MODULE-THEORETICAL PROPERTIES OF “GOOD”
CURVE SINGULARITIES

YURI A. DROZD

The purpose of this talk is to give some relations between geomet-
ric and algebraic properties of curve singularities. More precisely, we
mean, firstly, their behavior under deformations, in particular their
modality and, secondly, the behavior of Cohen-Macaulay modules over
their local rings (in particular, their ideals).

For geometric properties, in particular, for classification of singular-
ities of lower modalities, we refer to the classical book [1].

As the definitions related to the algebraic properties are probably less
known, I shall remind some of them. Throughout this talk x denotes
some curve singularity (i.e. a point of an algebraic curve, for the sake of
simplicity, over complex numbers), R = R, the completion of its local
ring. Denote by F the full ring of fractions of R, by Ry its normaliza-
tion, i.e. the integral closure of R in F and by CM(R) the category of
(maximal) Cohen-Macaulay R-modules. If M € CM(R), the natural
homomorphism M — F ®g M is an embedding. Hence, if R’ is an
over-ring of R, i.e. R C R’ C Ry, we can consider the R’-module
R'M C F®gr M. Thus we are able to identify CM(R') with a full
subcategory of CM(R). In our case Rg = [[;_; S;, where S; ~ C[[t]]
(formal power series ring), s being the number of branches passing
through x. Hence RoM ~ @;_, r;S; for some integers r;. Call the
vector tk M = (r1,79,...,75) the rank vector of M. Of course, if R
is a domain, i.e. x lies on the unique branch, rk M is just its usual
rank as of R-module. For each vector r = (r{,7s,...,7s) denote by
CM,(R) the set of all Cohen-Macaulay R-modules with the rank vector
r and by ind.(R) its subset of indecomposable ones. Let also p.(R)
be the maximal dimension of the families of non-isomorphic indecom-
posable Cohen-Macaulay R-modules having the fixed rank vector r.
Then one defines the Cohen-Macaulay type of R (or of x) as follows:

1. R is CM-finite if it possesses only finitely many (up to isomor-
phism) indecomposable Cohen-Macaulay modules.
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2. R is CM-tame if it is not CM-finite, but p.(R) < 1 for each
rank vector r .
3. R s CM-wild otherwise.

Moreover, if R is CM-tame, let n.(R) be the maximal number of
pairwise non-intersecting one-parametre families of non-isomorphic in-
decomposable R-modules of rank vector r. Then R (or x) is said to
be bounded or unbounded if so are the numbers n.(R) for all possible
values of r.

It is known (cf. [7]) that if R is CM-wild, then sup, pr(R) = 0.
Moreover, in this case for each (not necessarily commutative) finitely
generated C-algebra A there exists an exact functor F : A-mod —
CM(R), which maps indecomposable modules to indecomposable and
non-isomorphic to non-isomorphic. In this sense the complete classi-
fication of Cohen-Macaulay R-modules seems indeed to be a “wild”
problem and there is no evidence to subdivide the wild case. On the
other hand, if R is not CM-finite, p1(R) > 1, where 1 =(1,1,...,1)
(cf. [4]). In [7] it was also proved that, if R is CM-tame, for each
rank vector r there exists a (finite) set of rational families (that is,
with bases being rational curves) containing all indecomposable mod-
ules of rank vector r. Remark that it is no longer the case for surface
singularities (cf. [13]).

The following Table 1 presents the correlations between the geomet-
ric and algebraic properties of plane curve singularities (algebraically
“plane” means that the maximal ideal m of R has 2 generators). In
this case we have one more invariant of the singularity playing an im-
portant role, namely, the intersection quadratic form @ corresponding
to its suspension. In the last column of Table 1 the type of this form
is given as the triple (u.,po,_), where p, is its positive, p_ its
negative index and pgy is the dimension of its kernel. We write also
p1 for p1(R).

If the singularity is no more plane, the results are almost the same.
Namely, say that a singularity x dominates another one y if Ry is
isomorphic to an over-ring of Ry . Then, of course, the CM-type of x
is “not worse” than that of y, i.e. if y is CM-finite, so is x, if y is
CM-tame, x is CM-tame or finite, etc. The following theorem gives a
complete picture.

