Tame-wild dichotomy for Cohen-Macaulay modules

Y.A. Drozd¹ and G.-M. Greuel²

¹ Mechanics and Mathematics Faculty, Kiev University, Vladimirskayast,
252017 Kiew, Ukraine
² Fachbereich Mathematik, Universität Kaiserslautern, Erwin-Schrödinger-Strasse,
W-6750 Kaiserslautern, Federal Republic of Germany

Received July 24, 1991; in revised form February 13, 1992

As it was conjectured in [DF] and proved in [D1], finite-dimensional algebras of infinite type (i.e. having infinitely many indecomposable representations) split into two classes. For the first one, called tame, indecomposable representations of any fixed dimension form a finite set of at most 1-parameter families, while for the second one, called wild, there exist arbitrarily large families of non-isomorphic indecomposable representations. Moreover, in some sense, knowing representations of one wild algebra, one would know those of any other algebras.

A lot of examples showed that the same should hold for Cohen-Macaulay modules over Cohen-Macaulay algebras of Krull dimension 1. In this paper we give a proof of it based on the same method of "matrix problems" or so called representations of bocses (cf. Sect. 1). But we had to consider a new situation, namely that of "open subcategories" (Sect. 2) and first reprove the results of [D1] for it. This new shape seems to be unavoidable in the case of Cohen-Macaulay modules but it should be also of use for other questions in representation theory. In Sect. 3 we propose a method to reduce the calculation of Cohen-Macaulay modules to some open subcategory and use the results of Sect. 2 to prove the tame-wild dichotomy.

The method we use is rather well-known in the theory of integral representations (cf. [GR] or [RR]). In principle, it almost coincides with that used in [J] for representations of commutative orders. We hope that it will be possible to spread both the method and the main theorem on tame-wild dichotomy to any orders over a complete discrete valuation ring, although at the moment we lack some technics to do it.

1 Preliminaries

As the notions of bocses and their representations are not well-known, remind the main definitions (cf. [Roi, D1]). All considered categories will be linear over some base field K which will always be supposed algebraically closed. Respectively, all

functors are K-linear (bifunctors bilinear). We write Hom, \otimes instead of Hom_K, \otimes_K . A module over a category A is a functor M: $A \to \text{Vect}$ (the category of K-vector spaces); an A-B-bimodule (where A, B are categories) is a bifunctor V: $A^{op} \times B \to \text{Vect}$; if A = B, we call V an A-bimodule. For $v \in V(X, Y)$, $a \in A(X', X)$, $b \in B(Y, Y')$ we write bva instead of V(a, b)(v). A bocs is a pair $\mathbf{a} = (A, V)$ where A is some category and V an A-coalgebra, i.e. an A-bimodule V supplied with a comultiplication μ : $V \to V \otimes_A V$ and a counit ε : $V \to A$ satisfying the usual conditions.

A representation of **a** over some algebra R is defined as a functor M: $A \rightarrow pr - R$, the category of finitely generated projective R-modules. If N is another representation, define

$$\operatorname{Hom}_{\mathbf{a}}(M, N) = \operatorname{Hom}_{A^{-}A}(V, (M, N))$$

where (M, N) is an A-bimodule defined by the rules:

$$(M, N)(X, Y) = \operatorname{Hom}_{R}(M(X), N(Y)) \quad \text{for } X, Y \in \operatorname{ob} A ;$$

$$afb = N(a) f M(b) \quad \text{for } f \in (M, N)(X, Y) ,$$

$$a: Y \to Y', \quad b: X' \to X \quad \text{in } A .$$

The product of $\varphi \in \operatorname{Hom}_{\mathbf{a}}(M, N)$ and $\psi \in \operatorname{Hom}_{\mathbf{a}}(L, M)$ is defined as the composition

$$V \xrightarrow{\mu} V \otimes_{A} V \xrightarrow{\varphi \otimes \psi} (M, N) \otimes_{A} (L, M) \xrightarrow{m} (L, N)$$

where m is the multiplication of R-homomorphisms. Thus the category of representations $\text{Rep}(\mathbf{a}, R)$ is defined. We write $\text{Rep}(\mathbf{a})$ instead of $\text{Rep}(\mathbf{a}, K)$.

