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As it was conjectured in [DF]  and proved in [DI ] ,  finite-dimensional algebras of 
infinite type (i.e. having infinitely many indecomposable representations) split into 
two classes. For the first one, called tame, indecomposable representations of any 
fixed dimension form a finite set of at most 1-parameter families, while for the 
second one, called wild, there exist arbitrarily large families of non-isomorphic 
indecomposable representations. Moreover, in some sense, knowing representa- 
tions of one wild algebra, one would know those of any other algebras. 

A lot of examples showed that the same should hold for Cohen-Macaulay 
modules over Cohen-Macaulay algebras of Krull dimension 1. In this paper we 
give a proof of it based on the same method of "matrix problems" or so called 
representations of bocses (cf. Sect. 1). But we had to consider a new situation, 
namely that of "open subcategories" (Sect. 2) and first reprove the results of [D1] 
for it. This new shape seems to be unavoidable in the case of Cohen-Macaulay 
modules but it should be also of use for other questions in representation theory. In 
Sect. 3 we propose a method to reduce the calculation of Cohen-Macaulay modules 
to some open subcategory and use the results of Sect. 2 to prove the tame-wild 
dichotomy. 

The method we use is rather well-known in the theory of integral representa- 
tions (cf. [GR]  or [RR]). In principle, it almost coincides with that used in [J] for 
representations of commutative orders. We hope that it will be possible to spread 
both the method and the main theorem on tame-wild dichotomy to any orders over 
a complete discrete valuation ring, although at the moment  we lack some technics 
to do it. 

1 Preliminaries 

As the notions of bocses and their representations are not well-known, remind the 
main definitions (cf. [Roi, D1]). All considered categories will be linear over some 
base field K which will always be supposed algebraically closed. Respectively, all 
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functors are K-linear (bifunctors bilinear). We write Horn, | instead of Hom~,  
| A module over a category A is a functor M: A ~ Vect (the category of K-vector 
spaces); an A-B-bimodule (where A, B are categories) is a bifunctor V: 
A ~ x B --* Vect; if A = B, we call V an A-bimodule. For ve V(X, Y), ae A(X',  X), 
b eB(Y ,  Y') we write bva instead of V(a, b)(v). A bocs is a pair a = (A, V) where 
A is some category and V an A-coalgebra, i.e. an A-bimodule V supplied with 
a comultiplication I~: V---, V| V and a counit e: V ~ A  satisfying the usual 
conditions. 

A representation of a over some algebra R is defined as a functor M: 
A ~ pr - R, the category of finitely generated projective R-modules. If N is another 
representation, define 

Homa(M, N) = HOmA_ A(V, (M, N)) 

where (M, N) is an A-bimodule defined by the rules: 

(M, N)(X,  Y) = HomR(M(X),  N(Y)) for X, Y~obA  ; 

afb = N(a) fM(b)  for f e ( M ,  N)(X,  Y ) ,  

a :Y--*Y ' ,  b : X ' - - * X  i n A .  

The product of q~eHom,(M,  N) and ~peHoma(L, M) is defined as the com- 
position 

V-+ V|  > ( M , N ) |  --> (L ,N)  

where m is the multiplication of R-homomorphisms. Thus the category of repre- 
sentations Rep(a, R) is defined. We write Rep(a) instead of Rep(a, K). 

Any algebra R can be considered as a bocs ("principal bocs") if we put 
A = V = R. Of course, representations of such bocses are just representations of R. 
Remark that if M e R e p ( a , R )  and L e R e p ( R , R ' ) ,  then their tensor product 
M(L) = M |  lies in Rep(a, R'); so M can be viewed as "a family of representa- 
tions of a parametrized by R". 

As a rule, the category A will be finitely generated over K, i.e. with finite object 
set and a finite set of morphisms (generators) whose products span all spaces of 
morphisms A(X,  Y). A dimension of a representation of a is defined as a function 

_d: obA ~ N. In cases when there is a notion of rank for finitely generated projective 