Theorem 1. A curve singularity x is:

1. CM-finite if and only if it dominates some simple plane curve
singularity.
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Table 1. TYPES OF PLANE CURVE SINGULARITIES

Type of x CM-type of R Type of Q
simple . negative
fi
(A, Dn, Eg,7.8) nite definite
parabolic unimodal tame
2
(T4, T36) bounded (0,2,n)
hyperbolic unimodal tame (1,1,n)
(other T,) unbounded "
exceptional unimodal wild 920
or bimodal but p; =1 (2,0n)
wild
others and py > 1

2. CM-tame bounded if and only if it dominates some parabolic uni-

modal plane curve singularity (and no simple one).

3. CM-tame unbounded if and only if it dominates some hyperbolic
unimodal plane curve singularity (and no simple or parabolic one).
4. CM-wild with p1 = 1 if and only if it dominates some exceptional
unimodal or some bimodal plane curve singularity (and no simple,

parabolic or hyperbolic one).
5. CM-wild with p1 > 1 otherwise.

As all singularities of type T,, have at least 2 branches, we get the
following curious corollary.

Corollary 1. If a curve singularity has only 1 branch (i.e. the ring

R is a domain), then it is either CM-finite or CM-wild.
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Unfortunately, neither for Table 1, nor for Theorem 1, nor for at least
any of the implications involved there is now any “conceptional”, a pri-
ory proof. All known proofs are based on some more or less straight-
forward calculations. So the cited results, though of quite acceptable
form, have at the moment rather “zoological” nature, like such claim as
“All penguins live in the south hemisphere, while all polar bears in the
northern one”. A very exciting problem would be to discover a “non-
calculative” proof for at least some (better, of course, for all) of these
implications. The most intriguing seem now the correlations between
CM-type and quadratic form Q. The thing is that such relations are
widespread in the representation theory of finite-dimensional algebras,
where there is some geometric evidence at least for claims of the sort
“If algebra is well-behaved (with respect to representations), the cor-
responding form is also well-behaved (with respect to some positivity
property)”. It would be great if somebody could prove some similar a
priory claim for curve singularities.

The assertion 1 of this theorem is rather old. It was proved indepen-
dently by Jacobinski [12] and Drozd-Roiter [10] in quite other terms,
not referring to singularities (and before Arnold’s classification was
started). Its relation to this classification was first marked by Greuel-
Knérrer [11]. CM-type of parabolic singularities was established by
Dieterich [2],[3] and the equality p; = 1 for all uni- and bimodal plane
curve singularities by Schappert [15]. The other assertions were proved
by Drozd-Greuel [8],[9]. The author’s survey [6] gives a rather complete
account on these and some related results with most proofs sketched.

I would like to present here a sketch of the proof for the following
tameness (and hence wildness) criterion:

Let a curve singularity x be not CM-finite. Then x is CM-tame if
and only if it dominates some plane curve singularity of type T,y (and
wild otherwise).

All other proofs are rather alike (and even easier).

Step 1. Remind that the singularities of type T, are given by the
equation:
? +y7+ Ay =0
for some parametre A € C. If (pq) # (44) or (36), all of them are ana-
lytically isomorphic, i.e. all rings R are the same independently on .
Consider another singularity (not plane, though complete intersection)
P, given by two equations:

zy=0 and 2P+yi+22=0.
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Let P be the completion of its local ring, n its maximal ideal and P’ =
End (n). As P,, is a complete intersection, P is Gorenstein, hence
all its indecomposable Cohen-Macaulay modules except R itself are
indeed P’-modules. But the ring End (n’), where n' is the maximal
ideal of P’, splits into direct product of two rings of type A, whose
Cohen-Macaulay modules are well known and of very simple shape.
It gives us possibility, using more or less standard techniques for the
calculation of Cohen-Macaulay modules, to describe all such modules
for any singularity of type P, , hence check that all of them are indeed
CM-tame. Consider now a family of singularities x, given by the

equations:
zy=Xz and 2P4+y?+22=0.

