REPRESENTATIONS OF BISECTED POSETS AND
REFLECTION FUNCTORS

YURI A. DROZD

ABSTRACT. We construct a complete set of reflection functors for
the representations of posets and prove that they really have the
usual properties. In particular, when the poset is of finite rep-
resentation type, all of its indecomposable representations can be
obtained from some “trivial” ones via reflections. To define such
reflection functors, a wider class of matrix problem is introduced,
called “representations of bisected posets”.

Representations of partially ordered sets (“posets”) introduced by
Nazarova and Roiter [8] were, maybe, the first example of matrix prob-
lems, whose theory was circumstantially elaborated. Later on they
played an eminent role in the whole theory of matrix problems as well
as of representations of algebras. So it is not surprising that it was also
the first case, when one tried to introduce something like Bernstein—
Gelfand—Ponomarev’s reflection functors. Namely, one could not define
all of them though in [3] the author managed to introduce some substi-
tutes for one of them and the product of all others. That was enough
to consider the “Coxeter transformation” and to obtain almost all nec-
essary results for the posets of finite representation type. Nevertheless,
some unsatisfaction remained, as one would like to get all reflections,
not only their composition. Some hint was contained in Ovsienko’s
paper [10], where all reflections were introduced for another class of
matrix problems. The thing was that, though starting with usual rep-
resentations of algebras, Ovsienko had to extend the considered class of
problems in such a way that the sought construction became possible.
The resulting class was far from being too evident as it contained both
algebras and “boxes”.

The aim of this paper is to present an analogous construction for
the representations of posets. To do it, we also need to widen the
frames. The resulting class of matrix problems, which we call “rep-
resentations of bisected posets” (“bisposets”), is rather unusual as it
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contains non-free (even non-semi-free) boxes. As a corollary, they can-
not be considered as “bimodule matrix problems” as well. Remark that
the boxes arising in [10] could also be non-free, but this “non-freeness”
was more or less imaginary. Namely, no generator (“arrow”) of those
boxes could be involved both into the relations and into the differential
of the box, i.e. “additional transformations” of representations. On the
contrary, in our case the interaction between relations and differential
becomes nearly indispensable. Nevertheless, we are able to establish all
“usual” properties for the new reflection functors as well as to exhibit
their applicability in the simplest case of posets of finite representation
type.

Remind that another approach to the reflection functors (for quivers)
led to the tilting theory. One may hope that a more detailed study of
the new reflection functors would lead to some extended tilting theory
applicable both to algebras and to boxes and showing their interrela-
tions at least in the “simply connected case” (whatever the last term
could mean).

Of course, we use freely the language and technique of boxes (=boc-
ses=BOCS’s) referring to [5] or [12] as recommended sources. For the
readers of the English translation of [3] we should also remark that its
translator called indecomposable representations “irreducible”. Fortu-
nately, irreducible representations themselves do not occur there, so no
misunderstanding is possible.

1. BISPOSETS AND THEIR REPRESENTATIONS

Throughout this paper we fix some field k and all algebras, cate-
gories etc., which we are considering, are algebras, categories etc. over
this field.

A bisected poset (or bisposet) is, by definition, a poset (S,<) to-
gether with a bisection: S = S~ LIS, such that j € ST and i < j
implies that i € ST too. Choose a new symbol 0 not lying in S and
put S=S11{0}. For each bisposet S define the corresponding box
A(S) = (A,V) in the following way:

1. ObA=S.

2. The morphisms of the category A are generated by theset {a;|i € S},
where q; : 41 > 0if €S and a; : 0 —» 7 if 1 € ST. These
generators are subject to the relations:

aia;=0if j€S7,4€ ST and j <.
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3. The box A is normal in the sense of [5] or [12] and its kernel V
is freely generated by the set

{ ¢i; |4 < jand either bothé,j € S~ or bothi,j € ST},

where ¢;; € V(j,1).
4. The differential 0 of the box A is given by the formulae:

aai = Za]goﬂ if 7 € S_,

j<i
Oa; = Zgoijaj if 1€ S*;
j>i
Bpi; = = Y pupr; if i, € S*.
J<k<i

The choice of signs in the last formula guarantees the condition 6% = 0.
Remark that this box is not free though has a free kernel.