Any algebra R can be considered as a bocs ("principal bocs") if we put A = V = R. Of course, representations of such bocses are just representations of R. Remark that if $M \in \text{Rep}(\mathbf{a}, R)$ and $L \in \text{Rep}(R, R')$, then their tensor product $M(L) = M \otimes_R L$ lies in $\text{Rep}(\mathbf{a}, R')$; so M can be viewed as "a family of representations of \mathbf{a} parametrized by R".

As a rule, the category A will be finitely generated over K, i.e. with finite object set and a finite set of morphisms (generators) whose products span all spaces of morphisms A(X, Y). A *dimension* of a representation of **a** is defined as a function \underline{d} : **ob** $A \to \mathbf{N}$. In cases when there is a notion of rank for finitely generated projective R-modules, we can associate to $M \in \operatorname{Rep}(\mathbf{a}, R)$ its dimension $\underline{\dim} M$: **ob** $A \to \mathbf{N}$, namely, $(\underline{\dim} M)(X) = \operatorname{rank} M(X)$ and denote by $\operatorname{Rep}_{\underline{d}}(\mathbf{a}, R)$ the set of representations having dimension \underline{d} . For instance, this is the case if R = K (hence rank = dim), so $\operatorname{Rep}_{\underline{d}}(\mathbf{a})$ is defined. If S is a system of generators for A, then each representation $M \in \operatorname{Rep}(\mathbf{a})$ determines (and is determined by) linear mappings M(a): $M(X) \to M(Y), a \in S, a: X \to Y$. Hence, treating all linear mappings M(a) as matrices, we can consider $\operatorname{Rep}_{\underline{d}}(\mathbf{a})$ as an algebraic variety lying in affine space $\mathbf{A}^{\||\underline{d}\|}$, carrying the Zariski topology, where

$$\|\underline{d}\| = \sum_{\substack{a \in S, \\ a: X \to Y}} \underline{d}(X) \underline{d}(Y) .$$

All considered bocses are supposed *normal* – which means that for any $X \in \mathbf{ob} A$ an element $\omega_X \in V(X, X)$ exists such that $\varepsilon(\omega_X) = 1_X$, $\mu(\omega_X) = \omega_X \otimes \omega_X$. In this case the bimodule structure on V is completely determined if we know the *kernel* of the bocs **a**, $\overline{V} = \text{Ker} \varepsilon$ and for each $a \in A(X, Y)$ its differential $\partial a = a\omega_X - \omega_Y a \in \overline{V}$. Moreover, the coalgebra structure is determined if we know the differentials $\partial v = \mu(v) - v \otimes \omega_X - \omega_Y \otimes v \in \overline{V} \otimes_A V$ for all $v \in \overline{V}(X, Y)$.

In main applications *free bocses* arise, i.e. such that A is a free category (that of paths $K\Gamma$ of an oriented graph Γ) and the kernel \overline{V} is a free A-bimodule. A free bocs is completely determined if we know the set S_0 of free generators of A, the set S_1 of free generators of \overline{V} and their differentials. The set $S = S_0 \cup S_1$ is called a *set of free generators* of the bocs **a**.

For technical purposes, semi-free bocses are needed. A semi-free category is, by definition, a category of the form $K\Gamma[g_a(a)^{-1}]$ where a ranges through the set of loops (i.e. elements of S_0 such that $a: X \to X$) and $g_a(t) \in K[t]$ is a non-zero polynomial (depending on a). If $g_a \neq \text{const}$, call the loop a marked. A bocs is called semi-free if A is a semi-free category, \overline{V} a free A-bimodule and $\partial a = 0$ for all marked loops. In this case call S a set of semi-free generators of **a**.

