) with a division algebra D and
A, = A_(W)

Proof. Let W be a simple bijective A-module, and let A >~ nW @ P, where P.
has no direct summands isomorphic to W. Every homomorphism ¢ : W — P
is either zero, or a monomorphism. However, in the latter case P ~ W @ X
since W is injective, which is impossible. Consequently, Homs(nW, P) = 0.
Similarly, Hom4 (P, nW) = 0. Therefore A ~ A; X A3 , where A} = Es(nW) ~
My(D) with a division algebra D = E4(W), and A; = E4(P). Evidently,
Ay = A~ (W). The converse statement is trivial. O
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9.3 Quasi-Frobenius Algebras

We have already observed that an algebra may not have any bijective mod-
ules. An important class of algebras, introduced by T. Nakayama, consists
of algebras all of whose projective modules are injective (and thus bijective).
Clearly, this is equivalent to the fact that the regular module is injective. Such
algebras are called quasi-Frobenius.

As a matter of fact, one should have defined right quasi-Frobenius and left
quasi-Frobenius algebras. However, the following theorem shows the equiva-
lence of these notions.

Theorem 9.3.1. The following conditions for an algebra A are equivalent:

1) the right regular A-module is injective;
la) the left regular A-module is injective;

2) the right coregular A-module is projective;
2a) the left coregular A-module is projective.

Proof. The equivalences 1) & 2a) and la) & 2) follow from duality. It is
therefore sufficient to prove, for example, the equivalence 1) < 2). Observe
that the number of coprincipal right A-modules equals the number of principal
left A-modules; this number is, by Corollary 3.2.9, the number of simple left
A-modules, 1. e. the number of simple components of the semisimple algebra
A/rad A. Since the latter is the number of simple right A-modules, it follows
that also the number of principal right A-modules is the same. However, the
fact that the regular module is injective is clearly equivalent to the fact that
every principal module is injective, and thus the number of bijective A-modules
coincides with the number of principal ones. In turn, this is equivalent to
the statement that the number of bijective modules equals the number of
coprincipal modules, and thus that every coprincipal module, or equivalently
the coregular module, is projective. The theorem follows. a

Now, quasi-Frobenius algebras can be characterized as follows: If A ~
k1P, ® k2P, & ... @ ks Py, where P; are principal modules, then A* ~ 1P, &
LP,®... 00, P,. Here, in general, k; # {; ,1.e. A % A*. Those algebras which
satisfy A ~ A* form a proper subclass of the class of quasi-Frobenius algebras.
They are called Frobenius algebras. Important examples of Frobenius algebras
are the group algebras of finite groups (cf. Exercise 8 below).

Arguments similar to those used in the proof of Theorem 9.3.1 produce
the following result.

Theorem 9.3.2. Let A be a quasi-Frobenius algebra. If all multiplicities of
the principal A-modules in the reqular module are equal, i.e. if Afrad A ~
Mp(D1) x Mp(D2) X ... x Mp(Ds), where D; are division algebras, then A is

Frobenius. In particular, a basic quasi-Frobenius algebra is Frobenius.
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The fact that the definition of quasi-Frobenius algebras has been given in
terms of module categories results immediately in the following consequence.

Corollary 9.3.3. Every algebra isotypic to a quasi-Frobenius algebra is quasi-
Frobenius. In particular, every quasi-Frobenius algebra is isotypic to a Frobe-
nius algebre (namely, to its basic algebra).

Moreover, Proposition 9.2.1 and the Krull-Schmidt theorem yield the fol-
lowing corollary.

Corollary 9.3.4. Let A be a quasi-Frobenius algebra, A ~ k1P, @ ko P2 @
... ® ksPs, where P; are (pairwise non-isomorphic) principal modules and
My=POP,&...®P,. Then every faithful A-module has a direct summand
1somorphic to My .

Using Proposition 9.2.6 and the definition of the diagram of an algebra,
we get the following statement.

Corollary 9.3.5. Let D be the diagram of a quasi- Frobenius algebra A. If there
18 ¢ vertez © € D which s either a sink (i is not the tail of any arrow) or a
source (7 18 not the head of any arrow), then A ~ Ay X Ay , where A1 ~ M,(D)
with a division algebra D.

Proof. In order to prove this statement, it suffices to note that if 7 is a sink, then
the corresponding principal module is simple (and the remaining statement
follows by duality). a

By comparing Corollary 9.3.5 and the assertion on diagrams of hereditary
algebras (Corollary 3.7.3), we obtain the following corollary.

Corollary 9.3.6. A hereditary quasi-Frobenius algebra is semisimple.

If A is a quasi-Frobenius algebra, then every principal A-module P is
coprincipal and, by Corollary 9.1.5, its socle is a simple A-module. Moreover,
if P! is a principal module which is not isomorphic to P, then soc P’ # soc P.
It turns out that a converse statement holds, as well. It provides a rather
simple and convenient criterion for an algebra to be quasi-Frobenius.

Theorem 9.3.7. An algebra A 1s quasi-Frobenius if and only if the socle of
each principal A-module is simple and, for any two non-isomorphic principal

A-modules Py and Py, soc Py % soc P,.

Proof. In view of our previous remark, it is enough to prove the sufficiency
of the conditions. Without loss of generality, we may assume that A is ba-
sic. Then A = P ® P, @ ... ® P,, where P; are pairwise non-isomorphic
principal modules. Write Q; = Q(P;). By Theorem 9.1.6, socQ; = soc P;
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is a simple module, moreover, socQ; % socQ; for ¢ # j. Consequently,
Q; are pairwise non-isomorphic coprincipal modules. It follows that Q7 are
pairwise non-isomorphic left principal modules, and since A is a basic al-
gebra, A ~ QI ® Q3 & ... ® QF (recall that the number of left and right
principal modules is the same). We want to show that P; ~ @Q;. In fact,
dimP; < dim@); = dim@? and

Z dimP; = dimA = Z dimQ? = i dim@;,
=1

i=1
so that dimP; = dimQ); for all . Hence, P; ~ @; and the proof of the theorem
is completed. o

Now assume that A is a Frobenius algebra. Then, in view of A ~ A* and
Corollary 9.1.3, it follows that the lattice of the left ideals and the lattice of
the right ideals of the algebra A are anti-isomorphic. It turns out that this
holds for an arbitrary quasi-Frobenius algebra. In fact, this condition provides
a characterization of quasi-Frobenius algebras.

Theorem 9.3.8. An algebra A is quasi- Frobenius if and only if the lattices of
its left ideals and of its right ideals are anti-isomorphic.

Proof. Let » be an anti-isomorphism between the lattices of the left and the
right ideals of A. Clearly, ¢(0) = A and ¢(A) = 0. Decompose the left regular
A-module into the direct sum of the principal ones: A = P P, ® ... D

P, . This means that P; are left ideals of A, > P; = A and, for every i,

i=1
n($p)=0
J#i
Applying the lattice anti-isomorphism (, we obtain the right ideals ¢(P;)
S
of A such that [ ¢(P;) =0 and o(P;) + ( N L,D(Pj)) = A for every i. Write
i=1 j#i
P! = () ¢(Pj). Then A = o(P;) ® P} for every i. We are going to show, by
J#1
induction on k, that

k
A=PloPo.. 0P ([)eP)), k<s.
j=1

For k = 1, the statement has been proved. Thus, assume that the formula

holds for a certain k¥ < s. Then ﬂ @(Pj) D P;_, and since A = P, ®

@{(Pr+1), ﬂ o(Pj) = Py @ ( ﬂ SO(PJ‘)), as required. In particular, A =
Jj=

PloPd®.. .@P’ and thusall P! are pr1nc1pa1 right modules. In addition, since
= A/p(P;), the lattice of the submodules of P} is isomorphic to the lattice
of the submodules of A containing ¢(P;), and thus anti-isomorphic to the
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lattice of the submodules of P; (since ¢ ~!(4) = 0). However, P; has a unique
maximal submodule, and therefore P/ has a unique minimal submodule, and
thus U; = soc P! is simple.

In order to show that A is quasi-Frobenius, it is sufficient, in view of
Theorem 9.3.7, to verify that U; # U; whenever P} # P;.

Observe that ¢~!(P/) = 3 P;, from where P; = [ ¢~ !(P}), and thus

J#i J#
the correspondence between P; and P} is symmetric.

We are going to show that if P; % P;, then U; % Uj;, and consequently,
P} ¢ P|. This will imply immediately that if P/ # P}, then P; # P; and thus
U; # U;, as required.

Hence, write P = P; + P;. Then, in view of P,NP; = 0, P/P; >~ P;
and P/P; ~ P;. Since P;/rad P; # Pj/rad P;, there are just two maximal
submodules in P, one containing P; and the other P;. However, p(P) =
©(P;) N o(P;). This means that the lattice of the submodules of P is anti-
isomorphic to the lattice of the submodules of A = ¢(0) which contain ¢(FP;)N
@(P;). Since o(P;) +¢(P;) = A, A/(p(P)Np(P))) ~ Alp(Pi) ® Al p(P;) ~
P; @ P;. Thus, in P; @ P}, there are just two minimal submodules, which is
impossible if U; o~ U; (because, in this case, any element a + b, where a € U;,
b € U;, generates a simple submodule of U; @ U;, and therefore there are at
least three such submodules).

Now assume that the algebra A is quasi-Frobenius. Then it is possible to
display an explicit anti-isomorphism of the lattices of the left and the right
ideals of A in the following way. For every right ideal I, put £(I) = {a € 4 |
al = 0}, and for every left ideal J, put r(J) = {6 € A | Jb = 0}. Evidently,
¢(I) is a left and r(J) is a right ideal and I D I' or J D J' implies £(I) C £(I")
or r(J) C r(J'), respectively. We are going to show that £ and r are mutually
inverse maps; it is clear that this means that they realize the required lattice
anti-isomorphism.

Consider the exact sequence of (right) A-modules

0—-I—-A—A/I-0.

Applying the functor Hom4(—, A) and taking into account that A is in-
jective, we obtain the exact sequence

0 — Homu(A/I,A) —» Homa(A4, A) — Homyu(l,4) — 0.

Now, every homomorphism A/I — A is determined uniquely by the image of
the class 1+ I, which, obviously, may be any element a € A such that al = 0.
In other words, Hom4(A/I, A) ~ {(I) and the above sequence can be written
in the form

0—-41I)— A— A/UI)— 0.

Applying the functor Hom4(—, A) again and identifying Hom4(A/€(I), A)
with r¢(I), we get the exact sequence

0—rf(I)— A— A/rl(I) -0,
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in which r¢(I) and A/rf(I) are isomorphic to Hom(Homa(I,A),A) and
Homa(Homa(A/I,A), A), respectively.

Now, observe that there is a unique homomorphism of the modules
M — Homy (HomA(M , A),A) which maps m € M to the homomorphism
m : Homa(M, A) — A such that, for any f € Homa(M, 4), m(f) = f(m).
It is clear that the set of all such homomorphisms forms a functor morphism
Id, 04 — Homa(Homa(—, A), A) . In particular, we get the following com-
mutative diagram with exact rows

0o — I — A — A/ — 0

| | | (9.3.1)

0 — rI) — A — A/rl(I) — 0.

Here the middle map is an isomorphism.

We shall show that the map M — Hom 4 (HomA(M, A), A) is a monomor-
phism for every M. To this end, embed M into an injective module @ and
observe that, since A is quasi-Frobenius, ) is bijective. Consequently, it is
a direct summand of a free module. Therefore, there is a monomorphism
M — nA for some n. This means, however, that for any non-zero m € M,
there is a homomorphism f : M — A such that f(m) # 0. It follows that
m(f) = f(m) # 0; hence m # 0 and our map is a monomorphism.

It remains to remark that if in the diagram (9.3.1) the outer maps are
monomorphisms, then they are necessarily isomorphisms. Indeed, since the
middle map is an isomorphism, the map A/I — A/rf(I) must be an epi-
morphism, hence it is an isomorphism. Now, one can apply the Five lemma
to obtain that the map I — r#(I) is also an isomorphism. The proof of the
theorem is completed. O

Corollary 9.3.9. An algebra A is quasi-Frobenius if and only if ré(I) = I for
every right ideal I and r0(J) = J for every left ideal J.

9.4 Uniserial Algebras

We have seen that the description of representations of a quasi-Frobenius
algebra A can be reduced to the description of representations of some quotient
algebra B. However, in general, the algebra B and its representations can have
still a rather complex structure. The situation becomes significantly simpler if
we assume that all quotient algebras of A are quasi-Frobenius, as well. In that
case, the description of the modules can be achieved by successive applications
of Corollary 9.3.4. It turns out that the algebras satisfying this condition have
themselves a relatively simple description. Moreover, all ideals of such algebras
A are principal ideals, i.e. of the form aA for some a € A. Conversely, every
algebra of principal ideals has quasi-Frobenius quotients.



170 9. Quasi-Frobenius Algebras
Let us formulate these statements in the form of a theorem.

Theorem 9.4.1. The following properties of an algebra A are equivalent:

1) every quotient algebra of A is quasi-Frobenius;

2) every ideal of A is a principal right ideal, and thus it is of the form aA;

2a) every ideal of A is 1s a principal left ideal;

3) ewery right ideal of A is principal;

3a) every left ideal of A is principal;

4) A~ A; x Ay X...x A, where A; ~ M,,(B;), where each B; is a local
algebra with a principal right ideal rad B; ;

4a) A~ A; x Ay X ... X A,, where A; ~ M, ,(B;), where each B; is a local
algebra with a principal left ideal rad B; .

If, in addition, the algebra A is indecomposable (into a direct product), then

the above properties are equivalent to the following one:

la) A and its quotient algebra by some minimal ideal are quasi- Frobenius.

Proof. Evidently, we may assume that the algebra A cannot be decomposed
into a direct product. The implications 1) = la), 3) = 2), 3a) = 2a) are
trivial.

la) = 4). Let I be a minimal ideal such that both A and A/ are quasi-
Frobenius. There is a principal (and thus also biprincipal) A-module P which
is not an A/I-module. But then clearly A/ = A~(P) (see the Separation
lemma, 9.2.2). Let A ~ nP & P’', where P’ does not have any direct sum-
mands isomorphic to P. Denote by P; the maximal submodule of P and by
P, the factor module P/U; , where U; = soc P. By Proposition 9.2.4, P, is
a coprincipal and P, a principal A/I-module. Since A/ is a quasi-Frobenius
algebra, P; is a principal A/I-module. Hence, by Proposition 9.2.4, either
Py ~ P,, or P; is isomorphic to a direct summand of P’. However, in the
latter case, P; would be a bijective A-module and thus P = P; & X, which is
impossible.

Consequently, P, ~ P, . Thus P, has a minimal submodule U, ~ soc P, =
Ui and P,/U; ~ P;/Uy; it follows that P,/U, also contains a unique min-
imal submodule U; isomorphic to Uz, and thus to U;. Continuing in this
process, we construct a composition series of P all of whose factors are iso-
morphic to U;. Moreover, this composition series is unique. In view of the
Jordan-Hélder theorem, we obtain in particular that Hom4(P', P) = 0. By
duality, P* is also a principal module with a unique composition series, and
Hom (P, P') ~ Homu(P'*,P*) = 0. Consequently, A ~ A; x A, where
Ay = E4(nP) ~ M, (B) with the local algebra B = E4(P), and Ay = E4(P').
Since A is indecomposable, P’ = 0 and A ~ A; .

Write R = rad B. Then rad M,(B) = M,(R) (Proposition 3.3.11). Now,
rad A = nP; and P(P;) ~ P; thus there is an epimorphism A — rad 4, and
rad A, as well as rad B, is a cyclic module, as required.

4) = 3). Let A = M,(B), where R = rad B is a principal right ideal.
Then there is an epimorphism ¢ : B — R. This implies that R? is the unique
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maximal submodule of R. Besides, ¢(R) = R?. Thus ¢(R?) = R? is the unique
maximal submodule in R?, etc. In this way, we see that every right ideal of B
is of the form R™. However, B ~ E 4(P), where P is a principal A-module. In
view of the Morita theorem, the lattice of the B-submodules of B is the same
as the lattice of the A-submodulesin B®p P ~ P and, for every A-submodule
M C P, there is an epimorphism P — M. By induction on k, one can easily
deduce that, for any submodule M C kP, there is an epimorphism kP — M.
In particular, for any right ideal I C A, there is an epimorphism A4 — I, and
thus I is a principal right ideal.

2) = 1). Let A ~ nP @ P', where P is a principal module and P’ has
no direct summands isomorphic to P. If M; = rad P, then I; = nM; & P’ is
an ideal in A, and thus a cyclic A-module. Therefore there is an epimorphism
A — I, and thus an epimorphism P — M, . Consequently, M; also has
a unique maximal submodule M>, and M; /M, ~ P/M;. But then I, =
nM, @ P' is again an ideal, and therefore there is an epimorphism P — M, .
Continuing this process, we construct a unique composition series of P with
isomorphic factors. From here, as before, Hom (P, P') = Hom4(P',P) = 0
and A = A; x A;; since A is indecomposable, P' = 0. Now, P contains a
unique minimal submodule, and hence, by Theorem 9.3.7, we conclude that A
is quasi-Frobenius. It is clear that the condition 2) translates to all quotient
algebras of A, and therefore all quotient algebras of A are quasi-Frobenius.

Now, noting that the conditions 1) and la) are left-right symmetric, we
can similarly deduce that la) => 4a) = 3a) = 2a) = 1). The proof of the
theorem is completed. O

The algebras which satisfy the conditions of Theorem 9.4.1 are called
uniserial (or principal ideal algebras).

The following corollary is an immediate consequence of Theorem 9.4.1 and
Corollary 9.3.4.

Corollary 9.4.2. Every indecomposable module over a uniserial algebra is
isomorphic to o factor module of a principal module. By duality, every inde-
composable module over a uniserial algebra is isomorphic to a submodule of
principal module.

Observe that in the course of the proof of Theorem 9.4.1 we have also
established that a principal module over a uniserial algebra has a unique
composition series. Consequently, it has just one submodule of a given length,
and we can formulate the following corollary.

Corollary 9.4.3. An indecomposable module over a uniserial algebra is, up
to an 1somorphism, uniquely determined by its length and projective cover (or
injective hull).

Theorem 9.4.1 provides also a simple criterion for an algebra to be unise-
rial.
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Proposition 9.4.4. An algebra A is uniserial if and only if its diagram con-
sists of isolated points and loops (one-point cycles).

Corollary 9.4.5. An algebra A is uniserial if and only if the algebra A/R?,
where R = rad A, is uniserial.

Exercises to Chapter 9

1. Let A be a minimal algebra corresponding to the partially ordered set
2 \\/- 3
1

(see Exercise 8 to Chap. 3). Find the lengths of the principal right and left
A-modules and see that their maxima are not equal.

2. Show that a three-dimensional algebra A with basis {1,a,b} and multiplication
table a® = b* = ab = ba = 0 has no bijective modules.

3. Let A = T,,(K) (the algebra of triangular matrices), and let W = nK be the
space of n-tuples over the field K viewed as an A-module. Prove that W is the
only bijective A-module and find A™(W).

4. Consider the path algebra K (D) of the diagram D:

1 2

Let J be the ideal of the paths of non-zero length, A = K(D)/J?, €1 and e,
the idémpotents corresponding to the vertices 1 and 2, P; = e; A and P{ = Ae; .
Prove that P ~ P; and P; ~ P/ . Thus, A is a Frobenius algebra. Deduce that
B = Es(P1 @ P, ® P,) is a quasi-Frobenius but not a Frobenius algebra.

5. Prove that a semisimple algebra is a Frobenius algebra.
6. If A is a Frobenius algebra, prove that M,(A) is a Frobenius algebra.

7. Prove that A is a Frobenius algebra if and only if there is a non-degenerate
bilinear form T which is inner A-bilinear (in the sense of Sect. 8.3), i.e. which
satisfies T'(ba, c) = T(b,ac) for all a,b,c € A.

8. Let a = Zagg and b = Z:,ng be elements of the group algebra KG of a finite

group G. Deﬁne
T(a,b) =Y ay-18,.
g

Prove that T is a non-degenerate inner A-bilinear form on K'G and thus, KG is
a Frobenius algebra.
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. Prove that A is a Frobenius algebra if and only if

dim/ + dimf(I) = [A : K] and dimJ + dimr(J) = [4 : K]

for every right ideal I and every left ideal J of A. (Hint: To show that A is
a quasi-Frobenius algebra, consider the ideal I = k(rad P) @ X, where P is a
principal module of A and A = kP @ X such that X has no direct summands
isomorphic to P.)

. Let P be a right, or left, principal module over the algebra Tn(K) of triangular

matrices. Prove that soc P is simple. (Note that Exercise 3 implies that T;,(K)
is not a quasi-Frobenius algebra.}

Let o be an automorphism of a division algebra D. The (infinite dimensional)
algebra A = Dlt,0] of “polynomials” ant® 4+ an—1t""' +...+ao, where a; € D
and multiplication is given by the rule ta = c(a)t for every a € D, is called the
skew polynomial algebra (over D). Verify that " A = At™ and prove that A/t"A
is a local uniserial algebra. .

Prove that every local uniserial algebra of separable type (see Sect. 8.5) is of the
form A/t"A, where A = D[t,0] is a skew polynomial algebra over a separable
division algebra D constructed in the preceding exercise. Moreover, the division
algebra D and the exponent n are determined uniquely, while the automorphism
o is determined up to conjugacy (in the automorphism group) and an inner
automorphism of the division algebra D.

Making use of Exercise 12, describe all uniserial algebras of separable type.

Let 1 = e;+e2+...+en be a minimal decomposition of the identity of an algebra
A, n > 3. Prove the following statement: If, for every idempotent e which is a
sum of three distinct idempotents of the given decomposition, eAe is a quasi-
Frobenius algebra, then A is a quasi-Frobenius algebra. (Hint: Let P; = e; A
and soc P; be not simple; then P; D U; & Ui, where U; and Ui are simple
A-modules, P(U;) ~ P; = e; A, P(Ux) = Py = exA; i,j,k are not necessarily
distinct. Let P be a direct sum of pairwise distinct modules from F;, P;, P
and B = E4(P); then the socle of the principal B-module P; = Homa(P, P;)
is not simple, in contradiction to Theorem 9.3.7, since B is_quasi-Frobenius.
Similarly, if P; % P; , but soc P; ~ soc P; ~ Uy , show that soc P; ~ soc P;, which
contradicts Theorem 9.3.7 again because, in view of Theorem 8.4.4, P; % P; .)

Let A = K(D)/J?, where (D) is the path algebra of the diagram D which is
a cycle of the form
1 2 3 n—1 n

(n > 3) and J is the ideal generated by the paths of non-zero length. Prove that
A is a quasi-Frobenius algebra, but eAe, where e = e; +e2+...+ e, k < n with
idempotents e; corresponding to the vertices 4, is not quasi-Frobenius. (Hint:
Use Corollary 9.3.5.) Thus, a converse of the statement of Exercise 14 is false.