For A # 0 all of them are of type T}, , while for A = 0 we get P,;. Now
we use the “semi-continuity theorem” of Knorrer [14], which implies
that whenever all x, were CM-wild, so would be also x,. But the
latter is CM-tame and all x, with A # 0 are isomorphic (we suppose
(pq) # (44), (36) ). Hence the singularity of type T, is also CM-tame.
For (pg) = (44) or (36) we need other arguments. Till now the only
known way is that used by Dieterich and consisting also of some direct
(and rather cumbersome) calculations. As we have remarked before,
all singularities dominating T,, are also CM-tame.

Step 2. Now we prove that whenever R is CM-tame, it satisfies
some “over-ring conditions”. Namely, denote:

m, = radRy,
R = my+R,
R’ — mR +R,
m = radR’,

d(M) the number of generators of R-module M .

(R’ is the “weak normalization” of R, i.e. its maximal local over-
ring. )
Then for any CM-tame singularity:
1. 3 <d(Rp) <4 and d(eRy) < 2 for each primitive idempotent
€ c Ro .
2. d(R') < 3 and d((1 — e)R') < 2 for each primitive idempotent
€ec RO .
3. If d(Ry) =3, then d(R') =3 and d(R") < 2.
Remark that if d(Rgy) = 2 or d(Rp) = 3, d(R’) = 2, x dominates
some simple plane curve singularity, hence is CM-finite.
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The proof of this assertion also depends on some “by hand” calcula-
tions. The only “easy” case is d(Rg) > 4 or d(R') > 3, when the wild-
ness follows from some simple geometric observations. For instance, if
d = d(R) > 4, consider all such R-modules M that Ry 2 M 2D my
and dim(M/mg) = 2. They can be considered as points of the Grass-
mannian Gr(2,d), which has dimension 2(d—2), and isomorphic ones
form orbits of the group R§/R’'™, which is of dimension d — 1. As
d > 4, there exist 2-parametre families of non-isomorphic modules.

In all other cases we have to construct 2-parametre families by hand.
For instance, if d =4 and Ry ~ C[[t]] (then only mj C mRy) such
a family is obtained by considering R-submodules in 5Ry generated
by the columns of the following matrix:

10000 ¢t 0 ¢ 0
01000UO0 Tt 0 ¢
00100¢# 0 0 ],
00010 0 ¢ af
000O01¢# 0 0 0

where «, 3 € C are just two parametres. Knowing it, one can check
that the modules corresponding to distinct values of the parametres
are indeed non-isomorphic and indecomposable.

Step 3. At last, we have to prove that any singularity satisfy-
ing the over-ring conditions (1)—(3) dominates some singularity of type
Tpe- It is also done by hand looking over case by case and using the
“parametrization” of these singularities. Namely, it is known that for
a singularity of type T,, the ring R is generated (as complete lo-
cal C-subalgebra of Ry) by two elements z,y of the following form
(depending on the parity of p and ¢):

odd | odd (tP~2,1%) (12,1972)

odd |even | (t,t,at?™2) (0,927 12)

even | even | (£,0,2,a8?/271) | (0,¢,127", 1)
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Here o € C\ {0} and a#1 if (pg) = (44) or (36), while in other
cases all values of « give isomorphic rings.

Over-ring Condition 1 implies that the singularity has at least 2 and
at most 4 branches. Consider the case, when s = 3, other cases being
quite alike. Condition 1 implies that mRy equals either (£) x (t) x (%)
or (t)x (t) X (?) (up to a permutation of branches). In the former case
Condition 3 implies that R contains (¢,7,%) and at least one element
lying in m3 but not in m3. Therefore, x dominates some T3,. In
the latter case Condition 2 implies that R contains two elements of
the shape (¢,%,a) and (b, c,t?) .Therefore, it also dominates some 7,

pg -
Altogether Steps 1-3 prove Theorem 1.

Make some additional remarks on the behavior of the ideals. Here
the number d = d(Ry) plays the main role. Namely (cf. [4],[5]):

1. d—1=min{n|I™ is invertible for each ideal I} .
2. d = 3 if and only if each ideal is either invertible or dual to an
invertible ideal.
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