If **a** is free, then, of course, $\operatorname{Rep}_{\underline{d}}(\mathbf{a}) \simeq \mathbf{A}^{\|\underline{d}\|}$; if **a** is semi-free, then $\operatorname{Rep}_{\underline{d}}(\mathbf{a})$ is an open subset in $\mathbf{A}^{\|\underline{d}\|}$.

A semi-free category is called *triangular* if there exists a system S of semi-free generators and a function $h: S \to \mathbb{N}$ such that for any $a \in S \ \partial a$ belongs to the subbocs generated by $b \in S$ with h(b) < h(a).

A representation $M \in \text{Rep}(\mathbf{a}, R)$ is called *strict* if it satisfies the following two conditions:

(1) If $L \in \operatorname{Rep}(R, R')$ is indecomposable, then $M(L) \in \operatorname{Rep}(\mathbf{a}, R')$ is also indecomposable.

(2) If $L, L' \in \text{Rep}(R, R')$ are non-isomorphic, then $M(L) \neq M(L')$, too.

One can say that if such M exists, the representation theory of **a** is at least as complicated as that of R.

If a set $F = \{M_i | M_i \in \text{Rep}(\mathbf{a}, R_i)\}$ is given (each M_i can be a representation over its own R_i), we call F strict provided each M_i is strict and if $i \neq j$, then $M_i(L) \not\simeq M_j(L')$ for any $L \in \text{Rep}(R_i, R), L' \in \text{Rep}(R_j, R)$.

We need also "bimodule categories" defined as follows. Let U be an R_1 - R_2 -bimodule where R_1 , R_2 are some algebras. For each algebra R let $P_i = P_i(R)$ be the category of finitely generated projective $R_i \otimes R^{op}$ -modules. Consider a P_1 - P_2 -bimodule U_R such that $U_R(P_1, P_2) = \operatorname{Hom}_{R_1 \otimes R^{op}}(P_1, U \otimes_{R_2} P_2)$.

Take the elements of all $U_R(P_1, P_2)$ as objects of a new category U(R) and as morphisms from $u \in U_R(P_1, P_2)$ to $u' \in U_R(P'_1, P'_2)$ take all pairs (f_1, f_2) with $f_i \in \operatorname{Hom}_{R_1 \otimes R^{op}}(P_i, P'_i)$ such that $u'f_1 = f_2 u$.

If $L \in \operatorname{Rep}(R, R')$, then $P_i \otimes_R L \in P_i(R')$, so L defines a natural mapping

$$\otimes L: U_R(P_1, P_2) \to U_{R'}(P_1 \otimes_R L, P_2 \otimes_R L) .$$

Hence, one can reproduce for bimodule categories the above notion of strictness.

Note that this definition is formally distinct from that of [D1] though they provide equivalent categories.

Usually the algebras R_i are finite-dimensional and in this case the following theorem is valid [D1]:

Theorem 1. If R_1 , R_2 are finite-dimensional algebras and U is a finite-dimensional R_1 - R_2 -bimodule, then there exists a free triangular bocs $\mathbf{a} = \mathbf{a}_U$ and for each algebra

R an equivalence of categories T_R : Rep $(\mathbf{a}, R) \rightarrow U(R)$ commuting with tensor products, i.e.

$$T_{R'}(M \otimes_R L) \simeq T_R(M) \otimes_R L$$
 for any $L \in \operatorname{Rep}(R, R')$.

2 Tame and wild open subcategories

Let **a** be a finitely generated bocs and $\mathbf{X} \subset \text{Rep}(\mathbf{a})$ a full subcategory. Call X an *open subcategory* if it satisfies the following conditions:

(1) If $M \in \mathbf{X}$ and $N \simeq M$, then $N \in \mathbf{X}$;

(2) $M \oplus N \in \mathbf{X}$ if and only if $M \in \mathbf{X}$ and $N \in \mathbf{X}$;

(3) for each dimension \underline{d} the subset $X_{\underline{d}} = X \cap \operatorname{Rep}_{d}(\mathbf{a})$ is open in $\operatorname{Rep}_{d}(\mathbf{a})$.