Following the usual definition, we can consider the representations of
the box A(S) in some category S, which we call S-representations of
the bisposet S. Namely, a S-representation is a set M = { My, M;, f; |
i €S}, where My and M; are objects of addS, while f; are mor-
phisms: f; : M; — My if 1€ S~ and f; : My — M; if ¢ € ST, such
that fif; =01if j€S7,i€S* and j <i. If N={Ny, N, 9} is
another S-representation, then a morphism ® : M — N is a set of
morphisms from S:

{@ili e S}U{%Ii < j and either bothi,j € S~ or bothi,j € S* 1,
where ®,: M; — N; and @ij : Mj — Ni, such that:
q)Ofi = gzq)z — Zgjq)ji for each 7 € S~ ;

j<i
giq)O = q)zfz + Z@Z]f] for each 1 € S+ .
5>i
The set of all such morphisms will be denoted by homg(M, N). The
category of representations of a bisposet S in a category S will be
denoted by rep(S,S). If S = k, we often omit its name and write
rep (S). In this case all M; are finite dimensional vector spaces over
k, while f; are linear mappings. Remark that if ST = @ (hence
S~ = S), we practically return to the original definition of Nazarova—
Roiter [8] for the representations of the poset S over the field k.
We always suppose that the set S is finite. Define then the group of
dimension vectors D = D(S) for the representations of a bisposet S
to be Z"*' where n = [S|, with coordinates (z;|i € S). Denote by
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D% its sub-semigroup consisting of all vectors with non-negative coor-
dinates. If S is a ring such that every (finitely generated) projective
S-module is free of unique rank (e.g. S is a field), we can identify the
objects of addS with free S-modules and define the dimension vector
of a representation M € rep (S,S) to be the vector

dim M = (rank M; |i € S) € D*.

Moreover, if x € D" is any vector, we can consider the set rep,(S,S)
of all representations of S over S of the dimension vector x. To do
this, we have only to fix some “standard representatives” for free S-
modules of each rank r (say, S"). In particular, if S = k, we can
consider rep,(S) as an affine algebraic variety over k. Moreover, the
isomorphism classes of the representations from rep,(S) are just the
orbits of certain algebraic group G4(S) acting on this variety. Namely,
the group Gx(S) consists of all sets of linear mappings ® = { ®;, ®;; }
as described above (taking into account that M; = N; = k%), such
that all ®; are invertible. The composition of two such sets & and ¥
is given by the formulae:

(®W); = &;¥; forall ie§;
j<k<i
(cf. [5] or [12]). If S is fixed, we often omit it and write rep, and Gy.

As usually, we can assign to the bisposet S an integral quadratic
form Q = Qg : D(S) — Z, namely, for each x € D,

Qs(X) = IE% -+ ZIEZ'IE]' - ZIE()IEZ' .
j<i icS

(of course, writing j <4 we assume that 4,5 € S). Remark that both
the group D and the form (Q depend only on the poset S itself and
not on its bisection and coincide with those defined in [3]. This form
has an evident geometric meaning. For two elements j < ¢ from S
write j <" 4 if j € S7,7 € ST and j <' i otherwise. Then the

“minus-form”
Q (x) = Zxoxi - Z TiT;

icS j<—i
gives a lower bound for the dimensions of the irreducible components
of the variety rep, , while the “plus-form”

Qt(x) =23 + Z Tl

j<ti
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gives the dimension of the group G4, hence the upper bound for the
dimensions of orbits. Of course, Q = QT — Q™ , so simple geometric
observations (cf. e.g. [4]) lead to the following fact.

Proposition 1.1. If a constructive subset Z C rep, meat each iso-
morphism class from some component of rep, , then dimZ > —Q(x).
In particular, if S s of finite representation type, then the form Qg
18 weakly positive, and if S is tame, then Qs is weakly non-negative.

Remind that Q is said to be weakly positive (weakly non-negative)
if Q(x) > 0 (resp. Q(x) > 0) for each non-zero vector x € D*. We
shall mark these properties by writing Q>0 (resp. Q>0).