Let 1 =e; +e2+ ...+ e, be a minimal decomposition of the identity of an
algebra A, n > 2. Let the algebra (e; + ¢;)A(e; + €;) be uniserial for every pair
of indices 7, 7. Prove that the algebra A is uniserial.
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Corollaries 9.4.2 and 9.4.3 provide a simple description of modules over unise-
rial algebras. However, it is easy to see that this description uses not so much
the fact that all quotient algebras are quasi-Frobenius as that they all possess
bijective modules. In this chapter we shall consider a more general class, the
class of serial algebras, also introduced by T. Nakayama, which are character-
ized by the fact that each of their quotient algebras has a bijective module. We
shall show that this is the most general class of algebras for which statements
similar to those of Corollaries 9.4.2 and 9.4.3 hold. The structure of serial
algebras is substantially more involved than that of uniserial algebras. How-
ever, under rather general assumptions, we can obtain a complete description
of these algebras (the main results have been obtained by H. Kupisch).

10.1 The Nakayama-Skornjakov Theorem

Let M be a right or left module over an algebra A. The module M is said
to be serial if the submodule lattice of M is a chain (i.e. a linearly ordered
set). This condition is obviously equivalent to the fact that every non-zero
submodule N of M has a unique maximal submodule (which is the radical of
N), or equivalently, that N/rad N is simple for every non-zero submodule N
of M.

A direct sum of serial modules is called a semi-serial module. A trivial
example of a serial or semi-serial module is a simple or semisimple module,
respectively. In view of the Krull-Schmidt theorem, every direct summand of
a semi-serial module is semi-serial. In particular, an indecomposable direct
summand is a serial module.

Theorem 10.1.1 (Nakayama-Skornjakov). Let A be an algebra. Then the
following statements are equivalent:

1) Every right A-module is semi-serial.

la) Every left A-module is semi-serial.

2) The right regular and the left reqular A-modules are semi-serial.
2a) The right reqular and coregular A-modules are semi-serial.

2b) The left regular and coregular A-modules are semsi-serial.
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3) Ewery indecomposable A-module (right and left) is isomorphic to a factor
module of a principal module.

3a) Every indecomposable A-module (right and left) is isomorphic to a sub-
module of a coprincipal module.

4) Every indecomposable A-module M (right and left) 1s projective as a mod-
ule over the quotient algebra A/Ann M.

4a) Every indecomposable A-module M (right and left) is injective as a module
over the quotient algebra A/Ann M.

5) There ezists a bijective right module over every guotient algebra of the
algebra A.

5a) There exists a bijective left module over every quotient algebra of the al-
gebra A.

The algebras satisfying these equivalent conditions are said to be serial
algebras.

Proof. The equivalences 1) & la), 2) & 2a) & 2b), 3) & 3a), 4) & 4a) and
5) & 5a) follow from duality (note that it is easy to see that Ann M* = Ann M
for every module M).

The implications 1) = 2a) and 4) = 3) are obvious.

2) = 5). Observe that condition 2) is preserved for quotient algebras: If
A=P ®P,®...¢ P, with serial modules P;, then A/I = P,/PiI® P /P,I®
...®P,/P,I and all P;/P;I are obviously again serial. Therefore it is sufficient
to verify that 2) implies the existence of a bijective A-module. It is convenient
to consider the condition 2a), equivalent to 2).

Let M be a module of maximal length among all the principal and coprin-
cipal right A-modules. Since M is serial, it contains a unique maximal and a
unique minimal submodule. But then Corollaries 3.2.8 and 9.1.7 imply that
M is principal and coprincipal, i. e. that the module M is bijective.

5) = 4). Let M be an indecomposable A-module and W a bijective module
over the quotient algebra B = A/Ann M. Since M is a faithful indecomposable
B-module, the Separation lemma (Lemma 9.2.2) implies that M is isomorphic
to a direct summand of W, i.e. the B-module M is bijective and thus, in
particular, projective.

3) = 1). Let M be an indecomposable A-module. Since it is isomorphic
to a factor module of a principal module, M contains a unique maximal sub-
module M; = rad M (Corollary 3.2.8). On the other hand, M (and therefore
also M) is isomorphic to a submodule of a coprincipal module and thus M;
is indecomposable. We may therefore apply the same argument to M;: The
unique maximal submodule M, = rad M; of M; is indecomposable. Continu-
ing in this manner, we get a chain of submodules M D M; D My D ... of M
in which every submodule is the unique maximal submodule of the preceding
one. It turns out that M, M, M3,... are the only submodules of M, i.e.
that M 1is serial. The proof of the theorem is completed. O
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Remark. It i1s very essential that the conditions 2), 3) and 4) contain require-
ments for both right and left modules. An algebra may satisfy one of these
conditions for right (or for left) modules, but be not serial. One of the simplest
examples of such an algebra is the subalgebra A C M;(K) consisting of all
matrices of the form

a az asg
0 ay 0 , a; € K.
0 0 as

Exercise 1 to Chap. 10 shows that A is not a serial algebra; however, A
satisfies the conditions 3) and 4) for right modules and 2) for the left regular
module.

Since a submodule of a principal module over a serial algebra is uniquely
determined by its length, we obtain an analogue of Corollary 9.4.3.

Corollary 10.1.2. An indecomposable module over a serial algebra is fully

determined (up to an isomorphism) by its length and projective cover (or in-
jective hull).

Since serial algebras can be defined in terms of the module categories (for
example, by condition 1) of Theorem 10.1.1), every algebra Morita equivalent
to a serial algebra is serial, as well. In particular, A is a serial algebra if and
only if its basic algebra is serial.

The condition 2) of Theorem 10.1.1 asserts that an algebra A is serial
if and only if all submodules of principal right and left A-modules contain
a unique maximal submodule. It turns out that it is sufficient to verify this
property only for maximal submodules of principal modules.

Proposition 10.1.3. Assume that the radical of any principal right (left)

A-module contains a unique mazimal submodule. Then every principal right
(left) A-module is serial.

Proof. Let P be a principal A-module and M; = rad P its unique maximal
submodule. Since M; contains a unique maximal submodule M, = rad M,
M is a factor module of some principal A-module P; (Corollary 3.2.8) and M,
is a factor module of rad P;. In turn, rad P; is a factor module of a principal
A-module P, and thus contains a unique maximal submodule M3 = rad M,.
Continuing this process, we obtain a chain of submodules P D M; D Mz D
Ms D ... of P in which every module is the unique maximal submodule of
the preceding one. From here, it follows immediately that every submodule of
P coincides with one of the submodules M; and thus P is serial. a

Corollary 10.1.4. Let R = rad A. Then the algebra A/R? is serial if and
only if A is serial.
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Proof. To prove the statement, recall that rad P = PR, rad(rad P) = PR?
and that, by Proposition 10.1.3, it is sufficient to verify that the modules
PR/PR? (or RQ/R?Q) are simple for every principal right module P (prin-
cipal left module Q). O

The latter result, together with Theorem 9.3.7 yield the following conse-
quence.

Corollary 10.1.5. If the quotient algebra A/R? is a quasi-Frobenius algebra,
then A is a serial algebra.

Proof. Let P be a principal right module over the algebra A/R2. If P is not
simple, i.e. if rad P # 0, then its unique maximal submodule rad P coincides
with the socle (because (rad P)R = PR? = 0). Then, by Theorem 9.3.7, rad P
is simple. This means that P is serial. Similarly, also every principal left 4/R2-
module is serial. Hence A/R? and therefore also A is a serial algebra. O

Remark. The example of the algebra A of triangular matrices shows that the
converse of Corollary 10.1.5 is false: A is a serial algebra but A/R? is not
quasi-Frobenius.

10.2 Right Serial Algebras

We are going to study the structure of serial algebras. In fact, we shall describe
the structure of a wider class of algebras, of the so-called right serial algebras,
i.e. of algebras whose right regular module is semi-serial. Of course, a similar
description holds for left serial algebras, i.e. for algebras whose left regular
module is semi-serial. The actual formulation of the respective results for left
serial algebras is left to the reader.

Observe that Proposition 10.1.3 yields the following corollary.

Corollary 10.2.1. The algebra A/R? is right serial if and only if A is right
serial.

The proof is the same as that of Corollary 10.1.4 (without mentioning left
modules).

Moreover, the fact that an algebra is right serial can be fully characterized
by its diagram (see Sect. 3.6).

Theorem 10.2.2. An algebra A is right serial if and only if there is at most
one arrow starting at each vertez of its diagram D(A).

Proof. In view of Proposition 10.1.3, an algebra A is right serial if and only
if the radical rad P; of every principal (right) A-module P; is either zero or
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isomorphic to a factor module of a principal module P;. But that means that

there is either no arrow, or just one arrow (pointing to the vertex j) starting
at the vertex ¢ of the diagram D(A). a

In order to describe all diagrams of right serial algebras, we introduce the
following definitions. A circuit of a diagram D is a sequence of pairwise distinct
vertices {i1,%2,...,%¢} and arrows {01,02,...,0¢} such that each arrow o
points from i to tx4+1 or from ixy; to ik (assuming that i1 = 41). Let us
remark that it is possible that ¢ = 1. Of course, every cycle is a circuit, but the
converse is not true jin general. A connected diagram without circuits is called
a tree. A vertex which is not an initial point of any arrow in a given diagram
D is called a sink, or a root of D. An algebra whose diagram is connected is
said to be connected; such algebras are indecomposable (cf. Theorem 3.6.2).

Corollary 10.2.3. A connected algebra A is right serial if and only if its
diagram D(A) is either a tree with a single root, or a diagram with a unigue
circuit which is e cycle such that when removing all arrows of this cycle, the
remaining diagram 1s a disconnected union of trees whose roots are vertices of
the cycle.

We give two examples for such diagrams.

Proof. Assume that A is right serial, i. e. such that each vertex of D = D(A)
is an initial point of at most one arrow. Let {i1,%2,...,%¢}, {01,02,...,0:} be
a circuit of D, and assume that oy : i3 — ;. Then o3 : i3 — i3 is impossible
and thus o9 : 13 — i5. Similarly, o3 : 44 — 13,...,0: : 11 — %, and thus the
sequence {oy,0¢-1,...,01} is a cycle (if o1 : i; — iz, then {01,02,...,0¢} is
a cycle).

If there is no circuit in D, then D is a tree. In this case, let ¢ be a root of D
and let D’ be the non-empty set of all vertices of D from which there is a path
to 7. Similarly, denote by D" the set of all vertices from which there is a path
to any other root of D. Clearly, D' UD" = D and, in view of our assumption,
D' D" = . Therefore, since A is connected D" = () by Theorem 3.6.2 and
thus D has a unique root.

Now, let {01,02,...,0:} be a cycle of D. Observe that o : ix — ix41
(with 4441 = 41) is the only arrow starting at ¢x. Denote by Dy the set of all
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vertices of D from which there is a path to i; which does not contain any

t
arrow of the cycle; in particular, i € Dy . Let Do = D\ |J Di . Since every
k=1
circuit of D is a cycle, D are pairwise disjoint. Also, since every ¢ € Dy,
¢ # ik is the initial point for a unique arrow ¢ whose terminal point is again
in Dy, there are no cycles in Dy . Finally, since there is obviously no arrow
with initial point in Dy and terminal point in one of the Dy’s, and since D
is connected, Dy = @. Thus, removing all arrows o1,02,...,0; of the cycle,
we obtain a disjoint union of the diagrams Dy each of which is a tree with a
unique root i .

To show the converse, let D = D(A) be a diagram described in the corol-
lary. First, if D is a tree with a unique root, then no vertex is an initial point of
more than one arrow because there are no circuits in D. It is easy to see that
the same conclusion holds if there is a (unique) cycle in D and its complement
is a disjoint union of trees with unique roots which are vertices of the cycle.
Thus A is right serial and the proof of the statement is completed. O

Recall that the pair (B,V), where B = A/R, V = R/R* and R =rad A
is called the type of the algebra A (see Sect. 8.5). Proposition 10.1.3 implies
the following statement.

Corollary 10.2.4. Let (B,V) be the type of an algebra A. Then the algebra
A 1s might serial if and only if, for every minimal idempotent e € B, the right
B-module eV 1s simple (or zero).

A B-bimodule V satisfying this condition will be called right serial.
Corollary 10.2.4 and Theorem 8.5.2 yield immediately the following result.

Theorem 10.2.5. Every right serial algebra of separable type is 1somorphic
to the quotient algebra of a tensor algebra T(V) by an admissible ideal, where
V 15 a right serial bimodule over a separable algebra B. Conversely, every such
quotient algebra is right serial.

Thus, in order to describe right serial algebras of separable type, it is
sufficient to exhibit all admissible ideals of the tensor algebra T'= T(V) of a
right serial bimodule V' over a separable algebra B.

Let 1 =e;+e3+...+ €, be a decomposition of the identity of an algebra
B in which all idempotents e; are minimal, and let I be an admissible ideal
of the algebra T (defined by a B-bimodule V). Write T; = T, J; = e;J
(where J is the fundamental ideal of the algebra 7'; see Sect. 8.5) and I; =
e;l. Then I; = T;I is a submodule of T;, and I is admissible if and only if
T:J? D I; D T;J™ for some m, i.e. if &; = £(T;/I;) < co. Moreover, if J; # 0,
or equivalently V; = e;V # 0, then £; > 2. Now, Theorem 10.2.5 implies that
T;/T;J™ is a serial module and thus ¢; uniquely determines the submodule
I, =T,J0 &
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Conversely, given the numbers ¢;, one can construct the right ideal I =

él I;, where I; = T;J% and it remains to clarify conditions under which I is
a two-sided ideal.

First, let us remark that if the simple B-modules ¢; B and e; B are isomor-
phic, then e; and e; are conjugate: e; = ae;a™! for an invertible element a from
B. Hence, al; = ae;I = ejal = e;I and thus ¢; = (T;/I;) = 4(T;/1;) = £;. In
other words, the correspondence i — ¢; defines a function on the diagram D
of type (B, V).

Now, let e;B % e;jB and let there be an arrow from the vertex corre-
sponding to e; to the vertex corresponding to e; in D. This means that
Vi = iV ~ ejB. Then, since J = VT, T;J = ¢TJ = VT = V;T and
T,J? =V,TJ = ViV;T. Continuing in this process, we obtain

L=TJ%=V,V;,...V;, T, £=4;,

where {¢{ = 41,12,...,%¢} is a sequence of vertices in D such that there is
an arrow from 7z to ix41 (kK = 1,2,...,£ — 1). It follows, in particular, that
BI = I, and VI C I if and only if, for every vertex iq from which there is
an arrow to ¢, V; V; ... V;, T C I. But V;,)V;, ... V;,T C €;,T, and therefore
VieVi, ... V5, T C Ii, = V; Vi, ...V, T, where m = £;, — 1. This is equivalent
to the inequality £ > m,i.e. [; > [;, — 1.

If ¢ is a sink in the diagram D, then clearly V; = 0 and necessarily ¢; = 1.
Consequently, we get the following result.

Proposition 10.2.6. Let B be a semisimple algebra, V a right serial B-
module and D a diagram of type (B,V). An admissible ideal I C T(V) is
determined uniquely by assigning a natural number £; to each vertez i of D
in such a way that £; =1 for every sink i and that 2 < ¢; < £; + 1 for every
arrow from i to j.

Now, having a description of admissible ideals of T(V), it is easy to obtain
a complete classification of right serial algebras of separable type.

Theorem 10.2.7. A right serial algebra A of separable type (B,V) is deter-
mined by assigning a natural number £; to every vertexi € D(A) in such a way
that £; =1 for every sink i and that 2 < £; < £ + 1 for every arrow from i to
J- Two algebras, described by (B,V,l1,0s,...,4s) and (B', V', £},4,...,0.),
respectively, are isomorphic if and only if there is an algebra isomorphism
¢ : B — B', a B-bimodule isomorphism!® f : V — V' such that E;(i) =¥,
where o 1s the isomorphism of the diagrams of (B,V) and (B',V') induced by
the pair (@, f).

Proof. Taking into account Theorem 8.5.2 and Proposition 10.2.6, it only
remains to verify the isomorphism criterion. Assume that an algebra A de-

*The B-bimodule structure of V' is defined by byvbs = o(by )Jvip(bs) for every v € V'
and b1,b2 € B.
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scribed by the data {B,V,f1,£s,...,£,} is isomorphic to an algebra A' de-
scribed by {B',V' ¢,¢,,...,£,,}. Then an isomorphism ¢p : A — A’ in-
duces isomorphisms ¢ : B — B’ and f : V — V', because B = A/R,
B'=A'"/R',V =R/R? and V' = R'/R"?, where R =rad A and R' = rad A’.
Moreover, if A = Py @ P, @ ... ® P, with principal A-modules P;, then
A'=P ®@P;®...® P, where P! = ¢(P;) are principal A'-modules and
£(P;) = £(P}). Now, if ¢ is a vertex of the diagram D(A), then, as we have
seen, £; is just the length of the corresponding principal A-module. Conse-
quently, £, = ¢; for the diagram isomorphism o : D(A) — D(A') induced
by the isomorphism %, or by the pair (¢, f).

Conversely, given ¢ and f with the indicated properties, then the isomor-
phism T(V) — T(V') induced by the pair (¢, f) clearly carries the ideal I
given by the sequence (¢;,¥s,...,£,) over to the ideal I' given by the sequence
(41,4,,...,£,). Hence, the quotient algebras T(V)/I and T(V')/I' are isomor-
phic and the theorem is proved. a

If A is a split algebra (for instance, if the field K is algebraically closed),
then its type is given by the “multiplicities” n; assigned to each vertex
S

t € D(A): They describe the decomposition A/R = [[ M,,(K). Hence, such
=1

algebras can be described in the following way.

Corollary 10.2.8. A split right serial algebra is determined by the data
{D;n1,na,...,nsl1,02,...,15}, where D is a diagram whose connected compo-
nents satisfy the condition formulated in Corollary 10.2.3 and n;, €; (i € D) are
natural numbers such that £; =1 for every sinki and 2 < ¢; < £;+1 for every
arrow from t to j. Two algebras described by (D;ni,na,...,ng;f1,L,...,Ls)
and (D';ny,ny, ... ,nk; 00,0, ..., £.,) are isomorphic if and only if there is a
diagram isomorphism o : D — D' such that €,y = Li and nl ;) = n; for all
vertices 1 € D.

10.3 The Structure of Serial Algebras

Since serial algebras are right serial, all results of the preceding section apply
here. We need only to specify more precisely the form of diagrams and possible
types of such algebras.

Theorem 10.3.1. Let A be a connected algebra and (B,V) its type; let B =
[I My, (D;) with division algebras D;. The algebra A is serial if and only if

=1
D(A) is either a cycle or a chain and, moreover, Dy ~ Dy ~ ...~ D,.

Proof. Applying Corollary 10.2.4 and its analogue for left serial algebras, we see
that A is serial if and only if both the right B-module eV and the left B-module
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Ve are simple for every minimal idempotent e € B. We can, obviously, assume
that A is basic.

Let 1 =e;+e2+...+es be a decomposition of the identity of the algebra
B such that ;B ~ D;. There is an arrow from j to 7 in the diagram D = D(A)
if and only if Vj; = ¢;Ve; # 0. But if Vj; # 0 and Vi; # 0 for j # k, then
the left module Ve; contains direct summands Vj; and Vi; and therefore is
not simple. Hence, no vertex i of the diagram D is a terminal point of more
than one arrow. Since, by Theorem 10.2.2, no vertex is an initial point of more
than one arrow, one can see easily that the diagram D is either a cycle or an
(oriented) chain.

Now, choose in D a pair of vertices 7,j such that there is an arrow j
to i. Then Vj; # 0 and thus, evidently, e;V = Vj; = Ve; is a simple right
B-module and a simple left B-module. Since Vje; # 0, it turns out that
Vji > D; as right B-modules. Similarly, V}; ~ D; as left B-modules. Thus, we
have obtained a D;-D;-bimodule U = Vj; which is isomorphic to D; as a right
D;-module and D; as a left D;-module. Assigning to every element a € D;
a Dj-homomorphism U — U which maps v € U into au, we get an algebra
homomorphism ¢ : D; — Endp,(U) ~ D;. Since D; is a division algebra, ¢ is
a monomorphism. Since, moreover, [D; : K| = [D; : K], ¢ is an isomorphism,
i.e. Dj o~ D;. Since A is connected, i.e. the diagram is connected, all division
algebras Dy, Ds,..., D, are isomorphic.

Conversely, let D be a chain or a cycle and D; ~ Dy ~ ... ~ D,. By
Theorem 10.2.2, the algebra A is right serial. However, if ¢ is an arbitrary
vertex of the diagram D, then Ve; is either 0 or coincides with Vj; for a
unique vertex j from which there is an arrow to i. Since A is right serial,
Vji is a simple right B-module and thus Vj; ~ D;. On the other hand, since
e;Vii = Vji, Vi ¥ mDj as left B-module. In view of [D; : K] = [D; : K], this
is possible only for m = 1 and then Ve; is a simple left B-module. Thus 4 is
left serial and, consequently, serial, as required. o

Theorems 10.3.1 and 10.2.7 facilitate a complete description of serial alge-
bras of separable type. Since we may restrict our considerations to connected
(indecomposable) basic algebras, it is necessary to describe only those bimod-
ules V over the algebra B = D°*, where D is a division algebra, which are
simultaneously right and left serial. In this case, the diagram D of the type
(B,V) is either a chain

or a cycle

1 2 3 s—1 s

Write V; = e;V, where e; is the minimal idempotent of the algebra B corre-
sponding to the vertex 7 of the diagram D. Then V; = Ve;11,: = 1,2,...,5—1,
and V; = 0 if D is a chain, or V; = Ve, if D is a cycle. Moreover, V; is a one-
dimensional D-bimodule, i.e. V; is defined by an automorphism o; of the
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division algebra D (see Sect. 4.1, Example 3). We may assume that V; = D
and that a o v ob = gi(a)vb (here, multiplication on the left-hand side of
the expression is in the D-bimodule V; and on the right-hand side, in the
division algebra D). Consider an automorphism ¢ of the algebra B which
induces an automorphism 7 of the division algebra D in the ¢th component,
and the identity in all other components of B. Then, we may define on a B-
bimodule V a new B-bimodule structure V¥ by a x v x b = ¢(a) o v o ¢(b).
If v € Vj, where j # ¢ and j # ¢ — 1, then clearly axv*b = aovob.
IfveVi,thenaxv*b = 7(a)ovob = g;7(a)vb. Finally, if v € Vi,
then a*v*b = aovo7(b) = oi—1(a)vr(h). In particular, for v = 1,
a*x1l=o0;_1(a) = 1x7710;_1(a), so that the automorphism corresponding to
the 7th component of the bimodule V¥ is o;7 and the one corresponding to
the (i — 1)th component is 77!o;_;. By Theorem 10.2.7, the pair (B, V') can
be replaced by (B, V¥) (choosing for f the identity map V — V¥).

Taking ¢ = 2, 7 = 01, we can replace in this way the original choice of
automorphisms by a choice with ¢; = 1. Continuing in this manner by taking
i =3, T = 09 etc., we arrive to the situation when oy =02 =... = 0,1 = 1.
In the case that D is a cycle, we are left with an automorphism o = o,. Apply-
ing the previous construction to every vertex i € D each time with the same

automorphism 7, we replace, as we can see easily, the sequence {1,1,...,1,0}
by {1,1,...,1,77to7}. Of course, we can equally replace {1,1,...,0} by
{1,...,1,0,1,...,1} (o being at an arbitrary given position).