R-modules, we can associate to M e R e p ( a ,  R) its dimension dimM: obA ~ N ,  
namely, (dim M)(X)  = rank M(X)  and denote by Repd(a, R) the set of representa- 

tions having dimension d_. For  instance, this is the case if R = K (hence 
rank = dim), so Repe(a) is defined. If S is a system of generators for A, then each 

representation M eRep(a)  determines (and is determined by) linear mappings 
M(a): M(X)  --* M(Y) ,  aeS ,  a: X ~ Y. Hence, treating all linear mappings M(a) as 
matrices, we can consider Repd(a) as an algebraic variety lying in affine space ALI~ ql, 
carrying the Zariski topology,  where 

lldlj: Z d(X)d(Y). 
aES, 

a : X ~ Y  
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All considered bocses are supposed normal - which means that for any X e obA an 
element cox~ V(X, X)  exists such that ~ (COx) = Ix, g(cox) = cox| In this case 
the bimodule structure on V is completely determined if we know the kernel of the 
bocs a, /7 = Ker e and for each a ~ A (X, Y) its differential (?a = ao)x - coy a ~ V. 
Moreover, the coalgebra structure is determined if we know the d!fferentials 
~U = ~(U) - -  13@ O,) X - -  c o y @  V ~ V @ a  V for all v e 17(X, Y). 

In main applications free bocses arise, i.e. such that A is a free category (that of 
paths KF of an oriented graph F) and the kernel I? is a free A-bimodule. A free bocs 
is completely determined if we know the set So of free generators of A, the set $1 of 
free generators of l? and their differentials. The set S = So w $1 is called a set offree 
generators of the bocs a. 

For technical purposes, semi-free bocses are needed. A semi-[J'ee category is, by 
definition, a category of the form KF [ga(a)-1]  where a ranges through the set of 
loops (i.e. elements of So such that a: X ~ X )  and g,( t )e  K[t]  is a non-zero 
polynomial (depending on a). If g, 4: const, call the loop a marked. A bocs is called 
semi-free if A is a semi-free category, /7 a free A-bimodule and 0a = 0 for all marked 
loops. In this case call S a set of semi-free generators of a. 

If a is free, then, of course, Repe(a) "-- AIIdll; if a is semi-free, then Repa(a) is an 
open subset in A ll411. 

A semi-free category is called triangular if there exists a system S of semi-free 
generators and a function h: S ~ N such that for any a e  S c~a belongs to the 
subbocs generated by b e S  with h(b)< h(a). 

A representation M eRep(a ,  R) is called strict if it satisfies the following two 
conditions: 

(1) If LeRep (R ,  R') is indecomposable, then M(L)~Rep(a ,  R') is also in- 
decomposable. 

(2) If L, L' e Rep(R, R') are non-isomorphic, then M(L) • M(L'),  too. 
One can say that if such M exists, the representation theory of a is at least as 

complicated as that of R. 
I fa  set F = {Mil Mi ~ Rep(a, Ri)} is given (each Mi can be a representation over 

its own Ri), we call F strict provided each Mi is strict and if i4: j ,  then 
MI(L) + Mj(L')  for any L ~ Rep(Ri, R), L' ~ Rep(Rj, R). 

We need also "bimodule categories" defined as follows. Let U be an R1- 
Rz-bimodule where R1, R2 are some algebras. For  each algebra R let Pi = PI(R) be 
the category of finitely generated projective Ri|176 Consider a P1- 
P2-bimodule UR such that UR(P1, P2) = HomR~| U| ). 

Take the elements of all UR(PI, P2) as objects of a new category U(R) and as 
morphisms from u e UR(P1,P2) to U'e UR(P'I, P'2) take all pairs (f~,f2) with 
fff  HomR,| P'i) such that u'J~ = ~ u .  

If L ~ Rep(R, R'), then Pi |  ~ Pi(R'), so L defines a natural mapping 

|  UR(P1, P2) "--+ UR'(P1 |  P2 |  �9 

Hence, one can reproduce for bimodule categories the above notion of strictness. 
Note that this definition is formally distinct from that of [D1] though they 

provide equivalent categories. 
Usually the algebras R~ are finite-dimensional and in this case the following 

theorem is valid [D1]: 

Theorem 1. I f  R1, R2 are finite-dimensional algebras and U is a finite-dimensional 
R1-R2-bimodule, then there exists a free triangular bocs a = av and for each algebra 
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R an equivalence of categories Tn: Rep(a, R)--* U(R) commutin9 with tensor prod- 
ucts, i.e. 

Tn , (M|  ~- Tn (M) |  for any L~Rep(R ,  R')  

2 Tame and wild open subcategories 

Let a be a finitely generated bocs and X c Rep(a) a full subcategory. Call X an 
open subcategory if it satisfies the following conditions: 

(1) I f M ~ X  and N _~ M, then N e X ;  
(2) M |  
(3) for each dimension d the subset Xd = X c~ Repd(a) is open in Repd(a). 