If X is any set of representations from rep(S), denote by [X]
the ideal of the category rep (S) consisting of all morphisms, which
factorize through the direct sums of representations from X. Con-
sider the trivial (or simple) representations T for each point i € S.
Namely, T} = k, while T} = 0 for all j # 0. Put I; = [T*] and
rep®™(S) = rep(S)/bl,. Of course, the isomorphism classes of ob-
jects from rep(¥(S) are in one-to-one correspondence with those from
rep (S) with no direct summand isomorphic to 7¢. We need the fol-
lowing obvious fact.

Lemma 1.2. A representation M of a bisposet S has no direct sum-
mand isomorphic to T* if and only if the following conditions hold:

L IfieS™, then fi' (3, ;Imf;) =0.
2. If i € ST, then fi((,5;ker f;) = M;.
3. If i=0, then e+ ker f; C© > ics-Im f;.

(As usually, we suppose that the sum of an empty family of subspaces
is 0, while its intersection equals the whole space.)

Proof. Let i € S~ (the other cases can be treated in a just analogous
way). Suppose that f;'(3; ;Tm f;) =0, ® is a morphism T* — M
and u a non-zero element of T}. Then, by definition, f;®;(u) =
> i<i fi®ji(u), whence ®;(u) = 0. But then also ¥;®; = 0 for each
W : M — T, thus T® cannot be a direct summand of M .

Suppose now that v € M; is a non-zero element such that f;(v) =
> .i<i fi(v;) for some v; € M;. Include v in some basis of M;. Then
we can find some linear mappings ®;; : M; - M; (j < i) such that
®;;(v) = v; and ®;;(v') =0 for all basic vectors v’ # v. Now define a
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representation M = (Mo, M}, f;) as follows:

f;(v) =0 and f;(v") = fi(¢)) for all basic vectors v’ # v.

Put also ®; =1 for all objects j # ¢ and ®;;, =0 for k # 7. Then one
can easily check that ® is an isomorphism of the representations M
and M . But the latter obviously contains a direct summand T ~ T*,
where T; =kv and T; =0 for j #1. O

These conditions obviously imply the following useful result.

Corollary 1.3. For each dimension vector x € DT(S) the subset
repgf) C rep, consisting of all representations, which have no direct
summand tsomorphic to T 1is open.

2. REFLECTION FUNCTORS

If S is a bisposet and A = (A,V) the corresponding box, we define
two subsets in S called the sets of sources and sinks. Namely, if
S~ # 0, the set o(S) of sources consists of all points maximal in
S—, while if S™ = @, we put o(S) = {0}. Dually, if ST # 0,
the set 7(S) of sinks consists of all elements minimal in ST, while
if St =0, we put 7(S) = {0}. Note that an object is a source
if there are no arrows (both solid and dotted) in the box A leading
from any another object to that one and it is a sink if there are no
arrows leading from it to any other object. If s is a source, we define
a new bisposet S, in the following way. Its underlying poset is the
same as for S but the bisection changes. Namely, if s is a maximal
element from S~, then S; =S~ \ {s} and S} =St U{s}, while
if s =0 (hence S™ =0), then S; =S and S} = 0. Dually, if s
is a sink, we also define a new bisposet S; with the same underlying
poset and a new bisection. Namely, if s is a minimal element of St
put ST =S*\{s} and S; =S~ U{s}, whileif s=0,put Sf =S
and S; = (). The box corresponding to S, is also denoted by A;.
Obviously, if s was a source, it becomes a sink in S, (and vice versa)
and S;; = S. Moreover, the points of S~ can be placed into such
sequence $i, Sg, ..., Sy, where m = #(S7), that any si,; is a source
in S,s,..s (in particular, s; is a source in S) and S, . =0.
The same claim is also true for S* and sinks. Therefore, if S and S’
are two bisposets with the same underlying posets, we can place the
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elements of S into such sequence Si, Sg,...,Sp+1 that each sx, is a
source in Sy, s, and S’ =8, ,, ... (the same for sinks).