For any algebra R put $\mathbf{X}(R) = \{M \in \operatorname{Rep}(\mathbf{a}, R) | M(L) \in \mathbf{X} \text{ for any } L \in \operatorname{Rep}(R)\}$. It is clear that if $M \in \mathbf{X}(R)$ and $L \in \operatorname{Rep}(R, R')$, then $M(L) \in \mathbf{X}(R')$.

Call X wild if for any finitely generated algebra R there exists a strict representation $M \in \mathbf{X}(R)$. Non-formally this means that to know the representations of X we have to know the representations for all finitely generated algebras.

It is well-known (and easy to check) that to prove wildness it is sufficient to find a strict representation $M \in \mathbf{X}(K \langle x, y \rangle)$ (free non-commutative algebra with 2 generators), as the latter has a strict representation over any other one. A little more complicated but also known (cf. [GP] or [D2]) is that here we can replace $K \langle x, y \rangle$ by the polynomial ring K[x, y] or even the power series ring K[|x, y|].

Call a rational algebra any algebra of the form $K[x, f(x)^{-1}]$ for a non-zero polynomial f(x), i.e. the affine algebra of a smooth rational affine curve.

Theorem 2. Let $\mathbf{a} = (A, V)$ be a finitely generated semi-free bocs, $\mathbf{X} \subset \text{Rep}(\mathbf{a})$ an open subcategory. Then the following conditions are equivalent:

(1) \mathbf{X} is non-wild;

(2) for each dimension \underline{d} there exists a subvariety $X_d \subset X_d$ such that

$$\dim X_{\underline{d}} \leq |\underline{d}| = \sum_{T \in \mathbf{obA}} \underline{d}(T)$$

and any representation from X_d is isomorphic to one belonging to X_d ;

(3) for each dimension <u>d</u> there exists a subvariety $Y_{\underline{d}} \subset \mathbf{X}_{\underline{d}}$ such that dim $Y_{\underline{d}} \leq 1$ and any indecomposable representation from $\mathbf{X}_{\underline{d}}$ is isomorphic to one belonging to $Y_{\underline{d}}$;

(4) there exists a strict set $\{M_i | i \in I, M_i \in \mathbf{X}(R_i)\}$ with rational algebras R_i such that for each dimension \underline{d} all indecomposable representations from $\mathbf{X}_{\underline{d}}$ except a finite number (up to isomorphism) are isomorphic to $M_i(L)$ for some $i \in I_{\underline{d}}$ and some $L \in \operatorname{Rep}(R_i)$ where $I_{\underline{d}}$ is a finite subset of I (depending on \underline{d}).

(If these conditions are satisfied, call X tame).

Proof. (4) \Rightarrow (3) as any indecomposable *n*-dimensional representation *L* of a rational algebra $K[x, f(x)^{-1}]$ maps x to a Jordan cell $J(\lambda)$ with eigenvalue λ such that $f(\lambda) \neq 0$. Hence representations $M_i(L)$ for such *L* produce a 1-dimensional subvariety of \mathbf{X}_d and as d is fixed, *n* is also fixed.

 $(3) \Rightarrow (2)$ is quite evident as $|\underline{d}|$ is an upper bound for the maximal number of indecomposable direct summands of any representation of dimension d.

 $(2) \Rightarrow (1)$ if $M \in \mathbf{X}_{\underline{d}}(K \langle x, y \rangle)$ is strict, then M(L) for $L \in \operatorname{Rep}_n(K \langle x, y \rangle)$ form in $\mathbf{X}_{n\underline{d}}$ a subset of dimension at least n^2 consisting of pairwise non-isomorphic representations and $n^2 > |n\underline{d}|$ if $n > |\underline{d}|$.