Let us remark that if U is a one-dimensional D-bimodule defined by an
automorphism ¢ and W a one-dimensional D-bimodule defined by an auto-
morphism 7, then the one-dimensional D-bimodule U @ p W is defined by 7o.
Indeed, identifying U and W with D, we have a0 (1® 1) = (a01)® 1 =
o(a)®1=(loo(a)) ®1=1® (d(a)ol) =1®7(0(a)) =(1®1)o7o(a).

It follows that if V; is a B-bimodule defined by o;, then the bimodule
V=V, V2®B...®8V, is defined by the automorphism & = o, ...0207.

Now, let the diagram D be a cycle, V' be a B-bimodule defined by the au-
tomorphisms {o},05,...,0.}, ¥ : B — B be an automorphism of the algebra
B and f:V — V' an isomorphism such that f(aovob) = y(a)o f(v)o¥(b).
Obviously, f(Vi) = Vj,), where k is a cyclic permutation of {1,2,...,s}. Let,
as before, V = V; @pVa®p...QV,, V' = V,:(l) ®B Vlé(z) ®RB...®B Vkl(s) .
Then f induces a map f : V — V' such that f(ao©ob) = t(a)o f(7) o p(b).
Denoting by 7 the automorphism of the division algebra D which coincides
with the restriction of 1 to the first component of the algebra B, and taking
1=101®...Q01, we get

flaov) =1(a)o f(v) = f(v05(a)) = f(7) o 75(a).

Considering f(%) as a basis element of the one-dimensional D-bimodule
V', we see that V' is a bimodule defined by the automorphism 767~!. On
the other hand, V' is defined by the automorphism &' = U';c(s) . 02(2)02(1) .
It follows that 767! and &' differ by an inner automorphism of the division

algebra D (see Example 3 of Sect. 4.1).
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Taking into account that V' can always be defined by a sequence {1,1,...,
1,0}, we obtain a complete classification of serial algebras of separable type.

Theorem 10.3.2. A connected serial algebra of separable type is determined
by {D,D,o;n1,n2,...,n4;1,8,...,¢5}, where D is a diagram which is either
a chain or a cycle, D a separable division algebra, o an automorphism of the
division algebra D (here 0 = 1 if D is a chain) and n,,¥€; are natural numbers
satisfying 2 < £; < liy1+1 fori=1,2,...,5s—1 and such that £; =1 if D is
a chain, and 2 < £, < €1+ 1 if D is a cycle. Furthermore, the division algebra
D 13 unique up to an isomorphism, and the automorphism o up to conjugacy
and an inner automorphism; the sequences of natural numbers {ny,na,...,ns}
and {£1,42,...,25} are unique if D is a chain and unique up to ¢ simultaneous
cyclic permutation if D is a cycle.

We shall also give a criterion for basic algebras to be serial which will

resemble the characterization of uniserial algebras as algebras of principal
ideals.

Theorem 10.3.3. A basic algebra A is serial if and only if its radical R is a
principal right and a principel left ideal.

Proof. Obviously, we may assume that A is connected (indecomposable). If A
is serial, then its diagram is either a chain or a cycle and thus the principal
right A-modules Pl,Pz, .., P, can be indexed in such a way that P(P,R) ~

Pii1,i=12,...,8 -1, and that P,R = 0, or P(P;R) ~ . But then

P(R) ~ EB P(P; R) is isomorphic to a direct summand of A and hence Risa

pr1nc1pal rlght ideal. Similarly, R is a principal left ideal.

Conversely, let R be principal both as a left and as a right ideal. Then
there is an epimorphism A — R. Consequently, P(R) is a direct summand of
A and thus each of the principal right modules P; appears in P(R) no more
than once. Let 1 = e; +e2 + ...+ e, be a decomposition of the identity such
that P; ~ ¢;A, V = R/R? and Vi; = e;Vej. Recall that P = P(R) ~ P(V)
and the multiplicity of P; in P equals the multiplicity of the simple A-module
U; = P;/P;,R in V (Theorem 3.3.7). Therefore there is at most one index j
such that V}; # 0 and then Vj; ~ U;. In a similar way, the fact that R is a
principal left ideal implies that, for each ¢, there is at most one index j such
that V;; # 0 and then V;; is a simple left A-module.

Now, we are going to show that every vertex ¢ of the diagram D(A) is
an initial point of at most one arrow. Indeed, if there were arrows from 7 to
two distinct points j and k, then Vj; # 0 and Vji # 0, a contradiction. Also
if there were more than one arrow from i to j, the multiplicity of U; in Vj;
would be bigger than one, again a contradiction. As a result, the algebra A is
right serial (Theorem 10.2.2). Similarly, A is left serial, and thus serial. O
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10.4 Quasi-Frobenius and Hereditary Serial Algebras

If a quasi-Frobenius algebra A is right serial, and thus every principal right A-
module is serial, then the principal left A-modules, being co-principal, i. e. dual
to the principal right ones, are also serial and hence A is serial. This means
that for quasi-Frobenius algebras, the properties to be right serial, left serial
and serial are all equivalent. The following theorem establishes a criterion for
serial algebras to be quasi-Frobenius.

Theorem 10.4.1. Let A be a connected serial algebra. Then A 1s a quasi-
Frobenius algebra if and only if D(A) is a cycle and all principal right A-
modules have the same length.

Proof. Assume that A is a quasi-Frobenius algebra. If A is semisimple, the
statement is trivial. Otherwise, since A is connected, Corollary 9.3.5 implies
that D(A) has no sinks. Thus D(A) is a cycle. Moreover, if ¢ : P; — R; is an
epimorphism of the principal A-module P; onto the radical of the principal
A-module P;, then ¢ is not a monomorphism (in view of the fact that P; is
injective). Thus, ¢; = ¢(P;) > &(R;) = &(P;) — 1, i.e. {; > ¢;. Taking into
account that D(A) is a cycle, we obtain £; < #; < ... < ¢, < {4y, so all {; are
equal.

Conversely, let D(A) be a cycle and ¢; =€, = ... = {,. Let P = P; be a
principal right A-module, M} its unique submodule such that ¢(P/M;) = k
(clearly, M} = PR¥, where R = rad A). For convenience, write Psy1 = Py,
Pyi2 = Py, etc. Then P(M;) ~ P;y, and thus M; is an epimorphic image of
R;41; from here, P(M3) ~ P;y2. In general, P(M}) ~ Py for My # 0. In
particular, soc P = M,_; and thus P(soc P;) = P;4—1. It is clear that the

modules P;.¢-; are non-isomorphic for : = 1,2,...,s. Therefore the socle of
a principal right A-module P; is simple and for P; % P;, soc P; % soc Pj. By
Theorem 9.3.7, A is a quasi-Frobenius algebra, as required. o

Corollary 10.4.2. A connected quasi-Frobenius serial algebra A of sepa-
rable type is determined by {s,D,o0,f;n1,n3,...,ns}, where D is a sepa-
rable division algebra, o an automorphism of the division algebra D and

s,4,n1,n3,...,ns are natural numbers. Furthermore, D 13 unique up to an
isomorphism and o is unique up to conjugacy and an inner eutomorphism;
the sequence {ny,na,...,ns} 18 unique up to a cyclic permutation (the number

s of vertices in the cycle D and the length € of the principal A-modules are
unique).

Let us describe the hereditary right serial algebras. First, let us remark
that, in view of Corollary 3.7.3, there are no cycles in the diagram D of such
algebras. By Corollary 10.2.3, it follows that D is a disjoint union of trees
with unique roots. For algebras of separable type, a complete description can
be obtained from Theorem 8.5.4 and 10.2.5: such an algebra is isomorphic to
T(V'), where V is a right serial bimodule over a separable algebra B such that
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there are no cycles in the diagram of type (B, V). However, it turns out that
the statement holds even without the assumption of separability. This follows
from the following result.

Theorem 10.4.3. Let A be a finite dimensional algebra, R = rad A, D =
D(A), B= A/R and V = R/R?. Assume that for any arrow ¢ : 1 — j in the
diagram D, there is no path o : i — j of length 2 or more (in particular, D
contains no cycles). Then the algebra A is isomorphic to a quotient algebra of
the tensor algebra T(V') of the B-bimodule V by an admissible ideal.

Proof. As in the proof of Theorem 8.5.2, it is sufficient to verify that there is
a subalgebra A ~ B of A and a B-subbimodule R of R such that R = R® R?.

Denote by P;, Ps,...,Ps the distinct principal A-modules, R; = rad P;
and R;; = Hom4(P;,P;). If f: P; — P; is a homomorphism which is not an
isomorphism, then Im f C R;. Consequently, f = g where ¢ : P(R;) — R;
is an epimorphism and g : P; — P(R;). Since D has no cycles, it follows that
for any direct summand P; of P(R;), j # ¢ and there is no path from j to
i. Then, by Lemma 3.6.1, Rj; = 0 and hence ¢ = 0 and f = 0. Therefore,
E4(P;) = D; is a division algebra. Let A ~ nPy @n P, ®...®n,P,. Applying
Theorem 3.5.2 to the algebra A ~ End4(4), we see that R = .gARU, B =

i#j

A/R ~ [[ M,,(D;) and A contains a subalgebra 4 ~ B.
i=1

Now, let there be an arrow from ¢ to j. Then every path from ¢ to j
is an arrow and, according to Lemma 3.6.1, R;; ~ V;; = ¢;Ve;, where ¢;,

ej are idempotents such that e;A ~ P; and e;A ~ P;. Write R = & R;j
1—7
(summation runs over the pairs (4, ) for which there is an arrow from 7 to j);
thus we have a submodule R of R such that R = R & R? and the theorem
follows. O

Corollary 10.4.4. A hereditary right serial algebra is isomorphic to T(V),
where V' is a bimodule over a semisimple algebra B such that the diagram of
type (B,V') 1s a disjoint union of trees with unique roots.

Corollary 10.4.5. A hereditary serial algebra is isotypic (i. e. Morita equiv-

alent) to a direct product of algebras of triangular matrices over division al-
gebras.

Proof. Clearly, it is sufficient to prove that a connected basic hereditary serial
algebra A is isomorphic to an algebra of triangular matrices over a division
algebra. However, in view of Theorem 10.2.3 and Corollary 10.4.4, such an
algebra is isomorphic to T(V'), where V is a bimodule over the algebra B =
DxDx...x D= D*(Dis a division algebra) such that V;; = ¢,Ve; =0
if j # ¢+ 1 and Vj(i31) is a regular D-bimodule for ¢ = 1,2,...,5 — 1 (here,
1 = e +e + ...+ e, is a minimal decomposition of the identity of the
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algebra B). Denote by e;(iy1) the element of Vj(;yq) for which ae;;41) =
ei(i+1)a for a € D.

Let us compute V®2. Clearly, for j # i + 1, Vitiv1) ®8 Vij+1y = 0.
On the other hand, Vj(it1) ®B V(it1)ii+2) = D®p D =~ D and the element
€i(i+2) = €i(i+1) ® €(i+1)(i+2) 15 a basis element of this module. Similarly, we
may construct the elements e;(;y3) = €i(i+2) ® €(i+2)(i+3), and in general, all
elements e;; for s > j > i. Observe that V®® = 0 because there are no paths of
length s in the diagram of type (B, V). Therefore every element of the algebra
T(V) has a unique form ), ajjeij = Y e;ja;j with a;j € D. Since we can

1<i<j<s ij .

see easily that e;jere = 0 for j # k and ejjeje = eir, we may associate each
element of the algebra with the matrix

11 a2 ... Qs
0 az2 ... Q2g
0 0 ass
and obtain an isomorphism T(V') >~ T,(D), as required. O

From the preceding description of T(V') and Theorem 10.4.3 we obtain
the following consequence.

Corollary 10.4.6. Let A be a connected serial algebra whose diagram is a
chain. Then A is isotypic (i.e. Morita equivalent) to a quotient algebra of
Ts(D), where D 1s a division algebra.
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Exercises to Chapter 10

1. Let A C M3(K) be a subalgebra consisting of all matrices of the form

a ag as
0 as O , a;eK.
0 0 as

a) Prove that the regular left A-module is semi-serial while the right one is
not.

b) Let M be a right A-module, e;; be the matrix units and M; = Me;; .
Verify that multiplication by e12 (or ei3) defines a linear transformation
L, : My — M, (or Lz : My — M3, respectively). Conversely, let My, M3,
M3 be three vector spaces and let Ly : M1 — M, and Lz : M; — M3 be
linear transformations. Put M = M; ® M- ® M3 and define multiplication
of elements by the basis elements of the algebra by the formulas

(m1,ma,m3z)e1n = (m1,0,0); (m1,m2,ms)ezz = (0,m2,0);
(m1,m2,m3)ess = (0,0,m3); (mi1,m2,ms)e1z = (0,m1Ls,0);
(ml, ma, m3)613 = (0, 0, my L3)
Show that in this way M becomes an A-module. Moreover, if N is another
A-module obtained in this way by means of transformations L5 and Lj,
then M ~ N if and only if there are automorphisms ¢; of the spaces M;,
1 =1,2,3 such that
Li=oi1Ligi, i=2,3.

¢) Making use of the construction in b), compute all indecomposable A-
modules and check that they satisfy the conditions 3) and 4) of Theo-
rem 10.1.1.

d) Verify that rad A is a principal right ideal but it is not a principal left ideal.
2. Consider the subalgebra A C M>(C) consisting of all matrices of the form

(aol Z;) , a1 €IR, asz,a3 € C.

Show that A is right serial, but not left serial, while D(A) is a chain and rad A
is a principal right ideal.

3. Let A = T2(K) (the algebra of triangular matrices), P; = e;; A (where e;; is a
matrix unit), P = 2P @ P, , B = Enda(P). Prove that B is a serial algebra and

rad B is not a principal right ideal.

4. Prove that if R =rad A 1 is p11nc1pal both as a right and as a left ideal, then A
is serial. (Hint: Let A ~ EB n; P; ~ eB n; P!, where P; (P!) are mutually non-
isomorphic prmapa,l rlght (left) A-modules so that if P; ~ e; A then P} ~ Ae;;
let P(P;R) = J_@l ti; P; , P(RP]) = _6)1 ti; P} . From Exercise 5 to Chap. 3, deduce

= j=
that i tijni < mj and i ti;ni < n; for every j. Using these inequalities and
i=1 i=1

the fact that t;; = 0 implies t}; = 0 and vice versa, deduce that S ti; <1 and
j=1

> ti; <1 for any i.) The converse is, in view of Exercise 3, false.
ji=1
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. Prove that an algebra A is right serial if and only if any diagram of the form

P,

where Py, P», P; are principal A-modules (not necessarily distinct) can be
completed to one of the following two commutative diagrams:

Py P,

.Let 1 = e +e2+4+...4 en be a minimal decomposition of the identity of an

algebra A (n > 3). Prove that A is right serial (serial) if and only if, for any
choice of three indices 1, j, k, the algebra eAe, where e = e; + ¢; + ex, is right
serial (serial). (Hint: Use Theorem 8.4.4 and the preceding exercise.)

. Prove a theorem similar to the one formulated in the previous exercise for right

serial hereditary algebras.

Let B = D?, where D is a finite dimensional division algebra, 1 = e; +ea+...+e;
be a minimal decomposition of the identity of the algebra B, and let V be a
B-module satisfying the following conditions: Vj; = e;Ve; = 0 for all pairs (3, ),
except for (¢,7+ 1) and (s,1); Vi(it1) is a regular D-bimodule and V;; a D-
bimodule defined by an automorphism o of the division algebra D. Prove that
the tensor algebra T'(V') is isomorphic to the algebra of matrices of the form

ai a2 a3 ... Qin
taz1 a2 a3 ... a2n
tas: tazy aszz ... 4Qasn 9
tan1 tana tans Ann

where a;; are elements of the skew polynomial algebra D[t,o] (see Exercise 11
to Chap. 9), and that the fundamental ideal J consists of the matrices whose
diagonal entries are all multiples of ¢.

. From Exercise 8, deduce a description of basic serial algebras of separable type.

How should we modify the construction of the respective matrix algebra in order
to obtain algebras which are not basic?

Prove that a quasi-Frobenius serial algebra A of a separable type (B,V) is

isomorphic to T(V')/J*, where J is the fundamental ideal of the tensor algebra
of the B-bimodule V.



11. Elements of Homological Algebra

The present chapter has been written for the English edition. The aim of this
extension is to present an introduction to homological methods, which play an
increasingly important role in the theory of algebras, and in this way to make
the book more suitable as a textbook. Besides the fundamental concepts of a
complex, resolutions and derived functors, we shall also briefly examine three
special topics: homological dimension, almost split sequences and Auslander
algebras.

11.1 Complexes and Homology

A complez of A-modules (V,,d.), or simply V., is a sequence of A-modules
and homomorphisms

UG PR T TAR-TE R I VL

such that d,d,4+1 = 0 for all indices n. Clearly, this means that Imd,4, C
Ker d,,. Thus, one can define the homology modules H,(V,) = Kerdn/Imdpy; .

The set of the maps de = {d,} is called the differential of the given
complex. In what follows, we shall write often dz instead of d,z for z € V,,
(and use, without mentioning it, other similar simplifications by omitting sub-
scripts). The coset (“homology coset”) @ + Im dy,41, where = € Kerd, , will
be denoted by [z].

If (V/,d.) is another complex, a complex homomorphism f, : Vo, — V] is
a family of homomorphisms f, : V,, — V., “commuting with the differential”,
i.e. such that f,_1d, = dl fn for all n. Evidently, such a family induces
homology maps

Ha(fe) : Ho(Ve) — Ha(V2)

by H.(f.)[z] = [fa(z)] for all n (it is easy to see that for dz = 0, also
d' f(z) =0 and [f(z + dy)] = [f(z)]). In this way, we can consider the
category of complezes of A-modules com-A and the family of the functors
H, : com-A — mod-A.

Two homomorphisms f, and g, : Vo — V. are said to be homological if
H,(f.) = Hun(g.) for all n; we shall denote this fact by fo = g.. An impor-
tant example of homological homomorphisms is the case of homotopic homo-
morphisms in the following sense. Two homomorphisms f, and g, are called
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homotopic: fo ~ go if there are homomorphisms s, : V, — Vi, ; such that
fa = gn = dj 180 + sp—1dy for all n (the sequence s, = {s,} is called a
homotopy between f, and g.).

Proposition 11.1.1. Homotopic homomorphisms are homological.

Proof. For every homology class [z],

Ho(fo)l2] = [f(2)] = [g(2) + d's(z) + s(da)] =
= [9(2) + d's(z)] = [9(2)] = Ha(gs)l2]

because dz = 0. m]

Two complexes V, and V. are called homotopic if there are homomor-
phisms f, : Vo — V] and f. : V! — V, such that f.f. ~1and fif. ~ 1. In
this case, we shall write V, ~ V/.

Corollary 11.1.2. If V, and V| are homotopic, then Ho(Vs) ~ H, (V) for
all n.

Remark. The converse of Proposition 11.1.1 and of Corollary 11.1.2 does not
hold in general: f, = g, does not imply fo ~ ge and H, (Vi) ~ H,(V/) for all
n does not imply V, ~ V, (see Exercise 1 and 2).

Along with complexes of the above type (“chain complexes”) it is often
convenient to consider “cochain complexes” (V*,d®) of the form

147! d° d!
RN VA NN /A LR /A SR /4 IR

with the condition d"d™~! = 0. In this case, we obtain the cohomology modules
H™»(V*) = Kerd"/Imd"™~!. Obviously, one can pass from chain to cochain
complexes simply by changing the indices, i.e. putting V™ = V_,, and d" =
d_y ; hereby, H, becomes H™". One can usually use the “chain” terminology
if the complex is bounded from the right, i.e. there is a number ng so that
Va = 0 for n < ng and “cochain” terminology if V, is bounded from the left,
i.e. if there is a number ng so that V,, =0 for n > ng .

If F: mod-A — mod-B is a functor, then F induces a functor F, :
com-A — com-B assigning to a complex V, = {V,,d,} the complex F,(V,) =
{F(V,.), F(dn)}. For example, considering the functor hps : mod-A — Vect
for a fixed A-module M (see Example 1 in Sect. 8.1), we obtain the functor
com-A — com-K assigning to a complex V, the complex Homu4(M,V,) =
{Hom (M, V,,)}. Similarly, for a left A-module N, we have the functor — @4 N
assigning to a complex V, the complex Vo, @ 4 N = {V,, ® 4 N}. A contravariant
functor from mod-A to mod-B, i.e. a functor G : (mod-A4)° — mod-B defines
a functor G* : (com-A)° — com-B, but it is more convenient in this case
to consider G*(V,) as a cochain complex with the nth component equal to
G(Va). For instance, if G = h§, (see Example 6 in Sect. 8.1), we obtain a
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contravariant functor mapping a chain complex {V;,} into a cochain complex
{Hom 4(Vy,, M)}.

It is evident that every such functor maps homotopic homomorphisms
(and complexes) into homotopic ones; however, again, fo = go does not imply
Fo(fo) = Fu(gs) (see Exercise 3).

Let fo : Vo — V! be a complex homomorphism. Then, obviously,
d\,(Im f,) C Im f,—; and d,(Ker f,) C Ker f,—1 for all n, and thus we get
the complexes Im fo = {Im f,,} and Ker f, = {Ker f,}. Therefore, one can
define ezact sequences of complexes just the same way as exact sequences of
modules in Sect. 8.2. The following theorem seems to play a fundamental role
in homological algebra.

Theorem 11.1.3. Let 0 — V] 1 Vv, % VI — 0 be an ezact sequence of com-
plezes. Then, for each n, there is a homomorphism O, : Ho (V') —» Hp,—1 (V)
such that the following sequence is ezact:

e Ham(v 2 mvny RY om0

Hn(gs) 5]
i

H.(V/) 2 Hoov) 29 m.o ) —

Hn(ge)
—

Proof. (We shall use the same letter d for differentials in all complexes and
omit subscripts.) Let [z] be a homology coset of H,(V,"). Since g, is an epi-
morphism, ¢ = ¢(y) for some y € V,,. Now, ¢g(dy) = dg(y) = dz = 0 and
thus, in view of the exactness, dy = f(z) for some z € V,_, . Furthermore,
f(dz) = df(z) = d*y = 0 and therefore dz = 0 because f is a monomorphism.

Let us verify that the coset [z] € H,—1(V]) depends neither on the choice of
y nor on the choice of z in the homology coset [z]. Indeed, if g(y') = g(y), then
g9(y'—y) = 0and y'—y = f(u) for some u; thus dy' = dy+df(u) = f(z+du) and
[z + du] = [2]. Furthermore, let [2'] = [z], i.e. 2’ = 2 + dv for some v € V]!, ; .
Then there is w € V41 such that v = g(w) and therefore 2’ = g¢(y + dw).
Since d(y + dw) = dy, the choice of z' does not effect the coset [z].

Consequently, setting O,[z] = [z] gives a well-defined homomorphism
On : Ho(V]') = Hyp—1 (V). It remains to prove that the long sequence is exact.

We are going to show that Ker H,(fo) C Im 0,41 and Ker8,, C ImH,(g.)
and leave the other (rather easy) verifications to the reader. Let Hy(f,)[z] = 0.
Thus f(z) = dy for some y € Vpt1. Put z = ¢(y). Then dz = g(dy) =
gf(z) =0 and we get [2] € Hpq1(V)') satisfying 9[z] = [z] according to the
definition of 9.