For i € S put «* = {j € S*|j is comparable with i }. Put also
0% = ST and introduce the following notations for a vector x € D =
Dg and for a representation M € rep (S):

Notations 2.1. e z" =3 .. 2;;

o Ti=xo—zf —z; ifi€S and Ty =1z +z5 —T0;
+ :

o M = ®jeii M; ;

o fit is the mapping My — M;" with the components f; and f;
is the mapping M; — My with the components f; for suitable
indices j .

We are now going to define the reflection functors

Fy : rep®(8) — repl*)(S,),

where s is a source or a sink. Let first s be a maximal point of S™.
Then Im f; C ker f; for each representation M of S. Hence we are
able to consider the factor-space M, = ker f,//Im f; . Choose some
retraction 7 : My — ker f and denote by 73, the natural mapping
ker f — M. . Now define a representation M’ of the bisposet S; by
the rules:

M!=M; and f] = f; forall i #s;
M, is as defined above and f, = mpmas -

Suppose that N is another representation of S, ny a retraction
of Ny onto ker g and N’ the corresponding representation of S,.
Remark that f;5 induces an injection (1—mnar)(Mp) — M,". Therefore
there exists a linear mapping & : M; — M, such that £fF =1—1n.
Choose such ¢ and define for each morphism ® : M — N a morphism
@' =®;: M' — N' by the rules:

Py = Dy and ; = P; for all i # s;

O (v+1Imf;) = Dy(v) + Img,, where v € ker f};

;. = g.®o¢; forall 1> s,
where &; : M; — M, the i-th component of ¢£. Remark that the
relations for the components of ® imply that ®, maps ker fi to
ker g& and Im f; to Img; . One can easily check that ®; is indeed
a morphism from M’ to N'.

If we choose in the last construction another mapping &', then the
only non-zero components of the difference A = @, — @, can be A
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for ¢ > s. But such a morphism evidently factorizes through mT?,
where m = dim N!. Namely, A = A'A® where A®: M’ — mT®
has all zero components except of A), = A;; (¢ > s), while A :
mT?® — N’ has all zero components except of Al = A,. All relations,
which we have to check in order to prove that A? and A! are really
morphisms, are trivial, except the only one at the point s for A°. But
the last relation coincides with the same one for A. Hence, inside the
category rep!®(S,) the morphism & does not depend on the choice
of £. Obviously, this implies that the isomorphism class of M’ in the
same category does not depend on the choice of the retraction 7, .

By the way, the definition of M’ guarantees that it contains no
direct summand isomorphic to 7°. On the other hand, if M = T7,
then M’ = 0, hence our construction leads indeed to a functor Fj :
rep®)(S) — rep®)(S,), which maps M to M' for some prescribed
choice of 7, , and any other such choice leads to an isomorphic functor.

Just in the same way we are able to construct the reflection functor
F, : rep®(S) — repl®(S,), in the case, when s is a minimal element
in S* (thus a sink). Again we have that Im f; C ker f;t. So we can
put M, = ker f{/Im f;, choose a section 7y : My/Im f; — M,
and define M’ having the same components as M except of M, and
fi = nmem, where e is the embedding M! — My/Im f; . Almost
the same observations show that in this way we really get the wanted
functor.

Suppose now that 0 is a source, i.e. S~ = . In this case we put
M| = Cok f;" and take for f]: M] = M; — M} the i-th component
of the natural projection Mg — M]. At last, if 0 is a sink, put
M| = ker f; and take for f;: Mj— M= M, the i-th component of
the embedding Mj — M . This time we even obtain indeed functors
rep (S) — rep (Sp) , which evidently map T° to zero, thus inducing the
functors Fy : rep(®(S) — rep(D(Sy) .

Certainly, our notations for the reflection functors are rather am-
biguous. More accurate were to write, for instance, FX(S), with “+”
for sinks and “—7" for sources. Nevertheless, it seems no doubts that
one could never mix up, which construction is used in each considered
case.