At last, $(1) \Rightarrow (4)$ can be proved just by repeating the proof of the above Theorem 1 given in [D1] if we make the following simple observation. Let $a \in A(X, Y)$ with $\partial a = 0$. Then if $M \simeq N$ in Rep(a), we have $N(a) = DM(a)C^{-1}$ for some isomorphisms C: $M(X) \rightarrow M(Y)$ and D: $N(X) \rightarrow N(Y)$ (C = D if X = Y). Denote $\mathbf{X}(a) = \{M(a)|M \in \mathbf{X}\}$. As \mathbf{X} is an open subcategory, $\mathbf{X}(a)$ form an open subset in the space of all linear mapping $L \rightarrow L'$ for any fixed L = M(X) and L' = M(Y). Then the only possibilities for $\mathbf{X}(a)$ are:

- if $X \neq Y$, either all linear mappings, or those $F: L \rightarrow L'$ with $rk F = \dim L$, or those with $rk F = \dim L'$ or isomorphisms only;

- if X = Y there exists a finite subset $E(a) \subset K$ such that $\mathbf{X}(a) = \{F: L \to L | F \text{ has no eigenvalue from } E(a)\}$.

Of course, the proof of [D1], based on algorithms of reduction of matrices, is rather complicated. Unfortunately, till now the only known way to obtain the equivalences $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ is to prove that $(1) \Rightarrow (4)$.

3 Cohen-Macaulay algebras

In this paragraph we consider algebras Λ over K satisfying the following conditions:

(A1) The centre Z of Λ is a complete local noetherian Cohen-Macaulay ring of Krull dimension 1 with residue field K;

(A2) Λ is a (finitely generated) Cohen-Macaulay module over Z;

(A3) Λ is semi-prime, i.e. has no nilpotent ideals.

We call such algebras CM-Algebras. Denote by $CM(\Lambda)$ the category of Λ -modules which are maximal Cohen-Macaulay modules over Z, i.e., in our case, finitely generated and torsion free. Call them CM- Λ -modules.

If Λ is a CM-algebra, its full quotient ring Q is a semi-simple artinian ring and there exists a (not necessarily unique) maximal overring $\overline{\Lambda}$, i.e. a CM-algebra such that $\Lambda \subset \overline{\Lambda} \subset Q$ and there are no CM-algebras $\Lambda' \neq \overline{\Lambda}$ with $\overline{\Lambda} \subset \Lambda' \subset Q$ (cf. [D3]). It follows from [Rog] that $\overline{\Lambda}$ is always hereditary, i.e. any CM- $\overline{\Lambda}$ -module is projective over $\overline{\Lambda}$.

If R is any K-algebra, denote by $CM(\Lambda, R)$ the category of R- Λ -bimodules M satisfying the following conditions:

(M1) M is finitely generated as bimodule;

(M2) $_ZM$ is torsion free;

(M3) M_R is flat;

(M4) $M(L) = M \otimes_R L$ is a CM- Λ -module for any $L \in \text{Rep}(R)$.

If R/m is finite-dimensional over K for any maximal left ideal $m \subset R$, then (M4) is equivalent to

(M4') for any non-zero divisor $\lambda \in Z$ the *R*-module $M/\lambda M$ is also flat.

Surely, if $M \in CM(\Lambda, R)$ and $L \in Rep(R, R')$, then $M(L) \in CM(\Lambda, R')$. So we are able to define strict modules $M \in CM(\Lambda, R)$ and strict sets of such modules just as in Sect. 1. If R is a finitely generated commutative K-algebra of Krull dimension d, call any bimodule $M \in CM(\Lambda, R)$ a *d-parameter family* of CM- Λ -modules (with base R).

Call Λ CM-wild if for every finitely generated algebra R there exists a strict module $M \in CM(\Lambda, R)$. Again we have to check the existence of M only for $R = K \langle x, y \rangle$, or R = K [x, y], or R = K [|x, y|].