Now, let d,[z] = 0. By the definition of 8, this means that if z = g(y)
and dy = f(z), then z = du for some u € V.. Hence, z = g(y — f(u)) and
d(y — f(u)) = dy — f(du) = 0, which gives that [z] = Hn(gs)ly — f(u)], as
required. a

A complex V, is called acyclic in dimension n if H,(V,) = 0 and acyclic if
it is acyclic in all dimensions (trivially, it means that V, is an exact sequence).
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Corollary 11.1.4. Let 0 — V] EL3 Vo & V! = 0 be an ezact sequence of
complezes. Then

1) V. is acyclic in dimension n if and only if 8, is a monomorphism and
On+1 18 an epimorphism.

2) V. is acyclic in dimension n if and only if H,(g.) 13 ¢ monomorphism
and H,1+1(g.) 1s an epimorphism.

3) V. is acyclic in dimension n if and only if H,—1(f.) s @ monomorphism
and H,(f,) an epimorphism.

Corollary 11.1.5. Let 0 — V! —» V, — V! — 0 be an ezact sequence of
complezes.

1) IfV] and V}' are acyclic in dimension n, then V, is acyclic in dimension n.

2) If Vs is acyclic in dimension n and V! in dimension n — 1, then V' is
acyclic in dimension n.

3) If Vi is acyclic in dimension n and V] in dimension n + 1, then V! is
acyclic in dimension n.

The construction of the connecting homomorphisms J, also yields the
following statement, whose proof is left to the reader.

Proposition 11.1.6. Let
0 — V. — V. — VI — 0
a.l ﬂ.l v.l
0 — W' — W, — W' — 0

be a commutative diagram of complezes with exact rows. Then the following
diagram is commutative:

Ha(VY) 2% Haoi(V))
Hn('io)l lHn—l(at)
Hy (W) 2% Hao(WD).

11.2 Resolutions and Derived Functors

Let M be an A-module. A projective resolution of M is a complex of A-
modules P, in which P, = 0 for n < 0, all P, are projective, and P, is
acyclic in every dimension n # 0, while Hy(P,) ~ M is a fixed isomorphism.
Observe that Kerdy = Py and thus Ho(Py) = Py/Imd,; ; hence, we have a
fixed epimorphism 7 : P, — M whose kernel is Im d; . Therefore a projective
resolution is often considered in the form of an exact sequence
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P p P M 0.

However, in what follows, we want to underline the fact that M is not included
in its projective resolution: the last non-zero term of its resolution is FP.

In a dual way, one defines an injective resolution of an A-module M as a
cochain complex Q° in which Q™ = 0 for n < 0, all A-modules Q™ are injective
and such that Q* is acyclic in all dimensions n # 0, while M ~ H°(Q*) =
Kerd® is a fixed isomorphism. Such a resolution can be identified with an
exact sequence

€ o d° 1 d! 2

Generally speaking, we will deal with projective resolutions, leaving the
corresponding formulations (and proofs) for injective resolutions to the reader.
Let P, be a projective resolution of a module M and P, a projective

resolution of M'. Then every complex morphism f, : P, — P, induces a
module homomorphism ¢ : M — M'. The morphism f, is said to be an
eztension of ¢ to the resolutions P, and P]. In other words, an extension of

@ to the resolutions is a commutative diagram

— P & p Lop LM — 0

I A

’
kis
— P 5 P S P I, M — 0

Theorem 11.2.1. 1) Every A-module M has a projective resolution.

2) Any two projective resolutions of a module M are homotopic.

3) Every homomorphism ¢ : M — M' can be extended to the resolutions P,
and P, of the modules M and M', respectively.

4) Any two eztensions of ¢ to a given pair of resolutions are homotopic.

Proof. 1) For every A-module M, there is an epimorphism ¢ : Py — M with
a projective module Py (Corollary 3.3.4). Write M; = Ker 7 and construct an
epimorphism 7, : P — Mj , where Py is again projective. This epimorphism
can be interpreted as a homomorphism d; : P, — Py with Imd; = Kern.
Applying the same construction to M, = Kerd;, we obtain dy : P, — P
with Imd; = Kerd; . Continuing this process, we get a projective resolution
P, of the module M.

3) Let P] be a projective resolution of M'. Consider the homomorphism
om: Py — M'. Since P, is projective and 7' : P, — M’ is an epimorphism,
there is a homomorphism fy : Py — P§ such that «'fy = @n. From here,
7' fodi = ¢nd; = 0 and thus Im fod; C Kern'. However, Imd}, = Kern',
and P; is projective, so there is f; : P4 — P| such that fody = d{f;. In
particular, d} fids = fodid2 = 0 and therefore Im f1ds C Kerd) ; hence there is
f2 1 P, — P; such that fidy = dj fo . Continuing this procedure, we construct
an extension f, : P, — P, of the homomorphism ¢.

4) If g, : P, — P} is another extension of ¢, then f, — g, is an extension
of the zero homomorphism. Hence, it is sufficient to show that f, ~ 0 for any
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extension f, of the zero homomorphism. In such a case we have a commutative
diagram

d d d
- — P3 = P2 = P1 —1—) P() — 0

fal le fll fol
d &, d
C—_ Pé — Py -3 Pl’ — P — 0
with Im fo C Imd} (since Ho(f.) = 0).

Since P, is projective, fo = dsy for some sq : Py — P ; thus fo = diso +
s_1dy (because dy = 0). Consider f; = f; —sod; . Then d} fi = d\ fi—dyseds =
d\ fi — fod1 = 0 and therefore Im f; C Kerd} = Imd), in view of Hi(P]) = 0.
Since P; is projective, there exists s; : Py — P; such that fi = dbsy, ie
fi = sody + dys; . Now, take fo = fo — s1dy; again dyfo = dyfs — dysidy =
dhf2 — fida + sed1d> = 0 and subsequently fo= dyse, i.e. fo = s1da + diysy
for some s, : P, — P;. Again, by induction, fo ~ 0.

2) Let P, and P, be two projective resolutions of a module M. There are
extensions f, : Po — P, and f. : P, — P, of the identity homomorphism
1: M — M. But then f.f, and f,f. also extend 1 : M — M. Since the
identity morphisms 1, : Po — P, and 1, : P — P) extend 1 : M — M,

as well, 4) implies that fof. ~ 1 and f.fe ~ 1. Therefore P, ~ P, and the

theorem is proved. o

Taking into account the fact that every functor F' : mod-A — mod-B
translates homotopic complexes and homomorphisms into homotopic ones,
and applying Proposition 11.1.1 and Corollary 11.1.2, we get the following
consequence.

Corollary 11.2.2. 1) Let F : mod-A — mod-B be a functor and P, a pro-
jective resolution of an A-module M. Then the homology Hyp(F(P.)) is
independent of the choice of the resolution P, .

2) If P! is a projective resolution of M' and fo : P — P, an eztension of
a homomorphism ¢ : M — M', then H, (F.(f.)) 1s independent of the
choice of the extension f. .

In the situation described in Corollary 11.2.2, we shall write L,,F(M) =
Hn(Fuo(P.)) and LoF(p) = Ha(Fu(fs)). If fo is an extension of ¢ and g,
an extension of ¢ : M' — M", then g.f. is an extension of ¥ and thus
L, F(¢p) = Ly F(Y)LoF(¢), i.e. Lo F is a functor mod-A — mod-B, which
is called the n-th left derived functor of the functor F. Similarly, replacing
projective resolutions by injective ones, one can define right derived functors
R"F. The definitions of left and right derived functors of a contravariant func-
tor G can be given dually, using injective resolutions for L,G and projective
resolutions for R*G. All further arguments apply to right derived, as well as
contravariant functors.

Proposition 11.2.3. A right (left) ezact functor F satisfies LoF ~ F (re-
spectively, R°F ~ F).
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Proof. If P, is a projective resolution of M, then P, 4 Py — M — 0isan

exact sequence, and thus F(P;) £y F(Py) — F(M) — 0 is exact, as well.
Therefore, LyF(M) = H, (F.(P.)) = F(Py)/Im F(d;) ~ F(M). O

The importance of derived functors stems in many respects from the exis-
tence of “long exact sequences”. Their construction is based on Theorem 11.1.3
and the following lemmas.

Lemma 11.2.4. For every ezact sequence of modules
0— M ML M —0,

there are projective resolutions P., P, and P!' and an ezact sequence

0— P Lp, 2P 0,

wn which fo. extends ¢ and go extends .

Proof. Let ' : P, — M' and n" : P! — M" be epimorphisms. Put P, =
Py @ P}’ and consider a homomorphism 7 = (7',n) : Pp — M, where 7 is a
homomorphism P}’ — M such that ¢y = =" It is easy to verify that 7 is also
an epimorphism and that we obtain a commutative diagram

0 0 0

0 — M 2 M

Jgo
P — P — 0

0 0 0

in which all columns and the two lower rows are exact; here M] = Kern',
My, =Kern, M{' = Kern". According to part 3) of Corollary 11.1.5 (see also
Exercise 3 to Chapter 8) the first row is also exact, and thus we may apply to
it the same construction. By repeating this procedure, we obtain a required
exact sequence of resolutions. O

Lemma 11.2.5. If 0 - V] — V, - V) — 0 is an ezact sequence of com-
plezes, where all modules V' are projective, then the sequence 0 — Fo(V]) —
Fo(Vo) = Fo(V]}") — 0 is ezact for every functor F.

Proof. Since every sequence 0 — V,, — V, — V,! — 0 splits, the sequence
0— F(V))— F(V,) — F(V)) — 0 also splits. a
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Now we apply the preceding lemmas and Theorem 11.1.3 in order to get
a long exact sequence for arbitrary functors.

Corollary 11.2.6. Let 0 — M' 5 M L M" =5 0 be an ezact sequence
of modules. Then for any functor F, there exist connecting homomorphisms

On: Lo F(M") — L1 F(M') so that the following sequence is ezact

oo LopFMmy 24 prory 259 pron =W
R W 0 VO WL Y (670 Bt MY 075 B

Observe that, by definition, L, F' = 0 for n < 0 and thus, Corollary 11.2.6
implies that Lo F' is always right exact. In particular, if F' itself is right exact,
then in view of Proposition 11.2.3, the end of the long exact sequence has the
following form:

s LiF(M") 25 F(M') — F(M) — F(M") —0.

Corollary 11.2.7. 1) A functor F is right (left) ezact if and only if F ~ LoF
(respectively, F ~ ROF).

2) A right (left) ezact functor F is ezact if and only if L1 F = 0 (respectively,
R'F=0)

Observe that, for an exact F', both L,F = 0 and R*F =0 for all n > 0.

If a module P is projective, then its projective resolution has a very simple
form: Py = P and P, = 0 for n > 0. In particular, L,F(P) = 0 for all n > 0.

This trivial observation indicates how to characterize derived functors “ax-
iomatically”, in the following way.

Theorem 11.2.8. Let F be a right ezact functor and {®, | n > 0} a family
of functors satisfying the following properties:

1) @¢ ~ F (as functors);
2) @,(P) =0 for alln > 0 and all projective P;

3) Ifo - M LMY M 0 s an ezact sequence of modules, then
there are homomorphisms Ay : S(M") — S, 1(M'), n > 0, so that the
following sequence is ezact:

RN @n+1(M”) An+1 ¢n(MI) Qn(ﬁo) ¢n(M) ¢n(¢)
$n(Y) én(M”) A, én—l(]\/.[’) D-1(p) ¢n—l(M) ..
Then (M) ~ L,F(M) for alln > 0 and all modules M.
Proof. The exact sequence 0 — L = P — M — 0 with a projective module

P induces a long exact sequence for the functors @, . For n = 1, we get the
exact sequence
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&,(P) = 0 — &, (M) 24 30 (L) 229 6,(P),

from where &;(M) ~ Ker $o(a) = Ker F(a) ~ L F(M) by the condition 1).
For n > 1, the exact sequence has the form

$,(P) =0— &, (M) 228, (L) — Fp_1(P) =0,

thus A, is an isomorphism and the theorem follows by induction. ]

Remark. In fact, in Theorem 11.2.8, &,, ~ L, F as functors; however, we will
not use this result.

From Proposition 11.1.6, we get also the following consequence.

Corollary 11.2.9. Let
0O — M — M — M' — 0

A B
06 — N — N — N' — 0

be a commutative diagram with ezact rows. Then the following diagram is

commutative: N
L,F(M'") % Lp F(M')

LnF(v)l an-xF(a)

L.F(N") 25 L. F(N').

11.3 Ext and Tor. Extensions

The construction of derived functors applies, in particular, to the functors
Hom and ® (more precisely, to the functors hps, A, X ®4 — and —®4Y).
Since Hom is left exact, it is natural to consider right derived functors R™hy
(constructed by means of injective resolutions) and R™h%; (constructed by
means of projective resolutions, since h%; is contravariant), which coincide
for n = 0 with hp and h%; . It is a remarkable fact that these constructions
produce the same result.

Theorem 11.3.1. For all A-modules M, N and each n > 0,
R"hp(N) = R*"h\(M).

Proof. Fix a module M and put &,(N) = R"hy(M). If ¢ : N — L,
then ¢ induces a functor morphism h% — h§ assigning to a homomor-
phism a : M — N the homomorphism ¢a : M — L, and thus also a de-
rived functor morphism @,(¢) : Pn(N) — P,(L). Note that if N is injective,
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then, in accordance with the definition of injectivity (see Theorem 9.1.4),
the functor h% is exact and therefore $,(N) = 0 for n > 0. In addition,
@y(N) = ROh3(M) ~ h%(M) = hy(N) by Proposition 11.2.3. Clearly, this
isomorphism is functorial in N, and thus & ~ hjy .

Now, let 0 — N' & N ¥ N" _ 0 be an exact sequence. Then, for any
complex P, consisting of projective modules, the sequence of complexes

0 — Homa(P,,N') = Hom (P, N) — Homa(P.,N") — 0

is exact. Taking for P, a projective resolution of the module M, we get, accord-
ing to Theorem 11.1.3, just a long exact cohomology sequence similar to that
which appears in the formulation of Theorem 11.2.8 (condition 3)). Thus, all
the conditions of this theorem are satisfied, and therefore $,(N) ~ R™hp(N).
The proof of the theorem is completed. a

The common value R"hp(N) ~ R"h;(M) is denoted by Ezt’ (M, N).
An analogous result holds for the functors tyy = M ®4 — and ity =
—®a N, where M is a right and N is a left A-module.

Theorem 11.3.2. For any right A-module M and any left A-module N, and
each n >0,

Loty (N) = LntN(]\/f) .

The proof is (quite similar to the proof of Theorem 3.1) left to the reader.

The common value of these functors is denoted by Torf (M, N). Let us
point out that Ext% (M, N) ~ Hom(M, N) and Torg(M,N) ~ M ®4 N.

The functor ExtY(M, N) is closely related to the module extensions. Re-
ferring to Sect. 1.5, let us reformulate the definition of an extension of a module
M with kernel N as an exact sequence ( of the form

C:0-NSxA Moo,
Two extensions ¢ and (', where
0 NSX Baroo

are said to be equivalent (which is denoted by ¢ ~ (') if there is a homomor-
phism 74 : X — X' such that the following diagram is commutative:

B

0 — N % X S5 M — 0

v | | 1| |

1

0o — N % o x A oM — 0.

By Lemma 8.2.1 (Five lemma), « is an isomorphism. Denote by Ex(M, N) the
set of all equivalence classes of extensions of M with kernel N.
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By Corollary 11.2.6, an exact sequence ¢ induces a connecting homomor-
phism 8; : Homa(M, M) — ExtY (M, N). The element §(¢) = 9¢(1a) is called
the characteristic class of the extension (. If { ~ (', then the diagram

Homa(M, M) 2% Extl(M,N)

l !

Be1
Homs(M,M) == Ext4(M,N)

is, by Corollary 11.2.9, commutative (with the vertical maps being identity
morphisms). From here, §(¢) = §(¢'), and therefore we get a well defined map
§: Ex(M,N) — Ezt},(M,N).

Theorem 11.3.3. The map 6 is one-to-one.

Proof. We are going to construct an inverse map w. To this end, fix an exact
sequence 0 — N 5 Q@ 5 L — 0 with an injective module Q. By Corol-
lary 11.2.6, the sequence
k
Homa(M, Q) "% Hom(M, L) -2 Ext!, (M, N) — 0

is exact (since Ext), (M, Q) = 0). In particular, every element u € Ext’ (M, N)
is of the form u = 8(p) for some ¢ : M — L. Consider a lifting of the given
exact sequence along ¢ (see Exercise 5 to Chap. 8), i.e. the exact sequence

£:0-NLz5 M0,

where Z is a submodule of Q @ M consisting of the pairs (¢, m) such that
o(q) = ¢(m), and f and g are defined by the rules f(n) = (¢(n),0) and
g(g,m) = m. If ¢’ is another homomorphism satisfying d(¢') = u, then ¢' =
¢ + on for some n : M — Q. Then an equivalence of the extensions £ and
£ :0—- N — Z2' - M — 0 constructed as a lifting along ¢', is given by
a homomorphism v : Z — Z' sending (¢, m) into (¢ + n(m), m) (the simple
verification is left to the reader). Consequently, by defining w(u) = &, we get
a map Ext),(M,N) — Ex(M, N). The commutative diagram

0o — N Lz & o Mm — o

W T
0 — N = Q@ 5 L — 0,
where (g, m) = ¢, yields, in view of Corollary 11.2.9, a commutative square
Homa(M,M) 2% Exty(M,N)
hM(‘P)l il
Homa(M,L) -5 Exti(M,N),
and thus dw(u) = J¢(1ap) = I(p) = .
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It remains to show that wé({) ~ ( holds for an arbitrary extension

(:0-N3X LM - 0. Let 6(¢) = u. Since @ is injective, the homomor-
phism € : N — @ extends to u : X — @ such that ya = ¢, and yields a
commutative diagram

0 — N % x & M — o

i | 3l .

0 — N S5 @ % L — 0.
Therefore the following square is commutative:

Homa(M,M) = Exty(M,N)

hM(‘P)l ll

Homa(M,L) -% Exty(M,N),
and u = J(p). Using this ¢ in constructing w(u) as above, we get a sequence
£E:0—> N —> Z — M — 0. But then the homomorphism v : X — Z given

by v(z) = (u(z),B(z)) establishes the equivalence of ¢ and ¢ = w(u). The
theorem is proved. O

In the sequel, we shall identify the elements of Ext}(M, N) and the re-
spective extensions. Since, for a fixed M, Extl(M ,N) is a covariant func-
tor of N (and, for a fixed N, a contravariant functor of M), a homomor-
phism ¢ : N — N’ (a homomorphism ¥ : M' — M) induces a map
we : Ext4(M,N) — Ext4 (M, N') (respectively, a map %° : Ext4(M,N) —
Ezty(M',N)). From the explicit form of the one-to-one correspondence
w : Exty(M,N) — Ex(M,N) constructed above, we get immediately the
following corollary.

Corollary 11.3.4. 1) The extension w(¢¢(u)) is equivalent to the lifting of
w(u) along .
2) The extension w(pe(u)) is equivalent to the descent of w(u) along .

(A lifting of an exact sequence has been already defined above. A descent
of an extension 0 = N 5 2 % M — 0 along ¢ : N — N’ is, by definition,
the exact sequence 0 — N’ Lz %Mo 0, where Z' = (N' @ Z)/Y with
Y = {(~¢(n),f(n)) | n € N} and f'(n') = [n',0], g'([n', 2]) = g(2). Here
[n', z] denotes the coset (n',z) +Y.)

Using the preceding Corollary 11.3.4, we shall write ¥¢(¢) = w(¥¢(u)) and
Pe(C) = w(pe(u)) for ¢ = w(u).

Corollary 11.3.5. The following conditions are equivalent:

1) The module M is projective (injective).
2) Extly(M,N) =0 (respectively, Exty,(N,M) = 0) for every module N.
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3) ExtL(M,N) = 0 (respectively, Exty,(N,M) = 0) for every simple mod-
ule N.

4) Ext3(M,N) = 0 (respectively, Ext’y(N,M) = 0) for each n > 0 and
every module N.

Proof. The implications 1) = 4) = 2) are trivial and 2) = 1) follows in view
of Theorem 11.3.3 and Theorem 3.3.5 (or Theorem 9.1.4 for injectivity). Also,
2) = 3) is trivial, while 3) = 2) can be proved by induction on the length of
N, using the long exact sequence. O

It is remarkable that, for modules over finite dimensional algebras, the
following statement also holds.

Proposition 11.3.6. The following conditions are equivalent:

1) The module M is projective.

2) Tor?(M,N) = 0 for every module N.

3) Torf(M,N) =0 for every simple module N.

4) Tor?(M,N) =0 for every module N and each n > 0.

Proof. Again, 1) = 4) = 2) = 3) are trivial. We are going to prove 3) = 1).
Consider an exact sequence 0 - L — P 5 M — 0, where 7 : P — M
is a projective cover of M. Write A = A/R with R = rad A and note that
Tor (M, A) = 0 because A is a direct sum of simple modules. Therefore,
in view of Corollary 11.2.6,0 — L®4A — P®4 A L M®RLA —0
is an exact sequence. Now, one can see easily that M ®4 A ~ M/MR (an
isomorphism can be defined by  + MR — 2 ® 1). Since 7 : P — M is
a projective cover, T ® 1 defines an isomorphism P/PR ~ M/MR. Thus,
L/LR = 0 and, by Nakayama’s lemma, L = 0. Hence, 7 : P — M is an
isomorphism and M is projective. O

11.4 Homological Dimensions

The functor mod-A — Vect assigning to X the space Ext(M,X) will be
denoted by h%,. Notice that if M is a B- A-bimodule then %, can be considered
as a functor mod-A — mod-B. The projective dimension of an A-module M is
said to be n: proj.dim , M = nif k%, # 0 and A7y = 0 for all m > n;if no such
number exists, define proj.dim, M = oo. Dually, considering the functors
h§f : X — Ext’ (X, M), we define the injective dimension inj.dim 4 M to be
n, if R4F # 0 but h§/* = 0 for all m > n, and inj.dim, M = oo if no such
number n exists.

In accordance with Corollary 11.3.5, proj.dim4 M = 0 means that M
is projective and inj.dim, = 0 that M is injective. Furthermore, Corol-
lary 11.2.6 provides an inductive way for computing these dimensions.
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Proposition 11.4.1. Let0 = L—>P > M —-0and0 - M - Q - N =0
be ezact sequences with a projective module P and an injective module Q). If
M is not projective (not injective), then proj.dim, M = proj.dim, L +1
(respectively, inj.dim, M = inj.dim, N +1).

Proposition 11.4.2. Let0 - L - P,y — --- - P - Pp - M — 0
and 0 = M — Q¢ > Q1 — -+ = Qr—1 — N — 0 be ezact sequences with
projective modules Py, Py,. .., Pr_1 and injective modules Q,,Q1,...,Qr—1. If
proj.dimy M > k (inj.dimy M > k), then proj.dim 4 M = proj.dim, L+ k
(respectively, inj.dim, M = inj.dim, N + k).

Proposition 11.4.3. Let (P,,d.) (respectively, (Q®,d*)) be a projective
(injective) resolution of a module M. If M is not projective (not injec-
tive), then proj.dim, M = min{n | Kerd,—1 is projective} (respectively,
inj.dim, M = min{n | Cokerd"™! is injective} ).

Taking into account Proposition 11.3.6, we obtain also a definition of pro-
jective dimension in terms of Tor.