Though F, cannot be considered as a functor rep (S) — rep (S;),
the above construction defines F;M , where M € rep(S), up to iso-
morphism. Let now si,$s,...,8,, be a sequence of elements of S
(not necessarily distinct) such that each s, is a source or a sink in
Ss1ss..5, (In particular, s, is a source or a sink). We call such sequence
an admissible sequence (in S). Moreover, if each si,; is a source (a
sink) in S5, , call it a source sequence (resp. a sink sequence).
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In this case, for any representation M € rep (S), the representation
F M=F, ...F,F, M is well-defined. Denote

Sm...8281
— $1 52 $3 St
Islsz...sk - [T 7F51T 7F5152T PRI 7F5152...sk_1T ] ’

rep(5152--'5k)(s) = rep (S)/ISISQ...Sk -

Here 7% is considered as representation of S,,, 7% as that of Sy, ,
..., T® as that of S;,, s, ,- Then F, ., can be considered as a
functor:

Fsk...szsl : rep(5152...5k)(s) - rep(Skmswl)(Sslsz...sk) .

In particular, the functor F,, : rep®)(S) — rep(®)(S) is defined (we do
not still dare to write F? here).

Theorem 2.2. If s is a source or a sink, then Fs, >~ 1, the identity
functor of the category rep®)(S). Hence, the functors F, establish an
equivalence of the categories rep'®(S) and rep®)(S,).

Proof. We consider the case, when s is a source in S, as the dual
case is rather similar and the case s = 0 is quite obvious. Let M
be any representation of S not containing 7° as a direct summand,
M' = F,M and M" = F,M'. Then all components of M’ and M"
coincide with those of M except of M} =ker f/Im f;, fl = mpnu
and M" =ker f'T/Im f'; |, f"s = napenr - But, by definition,

ker f'T = ker f Nker mymy = Im £,

as v € ker f;f(v) implies that na(v) = v, whence mp(v) = 0 if and
only if v € Im f;. Therefore, My = Im f7/> . ;Im f;, so we are
able to define the natural mapping O, : M; — M. as the composi-
tion of f, and the projection Im f; — M. Now Lemma 1.2 implies
evidently that Im f7 ~ f;(M;) ® >, ., Im f; and f; is a monomor-
phism, whence M ~ M,. Moreover, as we are free in choosing a
section npp @ Mp/Im f', — My, do it in such way that its restric-
tion onto fs(M,) were identical. Then we can define an isomorphism
© =0y : M~ M putting ©; =1 forall i € S and ©;; = 0
for all 4,5. It is quite evident that this construction is really func-
torial (modulo the ideal I ), thus we get an isomorphism of functors
©:1—F,,. O

Corollary 2.3. For any admissible sequence s1,89,...,Sy the func-
tors Fyig,.5, and Fs .. define an equivalence of the categories
rep(smms”l)(SslsQ...sm) and rep(swz...sm)(s).

Corollary 2.4. Let s1,89,...,8, be an admissible sequence and M
be such indecomposable representation of S that F; . s, M # 0. Then
M i Fslsz...smFsm...szslM .
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Remark that the isomorphism classes of indecomposable objects of
the category rep(*1%2-5m)(S) coincide with those of the category rep (S)
except the classes of the representations 1!, Fy, 7%, Fy ;, T%, ..., Fy 5,5, 1™ .

Corollary 2.5. If bisposets S and S’ have the same underlying poset,
they are of the same representation type. In particular, a bisposet is of
finite representation type, tame or wild if and only if so s its underlying
poset.

3. FINITE REPRESENTATION TYPE

Now we are able to prove the main theorem on bisposets of finite
representation type, which generalizes and precises that of [3]. First, it
inverts the claim of Proposition 1.1 concerning the finite representation
type and, moreover, gives an exhausting description of the representa-
tions in this case. Just as for usual posets, call a representation M of
a bisposet S sincere if M; #0 forall i €S.

Theorem 3.1. Suppose that the quadratic form Q = Qs s weakly
positive. Then:

1. The bisposet S 1is of finite representation type.

2. A vector x € DT = D*(S) is a dimension vector of an indecom-
posable representation of S if and only if Q(x) = 1. Moreover,
in this case there is only one (up to isomorphism) indecomposable
representation of dimension vector x.

3. homg(M, M) = k for each indecomposable representation M of
S.