For  any algebra R put X(R) = {M E Rep(a, R)IM(L) ~ X for any L E Rep(R)}. 
It is clear that if M ~ X(R) and L e Rep(R, R'), then M(L)  ~ X(R'). 

Call X wild if for any finitely generated algebra R there exists a strict representa- 
tion M s X(R). Non-formally this means that to know the representations of X we 
have to know the representations for all finitely generated algebras. 

It is well-known (and easy to check) that to prove wildness it is sufficient to find 
a strict representation M e X(K (x,  y))  (free non-commutative algebra with 2 gen- 
erators), as the latter has a strict representation over any other one. A little more 
complicated but also known (cf. [ G P ]  or [D2]) is that here we can replace K (x, y )  
by the polynomial ring K Ix, y] or even the power series ring K [Ix, Y I]. 

Call a rational algebra any algebra of the form K I x , f  (x) -1 ] for a non-zero 
polynomial f(x),  i.e. the attine algebra of a smooth rational affine curve. 

Theorem 2. Let a = (A, V) be a.finitely generated semi-free bocs, X c Rep(a) an 
open subcategory. Then the followin9 conditions are equivalent: 

(1) X is non-wild; 
(2) for each dimension d there exists a subvariety Xd ~ Xd such that 

d i m X a ~ l d l =  Y d(T) 
TeobA 

and any representation from Xd is isomorphic to one belongin9 to Xd; 

(3) for each dimension d there exists a subvariety Yd ~ Xd such that dim Yd < 1 
and any indecomposable representation from Xd is isomo-rphic To one belongin.q t-o Yd ; 

(4) there exists a strict set {Mill  e I, Mi ~ X(Ri)} with rational algebras Ri such 

that for each dimension d all indecomposable representations from Xd except a finite 

number (up to isomorphism) are isomorphic to Mi(L).for some i t  Id and some 
L ~ Rep(Ri) where Id is afinite subset o f l  (dependin9 on d). 

(If these conditions are satisfied, call X tame). 

Proof. (4) ~ (3) as any indecomposable n-dimensional representation L of a ra- 
tional algebra K[x , f ( x )  -x ] maps x to a Jordan cell J(2) with eigenvalue )~ such 
that f ( 2 ) ~  0. Hence representations M~(L) for such L produce a 1-dimensional 
subvariety of Xo and as d is fixed, n is also fixed. 

(3) = (2) is quite evident as I_d I is an upper bound for the maximal number of 

indecomposable direct summands of any representation of dimension d. 
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(2) ~ ( 1 )  if M e Xd(K~x, y) )  is strict, then M(L)  for L c Rep, (K~x, y) )  form 
in X,a a subset of dimension at least n 2 consisting of pairwise non-isomorphic 
representations and n 2 > Ind[ if n > [dl. 

At last, (1) ~ (4) can be proved just by repeating the proof  of the above Theorem 
1 given in [D1] if we make the following simple observation. Let a ~ A(X, Y) with 
~?a = 0. Then if M ~- N in Rep(a), we have N(a) = DM(a)C -1 for some isomor- 
phisms C: M ( X ) ~ M ( Y )  and D: N ( X ) - ~ N ( Y )  (C = D if X = Y). Denote 
X(a) = {M(a)lM ~ X}. As X is an open subcategory, X(a) form an open subset in 
the space of all linear mapping L ---, L' for any fixed L = M(X)  and L'  = M(Y). 
Then the only possibilities for X(a) are: 

i fX  4: Y, either all linear mappings, or those F: L ~ L' with rk F = dim L, or 
those with rk F = dim L' or isomorphisms only; 

if X = Y there exists a finite subset E(a) ~ K such that X(a) = {F: L ~ LIF 
has no eigenvalue from E(a)}. 

Of course, the proof of [D1], based on algorithms of reduction of matrices, is 
rather complicated. Unfortunately, till now the only known way to obtain the 
equivalences (1) <:~ (2) <::> (3) is to prove that (1) ~ (4). 

3 Cohen-Macaulay algebras 

In this paragraph we consider algebras A over K satisfying the following condi- 
tions: 

(A1) The centre Z of A is a complete local noetherian Cohen-Macaulay ring of 
Krull dimension 1 with residue field K; 

(A2) A is a (finitely generated) Cohen-Macaulay module over Z; 
(A3) A is semi-prime, i.e. has no nilpotent ideals. 
We call such algebras CM-A19ebras. Denote by CM(A) the category of A- 

modules which are maximal Cohen-Macaulay modules over Z, i.e., in our case, 
finitely generated and torsion free. Call them CM-A-modules. 