Corollary 11.4.4. proj.dim 4, M s equal to n if and only if Tor,‘;‘_l_l(M, N) =

0 for all N and Torf}(M,N) # 0 for some module N (proj.dim, M = oo if
no such n exists).

Let A = A/R where R = rad A. In view of condition 3) of Corollary 11.3.5
and Proposition 11.3.6, we get the following result.

Corollary 11.4.5.

proj.dim 4 M = sup{n | Ext’(M, A) # 0} =
= sup{n | Tor2(M, A) # 0};
inj.dim, M = sup{n | Ext%(4, M) # 0}.

Corollary 11.4.6. The following values coincide for any finite dimensional
algebra A:

sup{proj.dim4 M | M a right A-module};
sup{inj.dimy M | M a right A-module};
sup{proj.dim, M | M a left A-module};
sup{inj.dim, M | M a left A-module};
proj.dim, A;

inj.dim, A;

sup{n | Ext3(4, 4) £ 0} ;

sup{n | Tory(4,A) # 0} .

(Here, A can always be considered either as a right or as a left A-module.)
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This common value is called the global dimension of the algebra A and is
denoted by gl.dim A.

Obviously, gl.dim A = 0 if and only if A is semisimple. In view of Propo-
sition 11.4.1, if A is not semisimple, then gl.dim A = proj.dimy R+ 1. In
particular, gl.dim A = 1 if and only if R is projective, i.e. if and only if A is
hereditary (see Theorem 3.7.1). Later we shall also use the following criterion
resulting from Proposition 11.4.3.

Corollary 11.4.7. The following conditions are equivalent:

1) gldim A<2;
2) the kernel of a homomorphism between projective A-modules 1s projective;
3) the cokernel of a homomorphism between injective A-modules is injective.

11.5 Duality

Given a complex (V,,d,) of right (left) A-modules, one can construct a dual
complex (V*,d?):

* dil * ‘i3 * d; * d; *
= VL, =V =V ==V

of left (right) A-modules (in view of indexing, it is natural to consider it as a
cochain complex). In order to compute its cohomology, we shall recall (without
proofs) some well-known facts from linear algebra.

Proposition 11.5.1. Let U D W be subspaces of a vector space V. Then
there is a canonical isomorphism (U/W)* ~ W/UL.

Proposition 11.5.2. For any linear transformation f : V — W, (Im f)J‘ =
Ker f* and (Kerf)J‘ =1Im f*.

As a result, we get immediately the following statements.
Corollary 11.5.3. H*(V}) ~ H,(V,)".

Corollary 11.5.4. For any right A-module M and any left A-module N,
Exty (M, N*) ~ Tor2 (M, N)*.

Proof. Consider a projective resolution P, of the left module N: --- — P, —
P, - Py - N — 0. Passing to the dual right modules, we get an injective
resolution P} of the module N*: 0 — N* — P} — Pf — Py — ---. It follows

from the adjoint isomorphism formula (Proposition 8.3.4) that
Hom (M, P}) ~ Hom4 (M, Homg (P, K)) ~
~ HOan(M ®a P.,I":) = (M (S P.)* N
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and thus, by Corollary 11.5.3, the cohomology Ext’ (M, N*) of the complex
Ha(M, P?) is dual to the homology Tor(M, N) of the complex M ®4 P,. O

In the sequel, we shall find useful another kind of duality defined by
the functor M — M~ = Homus(M, A). As the “usual” duality, this is a
contravariant functor, or more precisely, a pair of contravariant functors
mod-A — A-mod and A-mod — mod-A. However, these functors are not
exact (in fact, they are only left exact) and not reciprocal. Nevertheless, there
is a canonical map oy : M — M™, sending m € M into opy(m) : M~ — A
such that op(m)(f) = f(m) for all f: M — A.

If M, N are two right modules, then there is a unique map A = A(M,N) :
N ®4 M" — Homa(M, N) such that A(n ® f)(m) = nf(m) for all m € M,
n€Nand fe M.

Proposition 11.5.5. 1) If M is a projective module, then oy is an isomor-
phism.

2) A homomorphism ¢ : M — N belongs to the image of A(M,N) if and
only if it can be factored into a product ¢ = Ba, where o : M — P and
B : P — N with a projective module P.

Proof. 1) Obviously, g4 is an isomorphism and therefore also 0,4 is an iso-
morphism. Thus, in view of Theorem 3.3.5, the statement follows.

2) Similarly to 1), if P is a projective module, we can immediately see
that A(P,N) is an isomorphism. Now, let a : M — P with a projective P.
Then the following diagram commutes:

NoiP 2%  Ne.M
A(P,ml “M’N)l (11.5.1)

hy(a)
—

Hom 4(P, N) Hom4(M,N),

and we get that Imh%(a) = {fa | B: P — N} CIm A(M,N).

In order to complete the proof, we shall need the following obvious lemma.

Lemma 11.5.6. For a right B-module M, a left A-module N and an A-B-
bimodule L, there i3 an isomorphism

Hompg(M,Hom4(N, L)) ~ Homa (N, Homp(M, L))

assigning to a homomorphism f : M — Homa(N,L) the homomorphism
f'+ N - Homp(M,L) such that f'(n)(m) = f(m)(n) for all m € M and
n€N.

If, in particular, P is a projective module, then

Hom4(P",M") = Hom 4 (P",Hom(M, A)) ~ Hom4 (M, Homu(P", 4)) =
= Hom (M, P"") ~ Hom4(M, P).
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Consider now an epimorphism ¢ : P’ — M", where P' is projective.
According to 1), we may assume that P' = P" and ¢ = «” for a projective
module P and &« : M — P. Then the homomorphism 1 ® a” of (11.5.1) is
an epimorphism by Proposition 8.3.6. Consequently Im A(M, N) = Im h$/(a)
and the proof of 2) is completed. a

In what follows, we shall write Pra(M,N) = ImA(M,N) and call the
homomorphisms from Pr4(M, N) the projective homomorphisms. Let us also
introduce the following notation: Hom 4(M, N) = Hom (M, N)/Pr4(M, N).

11.6 Almost Split Sequences

In this section, we are going to prove a theorem which plays a fundamental role
in the contemporary investigations of representations and structure of finite
dimensional algebras. It is related to the concept of almost split sequences,
often called Auslander-Reiten sequences.

Proposition 11.6.1. Let (: 0 —» N L X5 MS0bea non-split ezact se-
quence with indecomposable modules M and N. Then the following conditions
are equivalent:

1) For every ¢ : M' — M, where M' is indecomposable and ¢ is not an
wsomorphism, the lifting p¢(() splits.

1') For every ¢ : M' — M, where M' is indecomposable and ¢ is not an
isomorphism, there is a factorization p = ga for some a: M' — X.

2) For every ¥ : N — N'  where N' is indecomposable and ¢ is not an
1somorphism, the descent ¥.(() splits.

2') For every ¢ : N — N', where N' is indecomposable and i is not an
isomorphism, there is a factorization 1 = Bf for some f: X — N'.

Proof. 1) = 1'). Consider the commutative diagram involving the lifting ¢*({):

eO): 0 — N ox Lo o

Wl

C: 0 — Joo0x L M — o.
Since ¢°(() is split, there is a homomorphism v : M’ — X' for which g’y = 1.
But then ¢ = ¢g'y = g¢'y, as required.

1"y = 1). If ¢ = ga, then the homomorphism v : M' — X' given by
the formula y(m') = (a(m'),m') defines a splitting of ©°(¢{). (Recall that, in
the construction of lifting, X' = {(z,m') | g(z) = ¢(m')} C X & M’, and
g'(z,m') =m")
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1') = 2). Consider the commutative diagram involving the descent t({):

¢: 0 — N Lox 2 oM — o

wl zp'l lMl
Be((): 0 — N Lox oM .

Let X' = X;: 9 X2 ®...0 X, be a direct decomposition into indecomposable
summands X; and g; the restrictions of g' to X;. If any of g; is invertible, i. e.
gih = 1p for some h : M — X;, then the sequence t.(() splits due to the
homomorphism vy : M — X' defined by v(m) = (0,...,0, h(m),0,...,0) with
h(m) at the ith position. Thus, assume that none of g; is invertible. Then in
view of the condition 1'), g; = ga; for some a; : X; — X and hence ¢' = g7,
where n(z1,%2,...,2m) = Y ai(z;).

Since gnf' = ¢'f' =0, Imnf' C Kerg = Im f, and thus nf' = f8 for
some # : N' — N. Similarly, since g(1 — n¢') = g — g'¥' = 0, we have a
factorization 1 —ny' = fu for some u : X — N. Furthermore, multiplying the
equality 1 = n¢’+ fu by f we get f = ny'f+ fuf = nf'y+fuf = fOb+ fuf.
Since f is a monomorphism, this equality yields 1y = 8¢ + uf. Now, N is
indecomposable and thus the algebra E4(N) is local. Consequently, 8 or uf is
invertible. However, if §4 is invertible, so is ¥ (since N' is also indecomposable)
and if uf is invertible, then ( is split. This contradiction completes the proof.

The assertions 2) < 2') and 2') = 1) can be proved similarly, or follow by
duality. 0

A sequence ( possessing the properties listed in Proposition 11.6.1 is called
an almost split sequence with end M and beginning N.

It is clear that in order that such an almost split sequence exists, it is nec-
essary that M is not projective and N is not injective. It is rather remarkable
that this condition is also sufficient.

Theorem 11.6.2 (Auslander-Reiten). 1) For any indecomposable module
M which is not projective, there is an almost split sequence with end M.

2) For any indecomposable module N which is not injective, there is an al-
most split sequence with beginning N.

Proof. 1) Theorem 3.3.7 implies that there is an epimorphism 7 : Py — M such
that Py is projective and Kern C rad Py. Repeating the same procedure for

Ker 7, we get an exact sequence P; A Py 5 M — 0 for which Im8 = Kerr C
rad Py and Ker 6 C rad P;. Now, apply the functor ~ = h% (see Sect. 11.5) and
put T'= Tr M = Coker (§"). We obtain the following exact sequence:

0—M P P2 0. (11.6.1)

We are going to show that T is indecomposable. Indeed, assuming that
T is decomposable, we get from Corollary 3.3.8 that P, = Y; @ Y2 and
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Py" = Z1 @ Z; such that §°(Z,) C Y] and 6°(Z2) C Y,. But then, taking into
account part 1) of Proposition 11.5.5, we see that Py = Y1 @Y™, Py = Z,"®02Z2"
with 6(Y1") C Z1" and 6(Y>2") C Z;". From here, M ~ Z;"/8(Y1") & Z2"/6(Y2")
and, in view of the fact that Im § C rad Py, both summands are non-zero. This
contradiction shows that T is indecomposable. Put N = T*.

According to Corollary 11.5.4, for any module L, there is an isomor-
phism ExtY(L,N) ~ Tor{(L,T)*. To compute Tor{ (L, T), we will use the
exact sequence (11.6.1): It turns out that Tor#(L,T) is isomorphic to the
factor space Kertr(6")/Imtr(n") (here t; is the functor L ® 4 —). Making
use of part 2) of Proposition 11.5.5 we obtain L®4 P;" ~ Homa(P;, L),
and hence Kerty(6") ~ Kerh$(8) ~ Homa(M, L), since the sequence 0 —
Homa(M,L) — Homa(Py, L) — Hom4(P1, L) is exact. Moreover, Im ¢y (n")
is mapped in this isomorphism into Im A(M, L) = Pr4(M, L). Consequently,
Torf(L,T) ~ Hom 4(M, L) and Ext}(L,N) ~ Hom 4(M, L)*. In particular,
Exti‘(M, N) ~ Hom,(M,M)*. However, H = Hom,(M,M) is a quotient
algebra of E4(M) and thus it is a local algebra. Denote by R its radical and
consider a non-zero linear functional ( € H* such that ((R) = 0. Let M’ be an
indecomposable A-module. For any ¢ : M’ — M which is not an isomorphism,
the induced map Hom (M, M') — Hom 4(M, M) assigns to a homomorphism
f: M — M’ the non-invertible endomorphism ¢ f. Thus, denoting by f the
coset of f in Hom 4(M, M"), we get that ©*(¢)(f) = ((¢f) = 0, which means
that the extension of M by kernel N corresponding to the element ( is an
almost split sequence.

The assertion 2) follows from 1) by duality (or can be proved similarly). Let
us point out that our computations yield also isomorphisms M ~ Tr N* and
ExtY (M, L) ~ Hom4(L, N)* for every module L; here Hom (L, N) denotes
the factor space of Hom 4(L, N) by the subspace In4(L, N) consisting of those
homomorphisms which factor through an injective module. O

11.7 Auslander Algebras

In conclusion, we will give a homological characterization of an important class
of algebras. We call an algebra A an Auslander algebra if there is an algebra
B possessing only a finite number of non-isomorphic indecomposable modules
My, M,,...,M,,sothat A~ Eg(M), where M = M1 ® Mo ®...H M, (more
precisely, A is called the Auslander algebra of the algebra B). By definition,
such an algebra is always basic. Obviously, a basic semisimple algebra is always
an Auslander algebra.

Theorem 11.7.1 (Auslander). A basic algebra A is an Auslander algebra
if and only if gl.dim A < 2 and there is an ezact sequence 0 - A — Iy — I

wn which the A-modules Iy and I are bijective.

The necessity of the statement will be based on the following lemma.
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Lemma 11.7.2. Let A = Ep(M) be an Auslander algebra. Then:

1) M is a projective left A-module.

2) The functors F : N — Homp(M,N) and G : P — PQ®4 M establish
an equivalence between the category mod-B and the category pr-A of the
projective A-modules.

Proof. 1) Since M is a direct sum of all indecomposable B-modules, mM =~
B @ L for some L, and thus mA ~ Homg(mM,M) ~ Hompg(B,M) &
Homp(L, M). Therefore, M ~ Homp(B, M) is a projective A-module.

2) The fact that F((IN) is always projective can be verified the same way as
the first statement 1). The natural transformation of functors (see Sect. 8.4)
@ :lppa = FG and ¥ : GF — 1ped-p are isomorphisms on A4 and Mp,
respectively, and therefore on all their direct summands. Hence ¢ and i are
isomorphisms, respectively, on all projective A-modules and all B-modules, as
required. ]

Proof of necessity in Theorem 11.7.1. Let A = Ep(M) be the Auslander
algebra of an algebra B and ¢ : Py — P; a homomorphism of projective
A-modules. In view of Lemma 11.7.2, we may assume that P; = F(N;) and
g = F(f) for some B-module homomorphism f : Ny — Nj. Since F is left
exact, Ker g ~ F(Ker f) is a projective A-module and gl.dim A < 2 by Corol-
lary 11.4.7.

Now, construct an exact sequence 0 — M — @y — @7 with injective
B-modules Qg,Q;. Applying the functor F', we obtain an exact sequence
0 - A — F(Qo) — F(Q1). It remains to show that F(Q;) are injective
A-modules. In view of Theorem 11.1.4, it is sufficient to know that F(B*)
is an injective A-module. However, F(B*) = Hompg(M,Hom (B, K)) ~
Homyg(M ®p B, K) ~ M* is injective by part 1) of Lemma 11.7.2.

Proof of sufficiency. Assume that gl.dim A < 2 and that there is an exact
sequence 0 — A — Iy — I; with bijective A-modules Iy and I;. Denote
by I the direct sum of all indecomposable bijective A-modules, B = E4([)
and consider the contravariant functors ' : N ~ Homp(N,I) and G' : P —
Hom4 (P, I). For aleft B module N, a projective resolution P, — Py — N — 0
translates to the exact sequence 0 — F'(N) — F'(P) — F'(P;). However
F'(B) ~ I and therefore F'(P;) are projective (even bijective) A-modules. By
Corollary 11.4.7, F'(N) is also projective, and thus F’ can be viewed as a
functor (B-mod)° — pr-A.

Consider the natural transformations ¢' : 1,4 — F'G' and ¢’ : 1;mod-B —
G'F' (they act the same way: ¢'(P) assigns to an element 2 € P the B-
homomorphism Hom4(P,I) — I sending f into f(z); ¥'(N) acts similarly).
Clearly, ¢'(I) and 9'(B) are isomorphisms. Thus, if P is bijective and N is
projective, also ¢'(P) and ¢'(N) are isomorphisms. Besides, the functor F'G'
is left exact and G'F" is right exact, since I is an injective A-module and thus
G' is exact. Therefore the exact sequence 0 — A — Iy — I can be extended
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to the following commutative diagram with exact rows:

0 — —_— —_—

A I I
so'(A)l @’(Io)l «p'(h)l
0 — F'G'(4) — F'GL) — FG0L).

As a consequence, ¢'(A) is an isomorphism and thus ¢'(P) is an isomorphism
for every projective P. Similarly, ¢'(IN) is an isomorphism for every IV and we
conclude that F’ and G’ establish an equivalence of the categories (B-mod)’
and pr-A. In particular, since G'(A) = I, the algebra A is anti-isomorphic to
Endp(I). Furthermore, A is basic, and thus is a direct sum of non-isomorphic
principal A-modules; therefore I is a direct sum of all non-isomorphic indecom-
posable left B-modules. It follows that I* is a direct sum of all non-isomorphic
indecomposable right B-modules and Ep(I*) ~ Eg(I)° ~ A, so A is an Aus-
lander algebra. o

Exercises to Chapter 11

1. Verify that for a complex V, which is a short exact sequence 0 — M — N —
L — 0, V, ~0if and only if the sequence splits. (Clearly, H,(V,) = 0 for all n.)

2. Let A = Kla], where a> = 0, M = AfaA and 7 : A — M the canonical
projection. Furthermore, let ¢ : M — A be the embedding sending = + aA
into az and f, : Vo — V/ the complex homomorphism defined by the following

diagram:
10
0 — MoM (—°-‘3> MoeM — 0

«o| e
0 — A —(—0—2» MeM — 0.
Show that f, =0, but f, # 0.

3. Give an example of a complex V, and a functor F' such that Hn(V,) = 0 for all
n, but H, (F(V,)) # 0 for some n.

4. Let V, and V, be complexes of projective modules over a hereditary algebra,
bounded from the right, and f, and g, two homomorphisms V, — V;. Prove
that f, = g, implies f, ~ g,.

5. Prove that for every module M there exists a projective resolution (P.,d,)
satisfying Imd™ C rad P,-1 for all n, and that any two such resolutions are
isomorphic. (Resolutions satisfying this property are called minimal projective
resolutions of the module M and are denoted by P,(M).) Formulate and prove
an analogous result for injective resolutions.

6. Let 0 — N 5 Py - .-+ —- Pyh —- M — 0 be an exact sequence with
projective modules Po, Py ,..., Py_1. Let F be a right exact functor. Prove
that L" F(M) ~ L™ ¥ F(N) for n > k and L* F(M) ~ Ker F(¢p). Formulate and
prove similar statements for right derived functors and contravariant functors.
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. Let P,(M) = (P,,d,) be a minimal projective resolution of a right A-module M

(see Exercise 5). Prove that, for any simple right A-module V (simple left A-
module W), Ext%(M,V) ~ Homa(Pn,V) and Torg (M,W) ~ P, @4 W.

. Let A be a split algebra, D = D(A) its diagram and V; the simple A-module

corresponding to the vertex ¢ € D. Prove that Exty(V;,V;) ~ t;; K, where (;;)
is the incidence matrix of the diagram D.

. Construct a one-to-one map §' : Ex(M, N) — Extl (M, N) using the connectin
A g

homomorphism with respect to the first variable (and projective resolutions).
Prove that proj.dim ,(® M;) = max;(proj.dim, M;) and inj.dim (& M;) =
max;(inj.dim 4, M;).

Prove that gl.dim(]] 4:) = max;(gl.dim A;).

Assume that there are no cycles in the diagram D(A) of an algebra A.

a) Prove that gl.dim A < {, where £ is the maximal length of paths in D(A).
b) If (rad A)* = 0, prove that gl.dim A = ¢.

Let L be an extension of the field K. Prove that gl.dim Ay > gl.dim A. Prove
that the inequality becomes equality if L is a separable extension or if the
quotient algebra A/rad A is separable over K.

Prove that gl.dim A < proj.dim 4g 40 A and that equality holds if A/rad A is
separable.

Prove that any two almost split sequences with a common beginning (or end)
are isomorphic.

Prove that a hereditary Auslander algebra is semisimple.
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Quasi-hereditary Algebras
Appendix by Vlastimil Dlab

I wish to express my gratitude to Yu.A. Drozd and V.V. Kirichenko for this
opportunity to append a brief exposition on a recently introduced class of
algebras. The class of quasi-hereditary algebras has been introduced by Cline,
Parshall and Scott ([CPS1],[PS]) in connection with their study of highest
weight categories arising in the representation theory of semi-simple complex
Lie algebras and algebraic groups.

This presentation is intended for readers who may be interested in getting

basic information on some of the developments in this field. It is by no means
exhaustive, nor is it homogeneous; ring and module theoretical methods mix
in order to provide as broad an introduction to the existing literature as pos-
sible. Although the concept of a quasi-hereditary algebra relates naturally
to a partial order (of the set of all simple modules), there is no substantial
loss of generality to restrict ourselves to a total (refinement) order. This, to-
gether with a restriction to basic algebras, may in our view help to make this
introductory text more accessible. The text is not entirely self-contained; a
few fundamental concepts, notably from category theory, are used without a
formal definition; moreover, due to space limitations, some results are pre-
sented without proofs. I apologize for an unavoidable bias in the selection of
the material and its presentation; references to the literature are kept to a
minimum.
_ Finally, I wish to thank whole-heartedly my friends and colleagues Istvan
Agoston and Erzsébet Lukéacs for their valuable comments, suggestions and
corrections in the preliminary manuscript. Of course the responsibility for any
inaccuracies in the text remains my own.

Ottawa, December 1992

A.1 Preliminaries. Standard and Costandard Modules

Throughout this appendix, A will always denote a finite dimensional K-
algebra which will be, unless stated otherwise, basic and connected; we
put A = A/rad A. Furthermore, e = (e1,€2,...,en) will always denote
an (ordered) complete set of primitive orthogonal idempotents; write £; =

e;+eir1+...+e, for 1 <i <nandepq1 = 0. Considering the sequence e of
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primitive orthogonal idempotents is equivalent to ordering the set of all non-
isomorphic simple A-modules S(i) ~ e; A, or the set of their projective covers
P(i) ~ e;A, 1 <1< n. Of course, we may also consider the ordered set of all
simple left A-modules S(°i) ~ Ae;, or their projective covers P°(i) ~ Ae;. Note
that ésP(]) ~ g A, é_P°(j) ~ Ag; and that the endomorphism algebras
j=i j=1

Ea(eiA) ~ Ea(Aeg;) ~ €;A¢; for all 1 < i < n. Finally, the division algebra
EA(S'(i)) ~ ¢;Ae; will be denoted by D; and dimgD; =d; for 1 < < n.

If X is an A-module, denote by [X : S(¢)] the number (multiplicity) of
the factors isomorphic to S(7) in a composition series of X, and by dim X its
dimension vector, i. e. the n-tuple whose coordinates are [X : SGE)],1<i<n.
Obviously, [X : S(i)] = dimp,Hom(P(i), X ).

Given A-modules X and Y, define the trace 7y (X) of ¥ in X as the
submodule of X generated by all homomorphic images of ¥ in X:

7y (X) = (Im¢ | ¢ € Homu(Y,X))a.