4. The orbit of each indecomposable representation M of S is open
and dense in rep, , where x = dim M .

5. If Q(x) =1, then the variety rep, is irreducible and dimrep, =

Q™ (x).
6. For each indecomposable representation M of S there exists a
source sequence (as well as a sink sequence) s1,89,...,8m Such

that M ~ F, . L for some non-sincere representation of the
bisposet Sg,s,..s - (Possibly m =0 if M is non-sincere itself.)

Proof. Up to the end of the proof we suppose that Q>0. We also go
on using Notations 2.1. If S = @, all claims are trivial. So we prove
them by induction on |S| and suppose that they hold for all proper
sub-bisposets S’ of S or, the same, for all non-sincere representations.
Remark that the quadratic forms corresponding to these sub-bisposets
are also weakly positive. Prove first the following lemmas, the second
one rather alike to the key lemma of [3].
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Lemma 3.2. Let the assertion 4 of Theorem 3.1 be valid for some
indecomposable representation M of the bisposet S. Then for each
1€S:
o if =, > 0, the mapping f; is an epimorphism and the mapping
fi 18 a monomorphism,
e if . <0, we have that dimIm f; > dimker f;".

Proof. zi > 0 means that zo — z] > z; > 0. Then one can easily
construct a representation M of S of dimension vector x such that
f:’ is an epimorphism and fi_ is an monomorphism. Indeed, put
fu = 0 for all £ non-comparable with i, take for f;’ any epimorphism
My — M;" and for f; any monomorphism M, — ker f;' (they exist
due to the given relations between the dimension vectors). But these
conditions pick out an open subset Z C rep,(S). Moreover, Z is
evidently stable under the action of the group G4 . As the orbit of M
is dense, we obtain that M € Z.

If i < 0, the condition “dimIm f > ker f;"” also picks out a
non-empty open subset Y C rep, . Indeed, we may put again fe=0
for all £ non-comparable with ¢ and take for ff any mapping M, —
M;t of maximal possible rank. If zy > z;7, then this mapping is an
epimorphism, hence dimker ;" = zy — 27 < z; and we may take
for f; any epimorphism M, — ker f;{". If 2o < 2, then f; is a
monomorphism, so its kernel is zero. Hence just as above we obtain
that M €Y. O

Lemma 3.3. Suppose that s € S is a source or a sink, M % T? is
an indecomposable representation of S and x =dim M . Then:
1. If My #£0 or 2’ >0, then f} is an epimorphism and f; is a
monomorphism.
2. If My =0 and 2, <0 then Im f; = ker f;".

Proof. If M, = 0, then M may be considered as a representation of
the bisposet S' =S\ {s}. By the inductive hypothesis, Theorem 3.1
holds for S’. Hence, in particular, we may apply Lemma 3.2 to M,
which gives the sought result. One has only to remark that in this case
always Im f; C ker f;, thus the inverse inequality for their dimensions
implies that they coincide.

Suppose that M, # 0. Denote by M the restriction of M to S’ =
S\ {s} and let N = (N;,g;) be an indecomposable direct summand
of M. Again we may apply Lemma 3.2 to N. If we show, for each
possible N, that g} is an epimorphism and g, is a monomorphism,
then it is valid for the whole M and we come to the sought claim simply
by applying Lemma 1.2 to the point s and the representation M . But
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otherwise Im g; = ker g} . Consider some retraction II : M — N such
that IIE = 1, the identity morphism of N, where E is the embedding
N — M. Let s be a source (for a sink the proof is quite analogous).
Then Im f; C ker f;, whence ImIlyf; C ker g/ = Img, . Therefore,
there exists a linear mapping 7 : My — N, such that Ilyf; = —g, 7.
Denote by II;; (i < s) the components of 7. Then we become able
to consider II as a morphism M — N and can easily check that
IIE = 1, where E is the embedding of N into M. Hence N is a
direct summand of M , which contradicts the assumptions. O

Corollary 3.4. 1. If M #£T? is an indecomposable representation
of S, s is a source (a sink) and M, # 0, then homg(T*, M) =0
(resp. homg(M,T*) =0).

2. homg(M,N) =~ homg, (F,M,F,;N) for each representation N
with the same properties.