If a Λ -module M is torsion free (over Z) it can be embedded into the Q-module $Q \otimes_{\Lambda} M$, so if Λ' is an overring of Λ , i.e. a CM-algebra such that $\Lambda \subset \Lambda' \subset Q$, we can consider the Λ' -module $\Lambda'M$, which is the image of $\Lambda' \otimes_{\Lambda} M$ in $Q \otimes_{\Lambda} M$. If M was a CM-module, then so is $\Lambda'M$. In this case $Q \otimes_{\Lambda} M$ is finitely generated over Q, thus $Q \otimes_{\Lambda} M \simeq r_1 Q_1 \oplus \cdots \oplus r_t Q_t$ where Q_1, \ldots, Q_t are all pairwise non-isomorphic simple Q-modules. Call the vector $\underline{r}(M) = (r_1, \ldots, r_t)$ the (vector) rank of M and denote $CM_r(\Lambda)$ the set of all CM- Λ -modules of rank r.

Theorem 3. For a CM-algebra Λ the following conditions are equivalent:

(1) Λ is not CM-wild;

(2) for any rank $\underline{\mathbf{r}} = (r_1, \ldots, r_t)$ there exists a d-parameter family M of CM-A-modules with $d \leq |\mathbf{r}| = \sum_{i=1}^{t} r_i$ such that any CM-A-module of rank $\underline{\mathbf{r}}$ is isomorphic to some M(L);

(3) for any rank \underline{r} there exists a 1-parameter family M of CM-A-modules such that any indecomposable CM-A-module of rank r is isomorphic to some M(L);

(4) there exists a strict set $\{M_i | i \in I, M_i \in CM(\Lambda, R_i)\}$ with rational algebras R_i such that for each rank \underline{r} all indecomposable CM-A-modules of rank \underline{r} except a finite number (up to isomorphism) are isomorphic to $M_i(L)$ for some $i \in I_{\underline{r}}$ and $L \in Rep(R_i)$ where I_r is a finite subset of I (depending on \underline{r}).

If these conditions are satisfied, call A CM-tame.

Proof. Again $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ is clear, so we have only to prove $(1) \Rightarrow (4)$.

Fix an overring $\Lambda' \supset \Lambda$ and denote by $CM(\Lambda|\Lambda')$ the full subcategory in $CM(\Lambda)$ consisting of all modules M such that $\Lambda'M$ is Λ' -projective. Of course, if Λ' is hereditary (e.g. maximal), then $CM(\Lambda|\Lambda') = CM(\Lambda)$. Let $I \subset \operatorname{rad} \Lambda$ be a twosided Λ' -ideal such that $\dim_K \Lambda'/I < \infty$ (it exists as Λ'/Λ is a finitely generated torsion Z-module). Then $IM \subset M \subset \Lambda'M$ for any CM-module M and any homomorphism $\varphi: M \to N$ can be uniquely prolonged to $\varphi': \Lambda'M \to \Lambda'N$. Put

$$\Lambda_1 = \Lambda/I, \quad \Lambda_2 = \Lambda'/I$$

and consider a new category C = C(A|A') whose objects are pairs (P, X)with P a (finitely generated) projective A_2 -module, $X \subset P$ a A_1 -submodule, and morphisms $(P, X) \rightarrow (P_1, X_1)$ are A_2 -homomorphisms $\varphi: P \rightarrow P_1$ such that $\varphi(X) \subset X_1$. Define a functor T: $CM(A|A') \rightarrow C$ putting T(M) = (A'M/IM, M/IM) and let C_0 be the full subcategory of C consisting of all such pairs (P, X)that $A_2X = P$. Then the following lemma is evident (cf. [GR] or [RR]):

Lemma 1. $T(M) \in C_0$ for any $M \in CM(\Lambda | \Lambda')$ and the functor $T: CM(\Lambda | \Lambda') \rightarrow C_0$ is full, dense and reflects isomorphisms and indecomposability.