Thus, 7,4 X = X¢;A; in particular, 7p(; X = Xe;A.
Of course, we can also define the “reject” pz(X) of Z in X by

pz(X) = ﬂ{Kergp | ¢ € Homu(X,2Z)}.

The following definition, depending on the order e (!), is crucial for the
subject.

Definition A.1.1. The sequence
A=A4=(AG) | 1<i<n)
of the (right) standard modules with respect to a given order e is given by
A(z) = Aa() = P(2)/7eir1)aP (i) ~ e;AfeiAciyr A
Similarly, there is a sequence A° = A% of the left standard A-modules

A°(i) = A%(7) ~ Ae;/Acit1Ae;, or the sequence V = V4 of its duals, the
(right) costandard A-modules

V(i) = V(i) = Homg (A°(3), K) .

Observe that A(z) is the maximal factor module of P(¢) whose composition
factors are isomorphic to S(j) for j < ¢. Dually, V(%) is the maximal submodule
of the injective hull Q(z) of S(i) whose composition factors are isomorphic to
S(j) for j <.

Let us summarize some of the basic properties of the standard and co-
standard modules. As a rule, formulations of the dual statements as well as
simple verifications will be left to the reader.
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Lemma A.1.2. An A-module X satisfies X ~ A(7) if and only if
1) X/rad X ~ S(z);

2) [X :S(j)] #0 implies j < i and

3) Ext'(X,S(j)) # 0 implies j > i.

Thus, Hom(A(z), X) # 0 implies [X : S(1)] # 0 and Ext' (A(:),X) # 0
implies [X :S(5 )] # 0 for some j > i. Consequently, we obtain the following
implications.

Lemma A.1.3. 1) Hom(A(:), A(j)) # 0 implies i < j.
2) Ext'(A(),A(j)) # 0 implies i < j.

In combination with their dual versions, the previous statements yield also
the following lemma.

Lemma A.1.4. 1) If Hom(A(:), V(j)) # 0, then i =j.
2) Ext!'(A(»:),V(j)) =0 for alli,j.
2') Tory (A(i), A°(j)) = 0 for alli,j.

Writing B; = A/Ae;414 (1 < ¢ < n), notice that, as a module,

B,’ ~ é ejA/ejAsi_HA,
j=1

and thus A(7) is a projective B;-module.
Clearly,

EA(A(Z)) ~ EA(AO(i)) o~ EA(V(Z)) ~e;Ae;feiAeip1de;, 1 <1< n.

Call the sequence A Schurian if every A(q) is Schurian, i.e. E4(A(2)) is
a division algebra for all 1 < ¢ < n. Let us mention some immediate reformu-
lations.

Proposition A.1.5. The following properties are equivalent:
1) A(i) 1s Schurian;

1°) A°(%) (and thus V(z))
%) Ba(v) = ( 0):
3) [AG):S@)] =

3°) [A°(): 5°(i)] = ([V(i) : S(8)] =)1;
4) 6,’A€i+1A6i = €; rad A €;.

is Schurian;

In the sequel, we shall, as a rule, refrain from formulating dual statements.
Let us point out that if A is Schurian, always

A1) ~ S(1).
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In fact, in this case, we obtain a bound on the Loewy length of the regular
representation of A.

Proposition A.1.6. If A has a sequence A = {A(z) | 1 <1 < n} which is
Schurian, then

rad?A = (rad A) =0 for d=2"-1.
The ezponent 2™ — 1 is optimal.

Proof. Let us write, as before, B,y = A/Aep, A. If rad d’Bn_l = 0, then
rad dl'HP(n) =0, since A(n) = P(n) is Schurian. Moreover,

rad2d’+1(7§911 P(i)) = 0.

Thus, if by induction d' = 2"~ — 1, then 2d' + 1 = 2™ — 1, as required.

In order to show that the exponent is optimal, consider the path K-algebra
A of the complete graph with n vertices without loops, modulo the ideal
generated by all paths

Qi Qgyiy - .- Qg With 1, <7 for 1 <r <t

i.e. the canonical deep algebra over that graph (see Sect. A.4). Clearly,
(rad A)22"7'=1) £ g, u]

Let us conclude this introductory section by a remark concerning the cen-
tralizer algebras C; = ¢;4¢; (1 < ¢ < n) of A. We have seen that for the
algebras B; = AfAe; 14,1 <1 <n,

Ap; =(44a() 115 <),
For the algebras C;, we can verify readily that

Ac; = (eiAa(j)ei | i <j<n).

A.2 Trace Filtrations. The Categories F(A) and F(V)

We are dealing again with an algebra A together with a (complete) sequence
e = (e1,eq,...,e,) of primitive orthogonal idempotents.

Definition A.2.1. Given an A-module X, define its trace filtration (with
respect to e) by

X=xWox®>  o>x®ox0ED 5  >xM5x0+) g,

_ (A.2.1)
where X() = Te; aX for 1 <7 < n.
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Alternatively, (A.2.1) can be rewritten as follows:
X=Xe1ADXe3AD ... D Xe;AD Xey1AD ... 2 XepnAD Xep1A=0.

Obviously, trace filtrations are compatible with direct sums. Applied to the
regular representation of A, we obtain a filtration of the algebra A by the
idempotent ideals I; = Ac; A:

A=LD>L>... 0L DLi41D...0I, D I,41=0.

Thus, a choice e of order of idempotents amounts to a choice of a (saturated)
chain in the Boolean lattice of all idempotent ideals of A.
Observe that the right module

I/ Ligh ~ _é;l ejAciAfe;Aeip1 A
]=

with the last summand isomorphic to A(%). In general, X9/ X (i+1) is a module
over B; = A/I;11, whose projective B;-cover is a (finite) direct sum of A(%)’s.

Let us point out that we can also define the “reject” filtration of an A-
module X (with respect to e) by

X =xk+1 o x> o xl+l o xll o o xll o xl =y,

where X1 = pg, X with Q; = jeiai Q).

We shall turn our attention to the modules X whose trace filtrations satisfy
the condition that X (9 /X (+1) equals its projective B;-cover (or equivalently,
is a direct sum of A(%)’s) for every 1 < ¢ < n. In view of Lemma A.1.3.2), these
are just the modules X possessing a A-filtration, i.e. a chain of submodules
with factors isomorphic to standard modules A(¢) for various ¢’s. Denote the
full subcategory of all A-modules with A-filtration by F(A). Similarly, denote
by F(A°®) the full subcategory of all left A-modules with A°-filtration, and by
F(V) ~ F(A°)° the category of all (right) V-filtered A-modules. Clearly, these
categories are closed under directs summands, and trivially, under extensions.

Now, if f : X — Y is a homomorphism and X = (X® | 1 < i < n),
Y=® | 1<i< n) the trace filtrations, then f(X®) C Y for all
1 < i < n. In fact, if f is an epimorphism, then f(X®) = Y for all
1 <¢ < n. This follows from the first part of the following lemma.

Lemma A.2.2. Let f : X — Y be an epimorphism of A-modules. Let P be
e projective A-module. Then f induces an epimorphism fp : 7p(X) — 7p(Y)
and the following short ezact sequence of A/Tp(A)-modules

0— Ker f/rp(Ker f) — X/7p(X) — Y/7p(Y) — 0. (A.2.2)
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Proof. This follows immediately from the commutative diagram

0 0 0

l l l
0 — 7pKerf) — X)) — 1) — 0
0 — Ker f — X — Y —  0;

indeed, the homomorphism fp : 7p(X) — 7p(Y") induced by f is surjective
due to the fact that every map from P to Y lifts to X, and 7p(Ker f) =
Ker f N 7p(X) = Ker fp . Moreover, all modules in (A.2.2) are annihilated by
the (two-sided) ideal Tp(A). O

As a consequence, we can formulate the following statement.

Proposition A.2.3. The category F(A) i3 closed under kernels of epimor-
phisms. Hence, if Aq € F(A), then

Ext'(4,V) = Tory(A,A°) =0 forall t>1.

Here, and in what follows, Ext'(A,V) = 0 means Ext'(A(i), V(j)) = 0
for all 4, §, or equivalently, Ext/(X,Y) =0 for all X € F(A) and Y € F(V).

Proof. For each 1 € ¢ < n, Lemma A.2.2 gives the (split) exact sequence
0 — (Ker £)@ /(Ker f)U+D — x0 x (4D _, y @)yt g

of projective B;-modules. Hence, (Ker f)() /(Ker f)(**!) ~ @ A(:) and Ker f €
F(A).

Now, Ext'(A,V) = 0 by Lemma A.1.4. Given X € F(A) and an exact
sequence 0 —» X' — P — X — 0 with a free module P, we have X' € F(A).
Since Ext*t? (X,V(5)) ~ Extt(X’, V(])) for all £ > 1, we complete the proof
by induction. a

There is a converse to the last statement of Proposition A.2.3.

Proposition A.2.4. Let Ext?(A,V) =0 and A be Schurian. Then
F(A) ={X | Ext'(X,V) = 0}.
In particular, Ay € F(A).
Proof. By Lemma A.1.4, F(A) C {X | Ext'(X,V) = 0}. We are going to

show the opposite inclusion by induction on the “trace length” of X. Assume
that

{V|Ext'(Y,V)=0and Y (= r,,4Y) = 0} C F(A)
and consider X with X(+1) = 0.

®
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We have two exact sequences:
0—X®D XY —0 withYy® =0 (A.2.3)
and, since A(z) is Schurian,
0—Z2— ®dAG) — XD —0 with 20 =0 (A.2.4)

Now, [Y : S(j)] =0 for j > ¢ and thus (in view of the statement dual to
Lemma A.1.2) Extl(Y,V(j)) = 0 for all j > ¢. Moreover, for j < ¢ we have
Hom (X, V(j)) = 0 and thus the exact sequence

Hom(X®,V(j)) — Ext! (Y, V(j)) — Ext' (X, V(j)) =0,

derived from (A.2.3), yields Ext'(Y,V(j)) = 0. By induction, we get ¥ €
F(A).

In view of our assumption, the last term of the exact sequence
Ext!(X,V(j)) — Ext' (XD, V(j)) — Ext*(Y, V(7)) =0,

derived again from (A.2.3), is zero and therefore Ext’(X®,V) =0.
Now, since Z() = 0, Hom(Z, V(j)) = 0 for j > i; for j < ¢, the first term
of the exact sequence

Hom( ® A(i), V(j)) — Hom(Z,V(j)) — Eat' (X, V(j)) =0,

derived from (A.2.4), is zero. Hence Hom(Z, V) = 0. However, this means that
Z =0and so X(¥ ~ @ A(:) and X € F(A), as required. a

Here is the central definition.

Definition A.2.5. A K-algebra A is said to be quasi-hereditary (with respect
to e, or equivalently, with respect to A) if A is Schurian and A4 € F(A).

Let us point out that this is a version of the original definition of Cline,
Parshall and Scott, rephrasing properties of the so-called heredity chain in
terms of the heredity ideals by conditions for the trace filtration of A4. Let
us call in this case e a heredity sequence. Observe that if e is a heredity
sequence of A, then (é;,¢&,...,&;) is a heredity sequence of B; = A/Aei11A
and (e;, €i41,- -, €n) is a heredity sequence of C; = €;Ae; . Also, Ay € F(A)is
clearly equivalent to saying that all projective A-modules possess A-filtrations.

Propositions A.2.3 and A.2.4 yield immediately the following theorem.

Theorem A.2.6. Let A be a K-algebra with a Schurian sequence A. Then
the following conditions are equivalent:

1) A is quasi-hereditary (with respect to A).

2) Ext'(A,V)=0 for allt > 1.

3) Ext?(A,V)=0.

4) F(A)={X | Ext'(X,V)=0}.

5) F(A)={X | Ext/(X,V) =0} for allt>1.
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Clearly, each of the above conditions 2)-5) can also be formulated in
terms of (right and left) standard modules only, using the functors Tor; (as
in Lemma A.1.4). Moreover, since, in view of 2) or 3), the quasi-hereditary
algebra is a two-sided concept, we can formulate also dual equivalences (such
as F(V) = {Y | Ext'(A,Y) = 0}) in terms of costandard modules.

Let us mention that C. M. Ringel has shown in [R] that both F(A) and
F(V) are functorially finite subcategories of mod-A and thus both have (rel-
ative) almost split sequences.

Observe that the Ext-projective objects in F(A) are just the projective
A-modules and that the Ext-injective objects in F(V) are the injective mod-
ules. The category F = F(A) N F(V) consists of the Ext-injective objects in
F(A) (which coincide with the Ext-projective objects in F(V)). In [R], Ringel
identified the indecomposable objects {T'(i) | 1 < ¢ < n} of F; furthermore,

he showed that the characteristic module T(A) = ® T(z) is both titing and
i=1

cotilting and that the endomorphism algebra B = E4(T(A)) is again quasi-
hereditary (with respect to the opposite order of the idempotents). In fact,
F(Va) =~ F(Ag). Moreover, this procedure is involutory: E4(T(B)) ~ A (if
A is basic), and thus F(A 4) ~ F(Vp). Let us formulate, without proofs some
of the results of [R] to which we shall refer later.

Theorem A.2.7. Let A be a quasi-hereditary algebra with respect to a se-
quence A. Then T(3i), 1 < i < n, are the indecomposable modules defined by
the ezact sequences

0— A(R)—T(E) — X(:) —0
and
0—Y(\)—T3GE) — V(i)—0,

where X (i) € F(A) with (X(i))'” = 0 and Y (i) € F(V) with (Y(i))) = Y (3).
The category F = F(A) N F(V) consists of all direct sums of modules T(z),
t.e. F =addT, where T = & T(2) is the characteristic module.

i=1

Theorem A.2.8. Let T be the characteristic module of a quasi-hereditary
algebra A. Then

F(A)={X € mod-A | ExtY,(X,T) =0 for allt > 1}
and

F(V)={Y € mod-A | Ext4(T,Y) =0 for allt > 1}.
Thus T determines both A and V.

Let us conclude this section with a result providing some justification for
the choice of terminology. It is clear that every hereditary algebra is quasi-
hereditary with respect to an arbitrary order e of primitive orthogonal idem-
potents. Here, we have a converse of that statement.
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Theorem A.2.9. Let A be an algebra which is quasi-hereditary with respect
to any order e of its complete set of primitive orthogonal idempotents. Then
A 18 a hereditary algebra.

Proof. Let A be a basic algebra and e = (ej, €2,...,€,) a complete sequence
of primitive orthogonal idempotents such that £(e; A) < #(e;41A4) for all 1 <
t <n—1. Thus, e;Ade; =0 forall z < j.
We shall proceed by induction on n, noting that the case n = 1 is trivial.
n
Now, since (Ae,A)a = & e;Aen A is projective, evidently Ae, A = e, A.
i=1
By induction, A/Ae, A is hereditary. Hence, to establish our claim that A is
hereditary, it is sufficient to verify that e,radA is a projective A-module.
The quotient algebra A = A/Ae,_1 A is hereditary and thus

P=(Ae,_1A+e,radd)/Aen 1A~ eradA/enden 1 A

is a projective A-module. In fact, in view of our choice of e, it is a projective
A-module. It turns our that the canonical homomorphism e, radA — P splits
and we obtain

entadd 2 P@e,Aep-1A

with both direct summands projective. The proof of the theorem is completed.
O

Let us point out that the assumption of Theorem A.2.9 is equivalent to
the fact that every (saturated) chain of the Boolean lattice of all idempotent
ideals of A is a heredity chain.

A.3 Basic Properties

We have already seen a close relationship between a quasi-hereditary algebra
A with respect to e = (e, €2,...,€,) and the individual centralizer algebras
C; = ¢;A¢;. Indeed, there is a pair of functors

&9 . mod-A — mod-C;

and

) . mod-C; — mod-A
defined by $0X = Xe; and #)Y =Y ® e;A. Denote by mod-A(?) the full
subcategory of all X € F(A,) for which X = X)(= 7., 4 X).
Proposition A.3.1. Let A be a quasi-hereditary algebra with respect to e.

Then the restrictions of the functors &) gnd U define an equivalence of
mod-4A® gnd F(A¢,) € mod-C;.

The statement follows immediately from the following proposition.
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Proposition A.3.2. Let A be a quasi-hereditary algebra with respect to e. Let
X € F(A). Then the multiplication map px ;: Xe; ® eiA — X is bijective
for all 1 < i < n. In particular, all multiplication maps Ag; ®5 A — I =
Ae; A are bijective.

Proof. For i = n, px ; is trivially bijective for X = e, A. For X € F(A), since

X = Xe, A is projective, X(") ~ @ e, A and everything follows.
Proceed by induction and write

A= A/Aa,-+1A y X = X/X€i+1A — X/X(i+1) )
Consider the short exact sequences of right and left C;-modules
0— X e, — Xe; — Xe; — 0

and ~
0 —>EiA€,‘+1A—>6iA —>6,‘A —0.

Tensoring the first one by ;A4 and the second one by Xe; and by X+l |
we get

0 — XD, g) g, A —s Xe; g) giA — Xe; ? g, A—0 (A.3.1)
and

0=XE,'?E,‘AE;‘.*JA——-)XEI'?&A-:—*XE;‘?&A—ﬂ) (A.3.2)
and

0 —>X(i+1)5i ® EiA&i_HA ;)X(H—I)Ei ® 6iA —-——)X(H—I)Si ? €iA =0.
C; C; i

(A.3.3)
Hence, from (A.3.2), ~ ~ ~
Xe; ®6,~A ~ Xe¢; é@ €A,
which may be identified with X &; ® &;A, where C; = . There is a canon-

ical surjective map

XEH.] C® E,+1A — X&H.]A&z ® S,AEH.]A .X(H_I)E ® C €1 A .

i1

The last isomorphism comes from (A.3.3), since Xe;41A = XU+ | Thus, we
get from (A.3.1) the first row of the following commutative diagram with exact
rows connected by the multiplication maps:

0 - Xeit 2 €it1A — Ae,@eA — X

Cit1
Mx,s+1l ux,:i Ax.i

0 = Xeid=X0 o xO L ()P ~x/x6+) 0.
By induction, px ; is bijective, as required. O

Eifi — 0

m)
®

i

(———Ql
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Let us remark that the condition for : = n, namely that the multiplication
map Ae, é@ enA — I, is bijective, together with the assumption that e, A is

Schurian (i.e. C, is a division algebra) implies that I,, is projective (and thus
a heredity ideal). This simple fact allows to formulate some characterizations
of quasi-hereditary algebras in terms of bijectivity of multiplication maps (cf.
[DR1)).

It is very important to realize that although the centralizer algebras C; =
€;Ae; of a quasi-hereditary algebra A with respect to e have such a close
connection to A (and are, in particular, quasi-hereditary with respect to the
induced order), there may be idempotents e € A such that eAe is arbitrary.
This is the essence of the following theorem.

Theorem A.3.3. Given an arbitrary K -algebra R, there is a quasi-hereditary
K -algebra A and an idempotent e € A such that R ~ eAe.

Proof. We shall provide here only a sketch of the proof, referring the reader
to [DR2].

Without loss of generality, assume that R is basic: Rg = 16719 f;R. Consider
i=1

all non-zero non-isomorphic (local) factor modules M;, = f;R/f;(rad R)®
(1 £5 £ m, s > 1). Denote their number by n and order them as follows:
(4,8) 2 (j',¢')ifand only if s > s’ orif s = s’ and j > j'. Then, indexing them
in that order, consider their direct sum M = éla M; . Thus, M, is the principal

=1
module f;R of maximal Loewy length (with the largest j) and M, is the
simple R-module M;; = fiR/firad R. Put A = Eg(M) and denote by e; the
canonical projections of M onto M;. It is a routine (and tedious) calculation
to show that e = (ej,ez,...,e,) is a heredity sequence: A is a basic quasi-
hereditary algebra with respect to e. Using the notation ¢ = ¢;, +€;,+...+e;, ,
where e;; is the idempotent corresponding to the summand M;; >~ f;R, 1 <

7 < m, we have obviously eAe ~ R. a
2
Let us present an illustration of the previous theorem. Let R = ; & 2
2 2 2 8y
then My = 2@ 2@, @201 and 4y = 140 D203,
2 2 i 1 1

1
R~ (e1 +e3)A(e; + e3). Observe that the quasi-hereditary algebra A is in

no way minimal.

The endomorphism algebras constructed above were first considered by
M. Auslander in his Queen Mary College Mathematics Notes (1971). There
he shows that the global dimension of 4 is bounded by the Loewy length of
Rpg . In fact, every quasi-hereditary algebra is of finite global dimension.

Theorem A.3.4. Let A be a quasi-hereditary algebra with respect to e =
(e1,€2,...,€n). Then
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proj.dim A(Z) < n
proj.dimS(i) <n+i—2,

and thus gl.dim A < 2(n —1). This bound is optimal.
Proof. There is a short exact sequence
0— V() — P(i) — A() — 0,
) (1) .
where V(i) = (V (7)) = V(i)ei+14; hence

proj.dim A(3) <1+ mgx{proj.dim A}
J>t

Since proj.dim A(n) = 0, the first inequality follows by induction.
Again, there is a short exact sequence

where (U(i))(i) =U(i)e; A = 0. Thus,

proj.dim S(z) <1+ mgx{proj.dim S(5),proj.dim A(d)} .
j<i

For i =1, §(:) ~ A(¢) and thus proj.dim S(1) < n + 1 — 2. By induction, for
1> 1,
proj.dimS(iE)<n+(i—1)—2+1=n+:i-2

In order to show that the bound on the global dimension is the best
possible, consider the path algebra of the graph

1 2 3 n

modulo (ai(i_l)a(i_l)i for 2 < ) S Ty QGGi+1) X (i+1)(i42) for 1 S t S Tl—2,
Q(i+2)(i+1)%i+1)i for 1 <7 <n —2), where a;; denotes the arrow from i to .
Then

1 2 n—1 n
Aj=2®d13 @...6n-2 n D,
1 2 n—1

and gl.dim A = 2(n — 1). The algebra A is the canonic shallow algebra of the
next section.

The bound for the global dimension of a quasi-hereditary algebra stated in
Theorem A.3.4 can also be easily obtained by applying the following lemma.

Lemma A.3.5. Let e be a primitive idempotent of an algebra A such that
AeA s a heredity ideal, i. e. that eA is Schurian and AeA is a projective A-
module. Write B = AJ/AeA. Let X be a B-module, also considered canonically
as an A-module. Then

proj.dim Xp < proj.dim X, < proj.dimXg+1,
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and hence

gldimB < gl.dimA < gl.dimB + 2.

Proof. Let {e1,e2,...,en = €} be a complete set of primitive orthogonal idem-
potents of A. For every 1 <7 < n — 1 we have the following exact sequence:

0— ejAdeA - e;A~ P(i) — e;Ale;AeA — 0,

and e;A/e;AeA ~ P(i), the ith principal module of B; moreover, e;AeA =
P(:)N AeA = @ P(n) is projective. Thus we can see easily by induction that,
for a B-module X, B-projective resolutions

O:Pd+1—>f—’d———+ i.—P,— .. — P — P —Xg—0
correspond to A-projective resolutions
0—Pyy1—Pj— ... —-P— ... 2P —P—X4—0

in the following manner. If P, = €B auP( ), then P, = é}} 3t:P(1) @ stn P(n)

for 0 < ¢t £ d+ 1 (clearly, son = O and $(g4+1)n may be positive while all
8(a+1)i = 0 for 1 < ¢ < n —1). The first inequalities follow.