Proof. Suppose that s is a source. Then a morphism & : 7% — M
is given by its components &, : k — M, and &;, : k — M;, where
i < s, subject to the relation f,®, = >, . fi®;;. But as f; is a
monomorphism, this relation implies that &, = 0 and all ®;;, =0. In
the same way the first claim is proved for sinks. The second one now
follows from Theorem 2.2. O

Remind the definition of the reflections w; : D — D with respect to
the form Q. Namely, if (_,_) denotes the corresponding symmetric
bilinear form, then w;(x) = x—2(x, ')e’, where e’ are standard basic
vectors (by the way, e = dimT"). Here we use the fact that Q(e’) =
1. The definition of Q implies now that if x has the coordinates z;,
then the only coordinate of w;(x) different from the corresponding one
of x is the i-th one, which equals just z} (using Notations 2.1). This
leads us to the following fact.

Corollary 3.5. If M # T* is an indecomposable representation of
S with M, # 0, where s 1is a source or a sink, then dim F,M =
ws(dim M) . In particular, ws,(dim M) € DT.

Now we are able to accomplish the proof of Theorem 3.1. Place all
elements of S into a source (or sink) sequence: s, s, ..., Sp41, where
n = |S|, and put

O = Wy - WsyWs,
This is a Cozeter transformation for the form Q (cf. [3]). Remind that
for any vector x € DT there is some integer k such that ¢*(x) ¢ D+ .
In view of Corollary 3.5, this means that there is a source (resp. sink)
sequence $i, Sa,- .., Sy such that the representation L = F, s, M is
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non-sincere, and it is the shortest such a sequence. As M ~ F;,, . L
by Corollary 2.4, we get the assertion 6 of Theorem 3.1. Remark also
that the vector y = dim L depends only on x = dim M and not
on the choice of indecomposable M in rep, . Applying the inductive
hypothesis to the set S\ { s}, we get the following properties:

1. Q(y) =1, hence also Q(x) =1 as Q is invariant under reflec-
tions.

2. L is a unique (up to isomorphism) indecomposable representation
of dimension vector y, hence M is also a unique indecomposable
representation of dimension vector x.

3. homs, , . (L,L) =k, hence also homg(M, M) = k in view of
Corollary 3.4,

Moreover, if x € DT is any such vector that Q(x) =1, z; # 0
and x # €', then z; — 2z} < 1: otherwise Q(x —€') < 0. So
choose a shortest possible source (or sink) sequence sy, s, ..., Sy, such
that y = w, ... ws,ws, (x) has a zero coordinate (possibly, m = 0).
Then, again by the inductive hypothesis, there exists an indecompos-
able representation L of S,, s, of dimension vector y. Hence
M = Fy,,. L is an indecomposable representation of S of dimension
vector x. So we have proved the assertions 2 and 8 of Theorem 3.1.
As the equation Q(x) =1 has only finitely many solutions in DT (cf.
[3]), it implies also the assertion 1.

Let now x € D be such that Q(x) = 1. Each irreducible compo-
nent C of rep, has the dimension at least Q~(x). As it contains only
finitely many G-orbits, one of them is open and dense in C'. But the
dimension of such an orbit equals Q*(x) — dimhomg(M, M), where
M is the representation lying on it, whence

dim homg(M, M) = Q*(x) —dimC < Q(x) =1,

Therefore dimC = Q(x) and dimhomg(M, M) = 1, which implies
that M is indecomposable. As there exists only one indecomposable
representation of dimension vector x (up to isomorphism), C = rep,,
which proves the assertions 4 and 4. O

Corollary 3.6. The dimension vectors of indecomposable representa-
tions of a bisposet of finite representation type depend only on the un-
derlying poset and not on its bisection. Moreover, they are the same
for any such poset S and its dual poset S* (as Qs = Qs+ ).
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4. REMARKS AND QUESTIONS

4.1. Remind that in [3] two transformations were defined for represen-
tations of any (usual) poset S. The first one, denoted by o, corre-
sponds to the reflection wy for dimension vectors, while the second one,
denoted by p, corresponds to the composition wy, ...ws,ws, , Wwhere
S1,82,..-,8y, 18 some source sequence containing all points of S. Both
map representations of S to those of the dual poset S*. They were not
defined as functors though one could do it using some factor-categories
of rep (S) as we have done above. They are really closely related to our
functors F,. Namely, o coincides with DFy, while p coincides with
DFy, 5,5, , where D means the standard duality of vector spaces. The
use of duality was indispensable as one can see now: otherwise instead
of representations of a usual poset S (identified with the bisposet hav-
ing ST =) one would get representations of what we denote by Sy,
which is the same poset but with ST =S.