Now consider the Λ_1 - Λ_2 -bimodule $U = \Lambda_2$ and define a functor Im: $U(K) \to C$ putting, for $\varphi: P_1 \to P_2$, Im $\varphi = (P_2, \operatorname{Im} \varphi)$. Denote X the full subcategory of U(K)consisting of all such φ that Ker $\varphi \subset \operatorname{rad} P_1$ and $\Lambda_2 \cdot \operatorname{Im} \varphi = P_2$. Certainly, these conditions define an open subset in $\operatorname{Hom}_{\Lambda}(P_1, P_2) = U(P_1, P_2)$ and are stable under direct sums and summands. As Λ_1 is artinian, any Λ_1 -module X possesses a projective cover whence we obtain the following lemma: **Lemma 2.** If $\phi \in \mathbf{X}$, then $\underline{\text{Im}} \phi \in C_0$ and the functor $\underline{\text{Im}} \colon \mathbf{X} \to C_0$ is full, dense and reflects isomorphisms and indecomposability.

Identify according to Theorem 1, U(K) with Rep(a) for a free triangular bocs a. Then X becomes an open subcategory in Rep(a), thus Theorem 2 is applicable, i.e. X is either tame or wild.

Let $u \in \mathbf{X}(R)$ for some algebra R. Then $u: P_1 \to P_2$ where P_i is a projective $\Lambda_i \otimes R^{op}$ -module. Call u good provided $P_i \simeq \tilde{P}_i/I\tilde{P}_i$ where \tilde{P}_1 (resp. \tilde{P}_2) is a projective $\Lambda \otimes R^{op}$ -module (resp. $\Lambda' \otimes R^{op}$ -module) and Coker u is flat over R. In this case denote $\tilde{u}: \tilde{P}_1 \to \tilde{P}_2$ some homomorphism for which $u = \tilde{u} \pmod{I}$.

Lemma 3. (a) If $u \in \mathbf{X}(R)$ is good and $M = \operatorname{Im} \tilde{u}$, then $M \in \operatorname{CM}(A, R)$.

(b) If $\{u_i | i \in I, u_i \in \mathbf{X}(R_i)\}$ is a strict set, all u_i are good and $M_i = \operatorname{Im} \tilde{u}_i$, then $\{M_i | i \in I\}$ is also a strict set.

Proof. (a) Remark that $\operatorname{Coker} u \simeq \operatorname{Coker} \tilde{u}$, so we have an exact sequence

 $0 \to M \to \tilde{P}_2 \to N \to 0$

with R-flat N and hence an exact sequence

 $0 \to M \otimes_R L \to \tilde{P}_2 \otimes_R L \to N \otimes_R L \to 0$

for any $L \in \operatorname{Rep}(R)$ where $\tilde{P}_2 \otimes_R L$ is Λ' -projective. This does imply all properties (M1)-(M4) for M.

(b) follows directly from Lemmas 1 and 2.

Lemma 4. Let $u \in \mathbf{X}(R)$ for a finitely generated commutative domain R. Then there exists a non-zero $f \in R$ such that $u_f \in \mathbf{X}(R_f)$ is good.

Proof. Denote by F the quotient field of R. Then $(\Lambda/\operatorname{rad} \Lambda) \otimes F$ is semi-simple [B1], hence $\operatorname{rad}(\Lambda \otimes F) = (\operatorname{rad} \Lambda) \otimes F$ and $(\Lambda \otimes F)/\operatorname{rad}(\Lambda \otimes F) \simeq (\Lambda/\operatorname{rad} \Lambda) \otimes F$. Hence in $\Lambda \otimes F$ idempotents can be lifted modulo radical and any projective $(\Lambda \otimes F)$ -module is of the form $P \otimes F$ for some projective Λ -module P. The same is true for the algebras Λ' and $\Lambda_i(i = 1, 2)$. As $\Lambda_1 = \Lambda/I$ and $I \subset \operatorname{rad} \Lambda$, any projective $(\Lambda_1 \otimes F)$ -module is of the form $(P \otimes F)/I(P \otimes F)$. Therefore, if P is a projective $\Lambda_1 \otimes R$ -module, there exists a non-zero $f \in R$ such that $P_f \simeq \tilde{P}/I\tilde{P}$ for a projective $\Lambda_1 \otimes R_f$ -module \tilde{P} . So if $u \in \mathbf{X}(R)$, $u: P_1 \to P_2$, we can find $f \in R$ for which $(P_i)_f \simeq \tilde{P}_i/I\tilde{P}_i$. But as Λ_i are finite-dimensional, $N = \operatorname{Coker} u_f$ is finitely generated over R_f and there exists a non-zero $g \in R$ such that N_g is flat [B2], thus u_{fg} is good.