If A is a CM-algebra, its full quotient ring Q is a semi-simple artinian ring and 
there exists a (not necessarily unique) maximal overrin,q A, i.e. a CM-algebra such 
that A ~ / I  ~ Q and there are no CM-algebras A' 4=/Y with/T ~ A' ~ Q (cf. [D3]). 
It follows from [Rog] that /1 is always hereditary, i.e. any CM-A-module is 
projective over A. 

If R is any K-algebra, denote by CM(A, R) the category of R-A-bimodules 
M satisfying the following conditions: 

(MI)  M is finitely generated as bimodule; 
(M2) zM is torsion free; 
(M3) MR is flat; 
(M4) M(L) = M | L is a CM-A-module for any L ~ Rep(R). 
If R/m is finite-dimensional over K for any maximal left ideal m c R, then (M4) 

is equivalent to 
(M4') for any non-zero divisor 2 e Z  the R-module M/2 M is also flat. 
Surely, if M ~ CM (A, R) and L s Rep (R, R'), then M(L) ~ CM (A, R'). So we are 

able to define strict modules M c CM(A, R) and strict sets of such modules just as 
in Sect. 1. If R is a finitely generated commutative K-algebra of Krull dimension d, 
call any bimodule M ~ CM(A, R) a d-parameter family of CM-A-modules (with 
base R). 
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Call A CM-wild if for every finitely generated algebra R there exists a strict 
module M eCM(A,  R). Again we have to check the existence of M only for 
R = K ( x , y ) ,  or R = K [ x , y ] ,  or R = K[ lx ,  y]]. 

If a A-module M is torsion free (over Z) it can be embedded into the Q-module 
Q |  so i fA '  is an overring of A, i.e. a CM-algebra such that A = A' c Q, we 
can consider the A'-module A'M, which is the image of A ' |  in Q |  If 
M was a CM-module, then so is A'M.  In this case Q | M is finitely generated over 
Q, thus Q |  ~ - r l Q 1 G . . ' |  where Qt . . . .  ,Qt are all pairwise non- 
isomorphic simple Q-modules. Call the vector r (M)  = (rl . . . . .  r,) the (vector) rank 

of M and denote CMr(A) the set of all CM-A-modules of rank r. 

Theorem 3. For a CM-algebra A the following conditions are equivalent: 
(1) A is not CM-wild; 

(2) for any rank r = (rl . . . . .  r,) there exists a d-parameter family M of CM- 

A-modules with d < Lrl = ~ =  1 ri such that any CM-A-module of rank r_ is isomorphic 
to some M(L); 

(3) for any rank r there exists a 1-parameter family M of CM-A-modules such 

that any indecomposable CM-A-module of  rank r is isomorphic to some M(L); 
(4) there exists a strict set { Mili  c I, Mi ~ CM(A, Ri)} with rational algebras Ri 

such that for each rank r all indecomposable CM-A-modules of rank r except a finite 
number (up to isomorphism) are isomorphic to Mi(L)  for some i ~ Ir and L ~ Rep(Ri) 

where lr is a finite subset of I (depending on r). 

If these conditions are satisfied, call A CM-tame. 

Proof Again ( 4 ) ~  ( 3 ) ~  ( 2 ) ~  (1) is clear, so we have only to prove ( 1 ) o  (4). 
Fix an overring A' ~ A and denote by CM(AIA' )  the full subcategory in 

CM(A) consisting of all modules M such that A ' M  is A'-projective. Of course, if A' 
is hereditary (e.g. maximal), then C M ( A I A ' ) =  CM(A). Let I c radA be a two- 
sided A'-ideal such that dimKA'/I  < oo (it exists as A' /A  is a finitely generated 
torsion Z-module). Then I M  ~ M c A ' M  for any CM-module M and any 
homomorphism q0: M --* N can be uniquely prolonged to q)': A ' M  ~ A'N. Put 

AI = A/I,  A z =  A ' / I  

and consider a new category C =  C(AIA')  whose objects are pairs ( P , X )  
with P a (finitely generated) projective A2-module, X ~ P a Al-submodule, and 
morphisms ( P , X ) ~ ( P 1 ,  X~) are Az-homomorphisms q): P ~ P 1  such that 
q~(X) = Xa. Define a functor T: C M ( A I A ' ) - , C  putting T ( M ) = ( A ' M / I M ,  
M / 1 M )  and let Co be the full subcategory of C consisting of all such pairs (P, X) 
that A 2 X  = P. Then the following lemma is evident (cf. [GR] or [RR-]): 

Lemma 1. T(M) ~ Co for any M ~ CM(AIA' )  and the functor T: CM(AtA' )  -o Co is 
full, dense and reflects isomorphisms and indecomposability. 