Now, in the exact sequence of A-modules 0 — U(n) — P(n) — S(n) — 0,
the module U(n) is annihilated by AeA and thus is a B-module. Therefore

proj.dim S(n) < proj.dimU(n)a +1 <
<projdimU(n)p+1+1<
< gldimB+2.

Since, for 1 < ¢ < n — 1, proj.dim S(i) < gl.dim B + 1, the last inequality
holds as well. O

There is an important consequence of Lemma A.3.5. We are going to
formulate it now.

Lemma A.3.6. Let e¢ be a primitive idempotent of an algebra A such that
AeA is a heredity ideal. Write B = AeA. Then for any two B-modules XY,

Ext4(X,Y) ~ Exth(X,Y) for allt > 0.
In particular, Ext%(B,B) =0 for all t > 1.
Theorem A.3.7. Let A be a quasi-hereditary algebra with respect to e =
(e1,€2,...,€n) and let B; = AJ/Ae;p1 A for all 1 < ¢ < n. For any two B;-
modules X,Y,

Exty(X,Y) ~ Extl (X,Y) forallt>0.

In particular, Exty(B;, B;) = 0 for allt > 1.
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Proof of Lemma A.3.6. Trivially, Hom4(X,Y) ~ Homp(X,Y). Moreover,
every extension Z4 of X4 by Y4 (as A-modules) is annihilated by Aed =
(AeA)’: Z(AeA)’ C YAeA = 0. Thus, it turns out that Ext}(X,Y) ~
Exth(X,Y).

Now, applying successively the functors Homp(—,Yp) and Hom 4(—,Y4)
to the exact sequence of B-modules

0—U—P—X—0
with Pp projective, we get, for all ¢ > 0:
Exth(PY) — Exth(U,Y) — Extiyf (X, V) — Ext5'(P,Y) (A.3.4)
and
Exthy(P,Y) — Ext4(U,Y) — Ext (X, Y) — Ext' (P, Y). (4.3.5)
Since Pp is projective, we obtain from (A.3.4)
Exty(U,Y) ~ Exty ! (X,Y).

Furthermore, proj.dim P4 < 1 yields Extf4+l(P,Y) = 0 for ¢t > 1. Since also
ExtL(P,Y) = ExtL(P,Y) = 0, (A.3.5) implies

Ext4(U,Y) ~ Ext4 1 (X,Y).
The statement of the theorem follows by induction. a

Of course, not all algebras of finite global dimension are quasi-hereditary.

Ezample. Consider the path algebra of the graph with two vertices, 1 and 2,
with k arrows, oy, aq,...a from 1 to 2 and ¢ arrows, $1,82,...,8e, £=k—1
or £ =k, from 2 to 1. Let d = k + £ and Fj the path algebra modulo the ideal

I; = (0;f3; for i > j and fia; for i > j).

Denoting by fm, m > 1, the mth Fibonacci number (i.e. fi = fo = 1, f =
fm—2 + fm—1 for m > 3), one can calculate easily that dimy F; = f443 and
gl.dim Fy = d. For d > 3, F; is not a quasi-hereditary algebra.

Theorem A.3.8. Let A be a K-algebra of global dimension < 2. Then A is
quasi-hereditary with respect to a suitable order of the complete set of primitive
orthognal idempotents.

n
Proof. Assume that A is basic and write A4 = @ e; A, where

i=1
Loewy length e;A > Loewy length €;41 A foralll1 <i<n-1.
Now, since the kernels of homomorphisms between projective modules are

projective, there are no non-zero homomorphisms from e, A to e, radA, and
thus e, A is Schurian.
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We want to show that, for each 1 < i < n — 1, e;Ae, A is projective.
Consider the exact sequence

0—X-—P—ehAe,A—0

with the projective cover P ~ @ e, A. Note that X is the kernel of a homo-
morphism between projective modules P and e; A and that X C rad P. But
then X is a projective module whose indecomposable direct summands are of
Loewy length smaller than the Loewy length of e, A. Therefore X = 0 and

Aen A is projective.
Since, in view of Lemma A.3.5, gl.dim A/Ae, A < gl.dim A = 2, we con-
clude by induction that A/Ae, A is quasi-hereditary and the theorem follows.
0O

We have already seen that, for an A-module X € F(A), the multiplicities
[X : A(7)], being the numbers of the indecomposable direct summands (iso-
morphic to A(7)) in a decomposition of X (¥ /X (+1) are well defined. We have
also defined the dimension dim X of X as the integral vector (z1,22,...,2Zxs),
where z; is the number [X : S(i)] of factors isomorphic to S(i) in a composi-
tion series of X.

Clearly, {dim A(z) | 1 < i < n} forms an integral basis of Z" and thus

dim X =) p;dim A(3)
=1

with integers p; . In particular, if X € F(A) then p; are non-negative integers
equal to [X : A(2)]:

dimX = [X - AGD)]dim A(3).

=1

As before, write D; = E4(A(:)) = Ea(S(:)) and d; = dimgD; for 1 <
t £ n. The following lemma is an immediate consequence of Lemma A.1.4.

Proposition A.3.9. The functors Hom(~,‘7(j)) are ezact on F(A) and
Hom (X, V(j)) ~ Hom (X /XU v(j)). Hence

diml\r-Hom(X,V(j)) =d; [X : A(])] .

Taking X = P(z) we get the Bernstein-Gelfand-Gelfand reciprocity law.

Corollary A.3.10 For every 1 <1,j <n,
d; [P(i) : A(j)] =d; [\7’(]’) : S(i)] .

The reciprocity law can be reformulated for split algebras (in particular,
for algebras over an algebraically closed field) in terms of factorization of the
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Cartan-matrix C(A) into unipotent triangular matrices. Recall that C(A) is,

by definition, the n x n integral matrix whose :th row equals dim P(¢), 1 <¢ <

n. Indeed, since all d; = 1 and (dim P(:)), = 3 [P() : AG)][AG) : S(k)],
J=1

we have

C(A) =V(4)7- A(4),

where V(A) and A(A) are the n x n matrices whose rows equal dim V(z) and
dim A(7), respectively. '
Let us point out that Corollary A.3.10 can be rewritten as

d;[P(i) : A(G)] = di[A°(5) : S°(3)] -

A.4 Canonical Constructions

There are two recursive constructions of quasi-hereditary algebras described
in the literature:
(i) the construction via “not so trivial extensions” of [PS] and
(ii) the construction based on extensions of centralizers [DR1].

Here we just briefly describe the inductive steps and illustrate both (in
some sense opposite) procedures on an example.

(i) Given a quasi-hereditary K -algebra B, a division K-algebra D, bimod-
ules pMp, pNp and an extension Bof B by N ® p M, the K-algebra (“not

so trivial extension”)
, (B N
7= (u b)

with trivial multiplication M @ N — D can easily seen to be again quasi-
hereditary (with respect to an extended order of idempotents): For e =
(39), eB' ~ (M D) is Schurian, B'eB' ~ (N%M g) is projective and
B ~ B'/B'eB’'. Clearly, having a quasi-hereditary K-algebra A with re-
spect to e = (e1,e2,...,€,), then denoting B; = A/de;i1A4, 0 < 2 < n,
each B; can be obtained by the above construction from B = B;_1, D =
€i—1Agi_1 /ei—1 Ag;Ae;_; and the respective bimodules. We have By = 0, B; =
AfAesA,... B,y = A/Ac, A, B, = A; each consecutive step simply extends
the principal modules in accordance with the A-filtration of the regular mod-
ule A4.

(i1) Given a quasi-hereditary K-algebra C, a division K-algebra D, bi-
modules pE¢, ¢Fp such that Ec € F(Ac¢) and ¢F € F(Ag), and a mul-
tiplication map p : F®p E — radC, denote by D = Dx(E ®c F) the split
extension of £ ®c F' by D and consider

,_(D E
o= (2 ).
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Here the multiplication in D is given by (d,e@f)(d,e'®f') = (dd',de' ® f'+
e® fd +e®u(f ®¢€)f"). The K-algebra C' is again quasi-hereditary (with
respect to an extended order of idempotents): Ac:(1) ~ D and Ac: (i) =
Ac(i)@c(F C)C/ for Ac(i) € Ac.

Now, having a quasi-hereditary K-algebra A with respect to e = (e, ez,
...,€n) such that A/rad A is separable (e.g. over a perfect field K), then
denoting C; = ¢;A4¢;, 1 < i < n+ 1, each C; can be obtained by the above
construction from C = Ciy1, D = ¢;Ae;/e;Aciy1Ae; ~ e;Aeife;Aeipi Aey,
E =e;Aciy1, F = ¢;11Ae; and the respective multiplication map p = u; . We
have Cn+1 = O,Cn = EnAEn, PN ,Cz = 52A52,Cl = A.

Let us illustrate the described procedures on the following simple example:
A is the path K-algebra of

1«
o —*
8
€ l Y
¥
®
4

o
® 3
modulo (a7, Be, Ba — v, v, 67, Y, v6 ). Thus the composition series of the
regular representation can be described by

1 2 3 4
_ 24 13 24
Aa=,"% @, @, 3@3'

2 1 2

The algebras By, By, B3 and B, are successively described by the filtration
AJAes A, Aeg AfAes A, Acz AJ/Aes A and AegA:

(1) (aBia ialhid b
(ﬂ) eI
55 a) | e

Yo P ey

ep | e ey ¢
H «

Now, the K-species of the algebras in the first construction simply extend
gradually to the K-species of the quasi-hereditary algebra A:

ESB)=(A=Dy x Dy x...xDyp; s.Wjy) is the K-species of B, then
S(B'")= (A=D1 xDyx...x Dy xD; 4(W&M/radM & N/rad N)4)
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is the K-species of B’. Thus, the K-species of the algebras B; are simply the
restrictions of the K-species of A.
The situation in the case of the second construction is, in general, more
complex. Already in the very simple situation of the (hereditary) path K-
2 1 3 .
algebra A of the graph e——+e—»e, the graph of the corresponding (hered-

itary) algebra C; is 3—»3, and thus not just a restriction of the original
graph. It is therefore natural to consider quasi-hereditary algebras A with re-
spect to € = (e, ez,...,en) such that this does not happen. Clearly, this will
not happen if the images of the multiplication maps u; will be in rad 2C; . Let
us formalize the condition in the following concept of being lean.

Definition A.4.1. A basic K-algebra A is called lean with respect to e =
(e1,€2,...,en) if, for every 1 < ¢ < n, the K-species S(C;4+1) is a restriction
of the K-species S(C}), i.e. if
S(Ci))=(Di,Diy1,...,Dy; Ws, i<r,s<n)
then
S(Ci+l) - (Di+17"-sDn 5 TVVSa 1+ 1 S rs S 77.).

Here, as before, C;/rad C; = D; x Diyq1 x ... D, and rad C,-/radQC,- =
@ W,; thus D; =e;Ae;/e;tadAe; and ,Ws = e, radA es/er rad?Ae,.

i<r,s<n
We get immediately the following characterization of being lean.

Lemma A.4.2. Let A be a K -algebra and e = (e1,e3,...,€,). Then A is lean
with respect to e if and only if

e;radA4 ej =e;radAdenradde; forall 1 <i,5 <n and m=min{i,j}.

Lean quasi-hereditary algebras can be characterized in terms of top filtra-
tions (see Theorem A.4.10 below); here is a definition.

Definition A.4.3. A monomorphism « : X — Y is said to be a top embedding
of X into Y if the induced homomorphism @ : top X = X/rad X — topY =
Y/radY is monic; or equivalently, if a(rad X) = a(X)Nrad?.

There is, of course, also a dual notion of a socle epimorphism. We shall

write simply X é Y if the embedding is a top embedding.
Definition A.4.4. A filtration
0=Xe1CX,C...CX;C...CX, CX;=X (A.4.1)

is said to be a top filtration of X if X;C X for all 2< j < s.
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We have the following obvious lemma.

Lemma A.4.5. Let X CY C Z. Then:
1) X ¢ Z implies X CY and
2) XCY and Y CZ implies X € Z.

Thus, (A.4.1) is a top filtration of X if and only if X; éXj_l for all 2 <

j < s.In fact, (A.4.1) is a top filtration of X if and only if X;/Xj41 € X/X,41
for all 2 < j < 5. This is an immediate consequence of the following lemma.

Lemma A.4.6. Let X CY C Z. Let X £ Z. Then Y/X C Z/X if and only if
1
YcZ.

Proof. First, X é Z implies that
rad (Z/X) ~ (X +rad Z)/X ~rad Z/(X Nrad Z) ~ rad Z/rad X
and

top (2/X) ~ (Z/X)/(X +radZ)/X) ~ (Z/rad Z)/((X + rad Z)/rad Z)
~ top Z/top X .

Similarly for X é Y. Hence, denoting the given embeddings X CY andY C Z
by a and j, respectively, we get a commutative diagram of exact sequences
with induced embeddings & and fBa.

0 0 0
l l l

0 — topX — topY — top(Y/X) — 0

I 5| 5|
(

0 — topX LN top Z —  top

l ! |

0 — top(Z2]Y) = top(Z]Y) — 0.
0 0
Clearly, 8 is a monomorphism if and only if é is. O

The following two lemmas form an essential part of the proof of Theo-
rem A.4.10 which will establish the relationship between lean algebras and
algebras with top standard filtrations.
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Lemma A.4.7. Let A be a K-algebra and e = (e1,ea,...,€en). Then, for all
1<i<n

e; radA ej = e;radAe;riradAde; for every j >

if and only if
V(i) = (rad P(i)) TV Erad P(3) .

Proof. The proof follows from the following string of equivalent statements
expressing the fact that V(s) € rad P(i):

t
e;radAe;r1ACe;radA
e;radAe;11ANe; rad’4 = e;rad4 cir1radA
eiradAe;114e; Ne; rad? A ej =e;radAe;piradde; forall 1 <5 <n.
However, the last equality is trivial for j < 7, since £;41 Ae; = €i41radAe; and

radAe;y1radA C rad?A4; moreover, for j > 7, the left-hand side collapses to
e;rad A e; since radAe;41Ae; D rad Aej 2 rad’A ej. a

Lemma A.4.8. Let A be a K-algebra and e = (e1,€2,...,en). Then

(rad P°(j))(i)/(radP°(j))(i+1) ¢ rad P°(j)/(rad P°(j))(i+l)

if and only if

e; rad’ A ej =e;radAe;radAe;.

Proof. As in the proof of the previous lemma, we write down equivalent state-
ments, expressing the top embedding from the lemma:

Ae;radAej/Ae;1radAe; é radAe;/AeiyradAej,

Ae;radAe; N (rad’Ae; + AeiyiradAe;) =
= radAe;radAe; + AeiyiradAde;,

exAciradAe; N (e radZA ej + exAciyiradAe;) =
=erradAe;radAe; + epAeipiradAe; forall 1<k <n.

For k < i, the last equality is trivial, since both sides equal ex radA e;radAe; .
We can also verify easily that for k¥ > 7, both sides equal epAe;11radAe;;
just observe that erAec;radA DO erAe;yiraddA DO erAerradA D e rad’A4
and exrradAe;radA C erradA C erpAe;riradA. Hence the only genuine
condition remains for k = i: e;rad’A e; =e;radAe;radAe;. O
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Before formulating the main result, let us recall first the notation for the
standard exact sequences

0—V()— P(i) — A(z) — 0
and

0—U@)— A(l)— S(1) — 0, 1<i<n.
Thus,

0— V(i) = (rad P(3)) """ —s rad P(i) — U(i) = rad A(s) — 0

is exact. Of course, there are similar sequences for the left modules V°(z),

P°(i), A°(:),U°(:) and S°(s).

Proposition A.4.9. Let A be a quasi-hereditary algebra with respect to e =
(e1,€2,...,€n). Then the following statements are equivalent:

a) eirad’Ae; =e;radAe;radA ej foralll <i<j<n.

b) V(i) Crad P(i) for all 1 <i < n.

¢) The trace filtration {(U°(j))(i) I 1<i<j} of U°(j) = rad A°(j) is a top
filtration for all1 < j < n.

Proof. Recall that e;radAe;radA = e;radAde;yiradA for all 1 < i < n.
Then the equivalence of a) and b) follows from Lemma A.4.7 and the equiv-
alence of a) and ¢) from Lemma A.4.8 and Lemma A.4.6, since clearly
(rad 2°(7)) 7/ (rad A°(7)) V) = (rad P°(5))?/ (rad P°(5)) Y for i < ;.

O

Let us point out that there is also a dual Proposition A.4.9°, whose for-
mulation we leave to the reader.

Theorem A.4.10. Let A be a quasi-hereditary algebra with respect to e =
(e1,€2,...,€n). Then the following statements are equivalent:

1) A is lean (with respect to e);

2) the trace filtration of U(i) is a top filtration and V(i)érad P(i) for all
1< < n; )

2°) the trace filtration of U°(3) is a top filtration and V°(3) éradP°(i) for all
1<1<ny

3) V(i) Crad P(i) and V°(i) Erad Po(i) for all 1 <i < n;

4) the trace filtrations of rad A(i) and of rad A°(3) are top filtrations for all
1< <n.

Proof. The theorem is an immediate consequence of Proposition A.4.9 and its
dual Proposition A.4.9°. In view of Lemma A.4.2, 1) is equivalent to a) and a°)
(of Proposition A.4.9 and Proposition A.4.9°, respectively), 2) is equivalent
to b) and c°), 3) to b) and b°) and finally, 4) is equivalent to ¢) and ¢°). O
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Let us point out that 2) (and 2°)) can be reformulated as follows:

rad P(i) 2 (rad P(i))” 2 (rad P(i))® 2 ...
2 (rad P(:)) "7 2 (rad P(i))? = (rad P(2)) 7V = V(i) 2 0

is a top filtration.

We are going to define, and construct, some special classes of quasi-
hereditary algebras.

Proposition A.4.11. Let A be a quasi-hereditary algebra. Then the following

statements are equivalent:

1) V(i) is projective, i. e. proj.dim A(i) <1 for all 1 < i < n;

2) proj.dimT(A) < 1, where T(A) is the characteristic module of Theo-
rem A.2.7;

3) F(A°) is closed under submodules;

4) rad A°(7) € F(A°) for all1 < i< n.

Proof. Since T = T(A) € F(A), 1) implies 2). Moreover, 3) is equivalent to 4).
To show the non-trivial implication of the latter equivalence, let M be a (left)
A-module form F(A°) and N a maximal submodule of M; let M/N ~ S°(3).
Then, for their trace filtrations, NU) = M) for j > i+ 1, while N“’/N“*’”
is filtered by A°(i)’s and rad A°(:), and we have N/N® ~ M/M®  Hence,
N € F(A®). By induction, every submodule of M belongs to F(A°).

Thus we need only to establish the implications 2) => 3) and 3) = 1). We
are going to use the fact that 3) is equivalent to
3°) F(A) is closed under factor modules;

furthermore, note that, in view of Theorem A.2.8, condition 2) yields
F(V)={Y | Ext/(T,Y) = 0}.

To prove that 2) implies 3), take ¥ € F(V) and a short exact sequence
0—X —Y — Z — 0. From here, we get

0= Ext'(T,Y) — Ext!(T, Z) — Ext*(T, X) = 0,

and thus Z € F(V).

Finally, assume 3). We want to show that Ext?(A(z), X) = 0 for all mod-
ules X, 1 < i < n. Consider the exact sequence 0 » X — Q —» Y — 0 with.
the injective hull Q of X. Since @ € F(V), also Y € F(V). Thus, the exact
sequence yields

0 = Ext!(A(:),Y) — Ext? (A(:), X) — Ext?(A(:), Q) =0,

as required. ]
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In combination with the dual statement that all V°(:) are projective if
and only if all rad A(z) € F(A), we get the following result.

Corollary A.4.12. Let A be a quasi-hereditary algebra such that all V(3) are
projective right A-modules and all V°(i) are projective left A-modules (1 <
i <n). Then

gldimA<2.

Indeed, the conditions are equivalent to rad A(z) € F(A) and V(i) projec-
tive for all 1 < ¢ < n. Thus, since proj.dim A(i) < 1, proj.dimrad A(z) < 1
for all 7, and the corollary follows.

Taking into account Theorem A.4.10, we get also the following conse-
quence.

Corollary A.4.13. Allrad P(i), 1 <: < n, have top filtrations with factors
A(G),1<j<i—1and P(j),i+1<j <n if and only if all rad P°(z),
1 <4 < n, have top filtrations with factors A°(3), 1 < j <i—1 and P°(j),
i4+1<5<n.

Definition A.4.14. A (quasi-hereditary) algebra satisfying the conditions of
Corollary A.4.13 will be called replete.

Of course, all hereditary algebras are replete with respect to a suitable
order of idempotents (given by the lengths of principal modules). Let us point
out that replete algebras are lean.

Theorem A.4.15. Let A be a quasi-hereditary algebra. Then the modules
V(¢) have top filtrations with factors A(j), i+1<j<nforalll1<i<n-1
if and only if rad A°(3) are semisimple for all 1 < i <n.

Proof. This follows immediately from the reciprocity law formulated in Corol-
lary A.3.10. Indeed, if S(A) = (D;; iW;, 1 <1,j <n)is the K-species of 4,
write diij,'Wj = Ugj and dimDiin = U;j .

The standard filtration of a semisimple rad A°(7) is a top filtration with
the factors equal to v;; copies of S°(1), 1 <i<j~1,foralll <j<n.In
view of the reciprocity law

di[A°(7) - $°()] = d;[P(3) : AG))
we have
[P(:) : A(J)] = (di/d;)vij = uij foralli<j.

Hence, in view of Proposition A.4.9, the condition on rad A°(jYfor1<j<n
is equivalent to the fact that V(¢) has a top filtration with the factors equal
to u;; copies of A(j) forall1 <i<j <n. O
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Corollary A.4.16. Allrad P(:), 1 < i < n, have top filtrations with factors
S(U), 1 <j<i-1and A(G), i +1 < j < n if and only if all rad P°(7),
1 < ¢ £ n have top filtrations with factors S°(j), 1 < j <i—1 and A°(j),
t+1<j5<n

Definition A.4.17. A (quasi-hereditary) algebra satisfying the conditions of
Corollary A.4.16 is called shallow.

Thus, a quasi-hereditary algebra is shallow if and only if all rad A(¢) and
all rad A°(¢) are semisimple. In particular, shallow algebras are lean.

Definition A.4.18. A quasi-hereditary algebra is called deep if every rad A(7)
is a projective (right) B;_;-module and every rad A°(7) is a projective (left)
B;_;i-module, for all 2 < ¢ < n. (Here B;—; denotes, as before, the quotient
algebra A/Ae;A.)

Both replete algebras and deep algebras have global dimension < 2. Deep
algebras are however, in general, not lean. There is a class of lean algebras
which seems to be of importance for applications (see Sect. A.6); let us give
the definition.

Definition A.4.19. A (quasi-hereditary) algebra is said to be right medial if
all rad P(¢), 1 <7 < n, have top filtrations with the factors A(j), 1 <j <n,
j # 1. An algebra A is said to be left medial if the opposite algebra A° is right
medial, i.e. if all rad P(7), 1 < ¢ < n, have top filtrations with the simple
factors S(j), 1 < j <7 —1 and the projective factors P(j), 1+ 1< j < n.