Corollary 1. If X is wild, then Λ is wild.

Proof. Let $u \in \mathbf{X}(R)$, R = K[x, y], be strict. Find $f \in R$ such that u_f is good and a maximal ideal $m \subset R$ such that $f \notin m$. As the *m*-adique completion of *R* is isomorphic to $\hat{R} = K[|x, y|] u_f$ provides a good and strict element $\hat{u} \in \mathbf{X}(\hat{R})$. Then Lemma 3 implies that Λ is CM-wild.

Corollary 2. If Λ' is hereditary and **X** is tame, then Λ is CM-tame.

Proof. Let $\{u_i | i \in I, u_i \in \mathbf{X}(R_i)\}$ be a strict set satisfying conditions (4) of Theorem 2. Remark that if R is a rational algebra, then $\operatorname{Rep}_d(R) - \operatorname{Rep}_d(R_f)$ is finite for any non-zero $f \in R$ and any dimension d. Therefore, Lemma 4 allows us to suppose all u_i good. But as Λ' is hereditary, $\operatorname{CM}(\Lambda | \Lambda') = \operatorname{CM}(\Lambda)$. Hence, Lemmas 1–3 imply that the set $\{M_i | i \in I\}$ with $M_i = \operatorname{Im} \tilde{u}_i$ satisfies condition (4) of Theorem 3.

Now (1) \Rightarrow (4) follows from Corollaries 1 and 2.

References

- [B1] Bourbaki, N.: Algèbre, Chap. VIII. Paris: Hermann 1938
- [B2] Bourbaki, N.: Algèbre commutative. Paris: Hermann 1964, 1965, 1968, 1969
- [D1] Drozd, YU.A.: Tame and wild matrix problems. In: Yu. A. Mitropol'skii (ed.) representations and quadratic forms, pp. 39–74. Kiev: 1979: Engl. translation in: Transl., Am. Math. Soc. II. Ser. 128, 31–55 (1986)
- [D2] Drozd, YU.A.: Representations of commutative algebras. Funkts. Anal. Prilozh. 6 (no. 4), 41–43 (1972)
- [D3] Drozd, YU.A.: On existence of maximal orders. Mat. Zametki 37, 313–316 (1985)
- [DF] Donovan, P., Freislich, M.R.: Some evidence for an extension of the Brauer-Thrall conjecture. Sonderforschungsber. Theor. Math. 40, Bonn, 24–26 (1972)
- [GP] Gelfand, I.M., Ponomarev, V.A.: Remark on classification of pairs of commuting linear mappings in finite-dimensional vector space. Funkts. Anal. Prilozh. 3 (no. 4), 81–82 (1969)
- [GR] Green, E.L., Reiner, I.: Integral representations and diagrams. Mich. Math. J. 25, 53-84 (1978)
- [J] Jacobinsky, H.: Sur les ordres commutatif avec un nombre fini de réseaux indécomposable. Acta Math. 118, 1-31 (1967)
- [M] MacLane, S.: Homology. Berlin: Springer 1963
- [Roi] Roiter, A.V.: Matrix problems and representations of BOCS's. In: Yu. A. Mitropol'skii (ed.) Representations and quadratic forms, pp. 3-38. Kiev: 1979
- [Rog] Roggenkamp, K.W.: Lattices over orders, II. (Lect. Notes Math., vol. 142) Berlin Heidelberg New York: Springer 1970
- [RR] Ringel, C.M., Roggenkamp, K.W.: Diagrammatic methods in the representation theory of orders. J. Algebra 60, 11-42 (1979)