4.2. Let S’ be a sub-bisposet of S. Then one can consider rep (S’)
as a full subcategory in rep (S). Suppose that t is a source or a sink
in (S')*. Then the functor F; is defined on rep(S’) though not on
rep®(S). We consider it as a sort of “partial reflection functor”. Now
Theorem 3.1 evidently implies that, if S is of finite representation type,
any of its indecomposable representations can be obtained from a trivial
one by applying such partial reflection functors. All examples show that
it is so even if we use only the “full” reflection functors defined above.
Nevertheless, we cannot prove it now, as Corollary 3.5 may be wrong
for representations M with M, = 0. Hence, for such representations
there is no evident relations between the reflection functors and the
reflections of their dimension vectors.

4.3. We also do not know, whether Corollary 3.6 remains valid, say,
for tame bisposets. At least, Lemma 3.3 and thus Corollary 3.5 remain
no more valid for them as the following example shows. Let S consist
of 4 non-comparable elements ai,as,as,as and one more element b
such that b > a; and b > ap. As usual poset (i.e. with St =0) it
has a sincere indecomposable representation M given by the matrices:

BIORERORE

Here Im f; = Im f, and dim F,M = (2,1,1,1,1,0), while wy(dim M) =
(2,1,1,1, 1,—1). In the same way FyM ~ M, while the vector
dim Fy,M is stable under all reflections.



REPRESENTATIONS OF BISECTED POSETS 15

Nevertheless, Corollary 2.5 together with the well-known Nazarova’s
criterion for tameness of posets [9] shows that S is tame if and only if

Qs>0.

4.4. This technique can be also applied to the “peak posets” considered
by Kasjan and Simson [7]. Namely, we can introduce a “multisected
poset” M as consisting of a poset S, a set of peaks P and for each
p € P given two non-intersecting subsets p* and p~ of S such that if
i<j and j € ptUp, then also i € pt Up~. Moreover, in this case
i € pt implies j € p*, while j € p~ implies ¢ € p~. One can define
for each multisected poset M the corresponding box A(M) just in
the same way as it has been done above for bisposets. Thus we obtain
the category rep (M) of representations of the multisected poset M.
Moreover, following the definitions and proofs given above, one can
easily get for multisected posets the notions of sinks and sources, the
construction of reflection functors and quite the same results as we have
obtained for representations of bisposets. Having many peaks instead
of one (as in the case of bisposets) produces no troubles, though is
not very pleasant to deal with. That is why we have preferred to
give all constructions in the simplest case, when P consists of one
element. Remark that we do not need to suppose S = J,cp(p* Up7):
if there is a point ¢ not belonging to the latter union, then the only
indecomposable representation non-zero at this point is the trivial one
T*. Just in the same way we need not to suppose that pt Up~ # 0.

We may also suppose that the same considerations could be ap-
plied to the class of matrix problems considered by Golovaschuk and
Ovsienko [6] in the case, when they are simply connected. But at the
moment we lack techniques to do it properly.

4.5. As the box A(S) corresponding to a bisected poset S is finite
dimensional, the category of its representations rep(S) has almost
split sequences (cf., for instance, [1]). Hence, one can consider the
Auslander-Reiten quiver I'(S) of this category. It seems very probable
that this quiver possesses a preprojective component, just as in the case
of ordinary posets (cf. [11]). Moreover, we hope that the techniques
used in [11] could also be used for bisected posets, though some details
are still not evident.

4.6. One can also apply the analogous technique to representations of
k-structures considered by Dlab and Ringel (cf. [2]). In this case there
are also practically no troubles with carefully following the procedure
of our paper obtaining the evident generalization of all results.
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