Now consider the Aa-Az-bimodule U = A2 and define a functor Ira: U(K) ~ C 
putting, for ~0: P~ --* P2, Imp0 = (Pz,  Im q)). Denote X the full subcategory of U(K) 
consisting of all such q0 that Ker q~ ~ tad P~ and A2"Imq~ = Pz.  Certainly, these 
conditions define an open subset in Hom/l(P1,  P2)= U(P1, P2) and are stable 
under direct sums and summands. As A a is artinian, any A 1-module X possesses 
a projective cover whence we obtain the following lemma: 
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Lemma 2. /.fq~ ~ X, then Im~p ~ Co and the functor Ira: X ~ Co is full, dense and 
reflects isomorphisms and indecomposability. 

Identify according to Theorem 1, U(K) with Rep(a) for a free triangular bocs a. 
Then X becomes an open subcategory in Rep(a), thus Theorem 2 is applicable, i.e. 
X is either tame or wild. 

Let u ~ X(R) for some algebra R. Then u: P1 ~ P2 where Pi is a projective 
Ai @ R~ Call u 9ood provided Pi ~- Pi/Ifii where Pl (resp./~2) is a projec- 
tive A | R~ (resp. A' | R~ and Coker u is flat over R. In this case 
denote ~: P1 ~ t32 some homomorphism for which u = ~(mod I). 

Lemma 3. (a) l f  u e X ( R )  is good and M = ImP, then M e C M ( A , R ) .  
(b) I f  {ui]i ~ I, ul ~ X(Ri)} is a strict set, all ui are good and M i = Im ul, then 

{Mili ~ I} is also a strict set. 

Proof (a) Remark that Coker u -~ Coker ~, so we have an exact sequence 

O--* M ~ fi ~--* N-~  O 

with R-flat N and hence an exact sequence 

0 --~ M @ R L  -* fi2 @R L -+ N@RL  -* 0 

for any L ~ Rep(R) where/~z |  L is A'-projective. This does imply all properties 
(M 1)-(M4) for M. 

(b) follows directly from Lemmas l and 2. 

Lemma 4. Let u ~ X(R) for a finitely generated commutative domain R. Then there 
exists a non-zero.f ~ R such that u~ ~ X(Rr ) is good. 

Proos Denote by F the quotient field of R. Then (A/rad A ) |  is semi-simple 
[B 1 ], hence rad (A | F) = (rad A) | F and (A @ F)/rad (A | F) -~ (A/tad A) | F. 
Hence in A |  idempotents can be lifted modulo radical and any projective 
(A @ F)-module is of the form P | F for some projective A-module P. The same is 
true for the algebras A' and Ai(i = 1, 2). As A1 = A/I and I ~ radA, any projective 
(A1 |  is of the form ( P | 1 7 4  Therefore, if P is a projective 
A~ @R-module, there exists a non-zero f ~  R such that PI ~- P / IP  for a projec- 
tive A1 @ RIzmodule P. So if u ~ X(R), u:P~ ~ P2, we can find f ~  R for which 
(Pi)i ~- Pi/IP~. But as Ai are finite-dimensional, N = Coker u I is finitely generated 
over R~ and there exists a non-zero y ~ R such that N o is flat [B2], thus uio is good. 

Corollary 1. I f  X is wild, then A is wild. 

ProQ[i Let u6  X(R), R = K[x ,y] ,  be strict. F i n d f ~  R such that u I is good and 
a maximal ideal m c R such that f r  As the m-adique completion of R is 
isomorphic to/~ = K[Jx, Yl] ul provides a good and strict element fi ~ X(/~). Then 
Lemma 3 implies that A is CM-wild. 

Corollary 2. I f  A' is hereditary and X is tame, then A is CM-tame. 

Proof Let {u~li e I, u~ ~ X(R~)} be a strict set satisfying conditions (4) of Theorem 2. 
Remark that if R is a rational algebra, then Repd(R) - Repd(Ri) is finite for any 
non-zerof~  R and any dimension d. Therefore, Lemma 4 allows us to suppose all u~ 
good. But as A' is hereditary, CM(AIA')  = CM(A). Hence, Lemmas 1-3 imply that 
the set {M~li ~-I} with M~ = I m  ~ satisfies condition (4) of Theorem 3. 

Now (1) ~ (4) follows from Corollaries 1 and 2. 
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