Now we are going to present canonical constructions of the quasi-hereditary
algebras defined above, over a given ordered species. Let S = (D, Da,...,Dy;
iWj, 1 <1,7 £n) be an ordered species with ;W; = 0 for all 1 < i < n. Let
T(S) be the tensor algebra over S:

TS)=AoWeWRegWw®®g...,

where A = Dy xDyx...xDp, , W = @ ;W; is a A-A-bimodule with A operating
i,J

via the projections, all tensor products are over A and the multiplication is

induced by W®" @4 W®* ~ W®r+s Of course, T(S) is, in general, infinite

dimensional.

Define the following ideals in T'(S):

Il

(:{W; ® Wy | j < max{i, k})
(W; ® ;Wi | j <k)

(W; @ ;Wi | i>j)
(s
(W

;W; ® ;Wi | j <min{i, k}) and
Wi, ®iu Wi, .®i,_ Wi, |to=tsand i, <ijpfor 1 <r<s—1).
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Put
H(S)=T(S)/Iy for H=S,M,,M;,R, and D.

Theorem A.4.20. The algebras S(S), M.(S), Mi(S), R(S) and D(S) are
quasi-hereditary algebras with the ordered species S. The algebra S(S) is shal-
low, M, (S) right medial, M(S) left medial, R(S) replete and D(S) deep.

In fact,
S(S) ~ApW @(t@i Wi @tVVj) ,

t>;

and M, (S), M(S) and R(S) are isomorphic to
ADWR(@®i Wiy, ®...0: Wi, ®...Qin,_Wi,.),

where the summation runs through all sequences (49,71, --,%,.- s %m—1,%m)
subject to

1> > ... >y, m>2,

<1< ... <tp-1, m>2 and
<1< ...<Hy>...>0me1 >ilm, 0<t<m, m>2,

respectively.

Theorem A.4.21 Let A be a basic quasi-hereditary K -algebra with the ordered
species S = S(A). Then

dimKS(S) < dimgA < dimg D(S) .

Moreover, dimg S(S) = dimg A if and only if A is shallow and dimiD(S) =
dimg A if and only if A is deep.
If A 1s lean, then
dimg A < dimg R(S)

and dimg R(S) = dimg A if and only if A is replete.

For the proof of the statements concerning the shallow and deep algebras,
we refer to [DR4]. The proof of the remaining statements is similar and is left
to the reader. Let us point out that two shallow, or medial, or replete, or deep
algebras over the same ordered species do not have to be isomorphic.

12
Typically, the algebra A whose regular representation is A4 = 2 &) 13 @3

is shallow, but A % S(S(A)) (cf. the example after Theorem A.3.4).
Let us insert the following observation.

Proposition A.4.22. An algebra is replete if and only if it is lean and

Ext?(A(i), S(j)) = 0 = Ext?(S(j), V(i)) for all1<i,j<n. (A4.2)
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Proof. This follows from the following fact and its dual. Consider, as before,
the exact sequence

0— V(i) — P(i) — A(z) — 0,
which yields for every 1 < j <n
0 =Ext' (P(3), S(j)) — Ext' (V(:), S(j)) = Ext*(A(:), S(j)) —
— Ext?(P(:),5(j)) = 0.
Thus V(7) is projective if and only if Ext? (A(z),S(j)) =0forall 1 < j < n.
a

In general, there are many algebras over the same species which satisfy
(A.4.2); for instance, it also holds for deep algebras. It may be worth point-
ing out that among lean algebras over a given species the right medial (left
medial) algebras are exactly those which have the least K-dimension and
satisfy Ezt?(S(j), V(i) = 0 (or Ext?(A(:), S(j)) = 0, respectively) for all
1<, <n.

In order to get an idea of the size of the algebras constructed above, let
us give their K-dimensions in the case of the “complete” ordered species

Sp=D1=Dy=...=Dp=K; W;=K foralll <i,j <n, 1#j).
These are easy to compute:
Sp = dimg S(Sr) = %n(n +1)(2n +1);
My = dimpg M, (Sp) = dimpg Me(S) = (n — 1)2" + 1;
rn = dimg R(S,) = %(22" —1); and
dn = dimg D(S,) = d, satisfies the recursion: dn4+1 = dpn + (dn + 1)2.

Thus, s; = my = ry = dy = 5, however already for n = 10, djo ~ 2.7 x 10208
(1), while s19 = 385, m10 = 9217 and even ryg is “only” 349525.

A.5 Characterization of the Category F(A)

In Sect. A.3, we have seen the importance of the full subcategory F(A) of
mod-A in the theory of quasi-hereditary algebras. The module categories of
quasi-hereditary algebras have been abstractly described by Cline, Parshall
and Scott in terms of the highest weight categories with a finite number of
weights [PS]. In the same spirit, we are going to give a characterization of the

categories F(A), called “standardization” in [DR5].
Let C be an abelian K-category and

A={AG) |1<is<n)

a finite ordered set of (non-isomorphic) objects of C.
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Definition A.5.1. The ordered set A is called a standard sequence if
1) dimgHom(A(:), A(j)) < oo and

dim g Ext! (A(i),A(j)) <ooforalll<i,j<n;
2) rad (A(¢), A(j)) = 0 and

Ext'(A(:), A(j)) =0 for i > j.

Here rad (A(z), A(j)) equals Hom(A(i), A(j)) for i # j and rad EndA(:) for
i=j) 3

Note that 2) implies that all A(z) are Schurian. Denote by F(A) the full

subcategory of C consisting of all objects which have filtrations with factors
from A.

Theorem A.5.2. Let A be a standard sequence in an abelian K -category C.
Then there exists a unique basic quasi-hereditary algebra A (with an order of
wdempotents given by the standard sequence) such that the subcategories F(A)
of C and F(A4) of mod-A are equivalent.

Proof. The proof has several steps. First, we are going to construct for every
1 € ¢ £ n an indecomposable Ext-projective object P(i) of F(A) with an
exact sequence

0— V(i) — P(i) — A) — 0, V(5) € F(A).

In general, we show that for every X € F(A), there is a finite direct sum
P(X) of suitable P(z)’s, 1 <17 < n, such that the exact sequence

0— X' 25 PpX)I5 X —0 (A.5.1)

satisfies X' € F(A).
Finally, taking P = & P(i) and putting
i=1

A =EndP,
we shall establish that A is the desired algebra with
P4(i) = Hom(P, P(i)) and Au(i) = Hom(P, A(7)) .

The proof of the equivalence F(A) ~ F(A4) will use the existence of the
exact sequences (A.5.1). The fact that A is a quasi-hereditary algebra with
the sequence Ay = {A4(7) | 1 < i < n} of standard modules then follows
immediately: P4(i) has a A4-filtration with the top factor A4(:) and the
remaining factors A4(j), j > 7. Moreover, since Hom(P4(j), A4(¢)) = 0 for
J > 1, Ax(%)is the maximal factor module of P4(:) whose composition factors
are S(j) for j <.
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Let us construct the objects P(:), 1 < ¢ < n. Proceed inductively: For
i < k < n, construct Pg(i) such that Ext' (Px(i), A(j)) =0 for all 1 < j <k,
and such that there is an exact sequence

0— V(i) — PL(Z) — A(z) — 0,

where Vi (¢) is filtered by A(j), ¢ < j < k. The condition 2) on the standard
sequence gives P;(i) = A(¢). Assume that V3_1(i) — Pr_1(¢) are already
constructed. Denote

dii = dikaExtl(Pk_l(i),A(k)) y
where D = EndA(k), and consider the “universal extension”
0— dk,'A(k) — Pk(i) — Pk_l(i) —0.

Thus Ext' (Pg(1), A(j)) = 0 (since the homomorphism Hom(dy; A(k), A(k)) —
Ext' (Pe—1(), A(k)) is surjective) for all 1 < j < k, and P(7) is indecompos-
able (since Hom(A(k), Pg—1(:)) = 0). Furthermore, the corresponding Vi(:)
is easily seen to be an extension of Vi_;(2) by di; A(k) and thus the inductive
step is completed. Put P(i) = P,(i) and P = ,él P@).

Now, let X be an arbitrary object of F (Al) We claim that there is P(X)
in add P such that (A.5.1) holds. For X = A(z) this is clearly true: take
P(A(i)) = P(i). In general, X is an extension of Z € F(A) by Y € F(4),
and by induction, using the fact that Ext' (P(Z),Y) = 0, we get the following
commutative diagram of exact sequences:

0 0 0
! l !

0o — Y — X' —  Z' — 0
! | !

0 — PY) — PY)®P(Z) — P(Z) — 0
l l !

0 — Y — X — Z —  0;
l ! l
0 0 0

here X' is an extension of Z' by Y, and therefore in F(A). In what follows,
we will keep the notation of (A.5.1) and of the related exact sequence

0— X" PX) X P(X) 5 X —0. (A.5.2)

Let A = End(P) and hp = Hom(P,—) : C — mod-A. In view of the con-
dition 1), A is a finite dimensional algebra and all Ap(X) with X € F(A) are
finite dimensional A-modules. Let P4(i) = hp(P(:)) and A4(i) = hp(A(7)),
1 < ¢ < n. Since Extl(P,X) = 0for X € F(A), hp is exact on exact sequences
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0—-X—>Y —Z — 0with X € F(A) in C. In consequence, hp maps F(A)
into F(A4) € mod-A.

We are going to show that the restriction of Ap to F(A) is an equivalence
of F(A) and F(A,). First, we claim that on F(A), hp is faithful. Let X,Y €
F(A) and ¢ : X — Y with hp(p) = 0. Using the sequence (A.5.2), ¢ can be
lifted to yo and ¢ to get a commutative diagram

PX) — PX) & X — 0
| |
~ i I
PY) X pPy) ™ Y — 0.
Applying hp, we get projective presentations for hp(X) and hp(Y')
hp(P(X")  —  hp(P(X)) "I Rp(x) — 0
hp(m)l hP(?O)l lhp(¢)=0

he(PO) "0 hp(Pv)) MY hp(r) — 0.

Since hp(my)hp(po) = hp(p)hp(mx) = 0, there is a homomorphism g :
hp(P(X)) — hp(P(Y")) such that hp(my+)g = hp(o). Furthermore, since
the restriction of Ap to add P is obviously faithful and full, g = hp(y) with
¥ : P(X) — P(Y') satisfying ¢ = mys%. But then prx = nymy:¢p = 0 and
thus ¢ = 0.

To complete the proof of the theorem, we can proceed in a similar manner,
making use of (A.5.1) and (A.5.2), to show that the restriction of hp to F(A)
is full and dense. The details of the proof are left to the reader. O

In conclusion, let us point out that any subsequence of a standard se-
quence is again standard. Given a quasi-hereditary algebra A, its sequence
of standard modules A = (A(i) | 1 < i < n) is obviously standard. Thus,
any subsequence of A leads to a quasi-hereditary algebra derived from A. For
instance, if we choose (A(z) |1<:i< r) C A, we obtain B, = AfAe, 11 A. If
we take (A(z) | r<i< n) C A, we get C = e, Ae, . These two special cases
relate to the recursive constructions (i) and (ii) of Sect. A.4.

A.6 Final Remarks

In this last section we want to make several brief comments, concerning some
particular classes of quasi-hereditary algebras which are closely related to cur-
rent developments in a number of applications. Quasi-hereditary algebras have
now become a central concept of the Kazhdan-Lusztig theory as developed by
Cline, Parshall and Scott [CPS2], as well as an important tool in the work on
the Berstein-Gelfand-Gelfand category O; this category is the sum of blocks
which are equivalent to module categories over quasi-hereditary algebras. Here
the Yoneda Ext*®-algebras seems to play a fundamental role. Recently Beilin-
son, Ginsburg and Soergel [BGS] have established an isomorphism between
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the principal block algebra for O and its own Ext®-algebra. Recent studies of
Dyer [D] should also be mentioned in this connection.

We are going to illustrate some of the relevant notions. Let us recall the
definition of an Ext°®-algebra. Given a finite dimensional algebra A,

Ext*-A = @ ExtL(4,4),
t>0

where A = A/rad A and multiplication is induced by the Yoneda product of
exact sequences. Thus Ext®-A is finite dimensional if and only if A is of finite
global dimension. If P, = (P, | t > 0) is a minimal projective resolution of
a module M, then Ext’ (M, S(j)) ~ Homa (P, S(j)) ~ Hom4(top P, 5(5)).
Clearly, we always have for the K-species S(Ext*-4) D (S(A))*, where *
denotes the dual species to S(A). The latter is defined as follows: Given a
K-species S = (A, W), then §* = (A, W* = Homg (W, K)). If in particular
S is an ordered K-species, then $* is an ordered K -species with the reverse
order. An important role is played in the theory by the so-called quadratic
algebras: Given a K-species § = (A4, W), a K-algebra A = T(S)/(12), where
T(S) is the tensor algebra and 2 C W®?, is said to be quadratic. Set

Q= {fe (W) 2 W @, W* | f(2) =0}

and define
Al = T(S*)/(.Q‘L) .

A quadratic algebra A is said to be formal if AL o~ Ext°®-A. It is characterized
by the fact that the inlcusion S(Ext*-A4) 2 (S(4)) * turns into equality.

Of course, formal (quadratic) algebras (of finite global dimension) do not
have to be quasi-hereditary; as an illustration, consider the “Fibonacci” al-
gebras Fy of the Example in Sect. A.3. On the other hand, the following
example shows that a quasi-hereditary quadratic algebra is not, in general,
formal: consider the path algebra of the graph

modulo the ideal (0{12Q23, Q45056, Xp3035 — OL24(145>; thus
1 2 3
AA:Z®354®2®§®2®6

and At o Ext®-A. Furthermore, the Ext*-algebra of a formal quasi-hereditary
algebrazdoes not have to be quasi-hereditary. Take the path algebra of the

1 3
graph e s—"e+—>¢ modulo (azlalz,aglal;;,a;;]a];;). Then

! 3

23 2 1

Ag=1 1 @@,
2

1 1
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and

2 3
Ext®-A)pyqe 4 = o ;
(Bxt* )i a = 25 © 3 0 1 ;
thus A is a quasi-hereditary, quadratic formal algebra (Ext®-A ~ A+). In fact,
gl.dim A = 2. Observe, however, that A is not lean (!). Indeed, rad P(3) lacks
top filtration by A(1) and A(2) (cf. Theorem A.4.10).
On the other hand, we can verify easily the following statements.

Lemma A.6.1. Let A be a quasi-hereditary algebra such that every rad P(z),
1<i< n, s a direct sum of some S(j)’s, A(j)’s for 1 < j < n and of some
P(j)’s fori+1<j<n. Then A is quadratic and formal.

Here a need for restricting the range of P(j)’s can be seen easily: The path
algebra of the graph P . 4, modulo the ideal generated by the

path aszasiagy is a non-quadratic quasi-hereditary algebra whose radical (as
a right module) is a direct sum of standard and projective modules.

Proposition A.6.2. Given an ordered species S, S(S), M,(S), Me(S) and
R(S) are formal. In fact,

Ext®-S(S) ~ R(S*), Ext*-R(S) > 5(S*),
Ext®-M,(S) = My(S*) and Ext®-My(S) ~ M.(5*%).

Note that all the above Ext®-algebras are quasi-hereditary algebras with
respect to the opposite order of the order of S.

Proposition A.6.3. Let S = (D1,D;,...,Dn; iW;, 1 < t,7 < n) be an
ordered species such that D; ~ Dy_;pq1 and ;Wj ~ i aWi_jq1 for all i, 3;
thus S ~ 8* with the opposite order. Then

Ext®-M(S) ~ My(S*) ~ M,(S)°

and
Ext®-My(S) ~ M. (S*) ~ My(S)°.
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connected diagram 62
contravariant functor 138
coprincipal module 161
coregular module 161
costandard module 214
covariant functor 138
crossed product 97
cycle 131

cycle of a diagram 63
cycle type 131

cyclic module 15

D

decomposable module 21
decomposable representation 21
decomposition of the identity 25
deep algebra 236
degree of representation 10
density (Burnside) theorem 42
derivation on algebra 80
derived functor 195
diagonal matrix 4
Dickson’s theorem 81
diagram 61
diagram of an algebra 60
diagram of modules 140
diagram with multiplicities 68
differential 190
dihedral group 131
dimension of an algebra 1
dimension of a representation 10
dimension of a vector space 36
dimension vector 214
direct factor 4
direct product of algebras 4
direct sum of modules 21
direct summand 22
discriminant of a module 112
discriminant of

a separable algebra 114
division algebra 8
divisor of identity 7
divisor of zero 7
dual category 137
dual species 242
duality 204
duality functor 159

E

elementary matrix 37
endomorphism 23
epimorphism 7, 12
equivalence of categories 147
exact sequence of modules 140

exact sequence of complexes 192
extension of a field 84

extension of a field of scalars 77
extension of a homomorphism 194
extension of a module 19

Ext 199

Ext*-algebra 242

F

factor 19

factor module 14

faithful module 35

faithful representation 10

field of invariants 91

Five lemma 141

finite dimensional algebra 1

finite field 85

forgetful functor 137

formal algebra 242

free module 52

Frobenius algebra 165

Frobenius endomorphism 100

Frobenius reciprocity theorem 157

Frobenius theorem 79

functor 137

functor category 147

functor morphism 147

fundamental ideal 152

fundamental theorem of
Galois theory 93

G

Galois group 90

Galois theory 82
generating module 150
generating set 52
generator of a module 15
global dimension 204
Grassman’s rule 20
group algebra 4

group representation 117

H

head (top) of an arrow 61
head of a path 61

height of an element 100
hereditary algebra 44, 65, 154
hereditary serial algebra 186
heredity chain 219

heredity ideal 219

heredity sequence 219
Higman’s theorem 158
Hilbert division algebra 81
homological dimension 202
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homology module 190
homomorphism 7, 11
Homomorphism theorems 15, 17
homotopic homomorphisms 191
homotopic complexes 191
homotopy 191

I

ideal 17

idempotent 25

identity 2

identity morphism 136
image 15

incidence matrix 61
indecomposable module 25
independent cycles 131
induced character 157
induced module 157
induced representation 157
infinite dimensional algebra 1
initial object 135

injective module 161
injective dimension 202
injective hull 161

injective resolution 194
inner automorphism 75
inner bilinear map 143
inner derivation 80
invariant of an automorphism 91
inverse 8

inverse morphism 137
invertible element 8
irreducible character 120
irreducible representation 18
isomorphic algebras 6
isomorphic diagrams 61
isomorphic modules 11
isomorphism 6, 11, 137
isotypic algebras 42, 59

J

Jordan algebra 5
Jordan-Holder theorem 19

K

kernel 15
Kronecker’s theorem 83
Krull-Schmidt theorem 56

L

lean algebra 230
left derived functor 195
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left divisor of identity 7

left divisor of zero 7

left exact functor 146

left ideal 14

left medial algebra 236

left module 13

left Peirce decomposition 25
left serial algebra 177

left socle 68

length 19

length of a module 20

length of a path 61

lifting of an exact sequence 156
lifting of idempotents 48

lifting of a homomorphism 51
lifting of a quotient algebra 107
linear category 138

linear functor 139

local algebra 49

long exact sequence 196

M

Maschke’s theorem 117
matrix algebra 3
matrix representation 10
maximal ideal 54
maximal subfield 77
maximal submodule 20
minimal algebra 67
minimal idempotent 49
minimal polynomial of

an element 9
minimal right (left) ideal 33
minor 150
module 13
Molien theorem 39
mornogenic algebra 7
monogenic subalgebra 7
monomorphism 7, 12
Morita theorem 151
morphism 135, 147
multiplicity 214

N

Nakayama’s lemma 46
Nakayama-Skornjakov theorem 174
nilpotent ideal 34

nilpotent group 133

Noether’s lemma 95

Noether theorems 15, 16, 17, 18
non-degenerate module 112

norm 102

norm of an element 111

normal basis 93
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Normal basis theorem 92
normal extension 90
number of generators 52

0]

object 135

opposite algebra 73
ordered species 236
orthogonal idempotents 25
orthogonality relations 121

P

parallelogram rule 17
path algebra 64
path category 136
path of a diagram 61
Peirce decomposition of

an algebra 26
Peirce decomposition of

a module 26
perfect field 89
position on Young diagrams 131
primary algebra 54
prime field 82
primitive root of unity 101
principal ideal 34
principal ideal algebra 171
principal indecomposable

module 49
principal norm of an element 114
principal polynomial of

an element 114
principal trace of an element 114
principal trace form 114
product of morphisms 135
projection 17
projective cover 53
projective dimension 202
projective homomorphism 206
projective-injective module 162
projective module 44, 51
projective resolution 193
projector 22
progenerator 151
proper module 112
purely inseparable element 100
purely inseparable extension 100

Q

quadratic algebra 242
quasi-Frobenius algebra 165
quasi-Frobenius serial algebra 185
quasi-hereditary algebra 213, 219
quasi-order relation 67

quasiregular ideal 47
quaternion algebra 3
quaternion group 130
quotient algebra 17

R

radical extension 101
radical of an algebra 46
radical of a module 45
rank of a free module 52
reciprocity law 227
reducible representation 13
regular antirepresentation 13
regular bimodule 70
regular character 120
regular left module 13
regular module 11

regular representation 10
reject of a module 214
reject filtration 217

replete algebra 235

- representation of an algebra 9

representations of
semisimple algebras 40

restriction of a module 157

right derived functor 195

right exact functor 146

right ideal 14

right medial algebra 236

right module 11

right Peirce decomposition 25

right serial algebra 177

right serial bimodule 179

right socle 68

root of a tree 178

S

Schanuel’s lemma 156
Schur’s lemma 31
Schurian sequence 215
self-representation of

a division algebra 70
semi-serial module 174
semisimple algebra 33
semisimple module 32
separable algebra 104
separable element 88
separable extension 88, 101
separable module 115
separable polynomial 88, 91
Separation lemma 163
serial algebra 175
serial module 174
shallow algebra 236
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simple algebra 37

simple component 40

simple factor 20

simple module 18

sink of a diagram 178

skew polynomial algebra 173
Skolem-Noether theorem 75
socle epimorphism 230

socle of a module 68, 160
solvable extension 102
solvable group 102

solvable by radicals 102

split algebra 62

split exact sequence 141
splitting field for an algebra 78, 105
splitting field of a polynomial 83
standard module 214
standard sequence 239
strongly nilpotent element 34
structure constants 1
subalgebra 4

submodule 13

symmetric group 131

T

tail (origin) of an arrow 61
tail of a path 61
tensor algebra of a bimodule 152
tensor product of algebras 73
tensor product of modules 125, 143
tensor product of
representations 125
tensor product of vector spaces 71
tensor (Kronecker) product of
matrices 125
terminal object 135

Index 249

Three by three lemma 155
top embedding 230

top filtration 230

Tor 199

trace of an element 111

trace of a module 214

trace filtration 216

trace form on an algebra 112
tree 178

triangular matrices 4

trivial modules 18

two-sided Peirce decomposition 26
type of an algebra 153

U

unipotent element 107
unipotent triangular
representation 133
unipotently conjugate liftings 107
uniserial algebra 171
unitary representation 133
universal algebra over a diagram 44,
64

v

vector space 35
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Wedderburn-Artin theorem 38
Wedderburn-Malcev theorem 107
Wedderburn theorem 86
Weierstrass-Dedekind theorem 38

Y
Young diagram 131
Young symmetrizer 132





