(C) Springer-Verlag 1992

Tame-wild dichotomy for Cohen-Macaulay modules

Y.A. Drozd ${ }^{1}$ and G.-M. Greuel ${ }^{2}$
${ }^{1}$ Mechanics and Mathematics Faculty, Kiev University, Vladimirskayast, 252017 Kiew, Ukraine
${ }^{2}$ Fachbereich Mathematik, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, W-6750 Kaiserslautern, Federal Republic of Germany

Received July 24, 1991; in revised form February 13, 1992

As it was conjectured in [DF] and proved in [D1], finite-dimensional algebras of infinite type (i.e. having infinitely many indecomposable representations) split into two classes. For the first one, called tame, indecomposable representations of any fixed dimension form a finite set of at most 1-parameter families, while for the second one, called wild, there exist arbitrarily large families of non-isomorphic indecomposable representations. Moreover, in some sense, knowing representations of one wild algebra, one would know those of any other algebras.

A lot of examples showed that the same should hold for Cohen-Macaulay modules over Cohen-Macaulay algebras of Krull dimension 1. In this paper we give a proof of it based on the same method of "matrix problems" or so called representations of bocses (cf. Sect. 1). But we had to consider a new situation, namely that of "open subcategories" (Sect. 2) and first reprove the results of [D1] for it. This new shape seems to be unavoidable in the case of Cohen-Macaulay modules but it should be also of use for other questions in representation theory. In Sect. 3 we propose a method to reduce the calculation of Cohen-Macaulay modules to some open subcategory and use the results of Sect. 2 to prove the tame-wild dichotomy.

The method we use is rather well-known in the theory of integral representations (cf. [GR] or [RR]). In principle, it almost coincides with that used in [J] for representations of commutative orders. We hope that it will be possible to spread both the method and the main theorem on tame-wild dichotomy to any orders over a complete discrete valuation ring, although at the moment we lack some technics to do it.

1 Preliminaries

As the notions of bocses and their representations are not well-known, remind the main definitions (cf. [Roi, D1]). All considered categories will be linear over some base field K which will always be supposed algebraically closed. Respectively, all
functors are K-linear (bifunctors bilinear). We write Hom, \otimes instead of Hom_{K}, \otimes_{K}. A module over a category A is a functor $M: A \rightarrow$ Vect (the category of K-vector spaces); an A - B-bimodule (where A, B are categories) is a bifunctor V : $A^{o p} \times B \rightarrow$ Vect; if $A=B$, we call V an A-bimodule. For $v \in V(X, Y), a \in A\left(X^{\prime}, X\right)$, $b \in B\left(Y, Y^{\prime}\right)$ we write bva instead of $V(a, b)(v)$. A bocs is a pair $\mathbf{a}=(A, V)$ where A is some category and V an A-coalgebra, i.e. an A-bimodule V supplied with a comultiplication $\mu: V \rightarrow V \otimes_{A} V$ and a counit $\varepsilon: V \rightarrow A$ satisfying the usual conditions.

A representation of a over some algebra R is defined as a functor M : $A \rightarrow p r-R$, the category of finitely generated projective R-modules. If N is another representation, define

$$
\operatorname{Hom}_{\mathbf{a}}(M, N)=\operatorname{Hom}_{A-A}(V,(M, N))
$$

where (M, N) is an A-bimodule defined by the rules:

$$
\begin{gathered}
(M, N)(X, Y)=\operatorname{Hom}_{R}(M(X), N(Y)) \text { for } X, Y \in \mathbf{o b} A ; \\
a f b=N(a) f M(b) \text { for } f \in(M, N)(X, Y), \\
a: Y \rightarrow Y^{\prime}, \quad b: X^{\prime} \rightarrow X \text { in } A .
\end{gathered}
$$

The product of $\varphi \in \operatorname{Hom}_{\mathrm{a}}(M, N)$ and $\psi \in \operatorname{Hom}_{\mathrm{a}}(L, M)$ is defined as the composition

$$
V \xrightarrow{\mu} V \otimes_{A} V \xrightarrow{\varphi \otimes \psi}(M, N) \otimes_{A}(L, M) \xrightarrow{m}(L, N)
$$

where m is the multiplication of R-homomorphisms. Thus the category of representations $\operatorname{Rep}(\mathbf{a}, R)$ is defined. We write $\operatorname{Rep}(\mathbf{a})$ instead of $\operatorname{Rep}(\mathbf{a}, K)$.

Any algebra R can be considered as a bocs ("principal bocs") if we put $A=V=R$. Of course, representations of such bocses are just representations of R. Remark that if $M \in \operatorname{Rep}(\mathbf{a}, R)$ and $L \in \operatorname{Rep}\left(R, R^{\prime}\right)$, then their tensor product $M(L)=M \otimes_{R} L$ lies in $\operatorname{Rep}\left(\mathbf{a}, R^{\prime}\right)$; so M can be viewed as "a family of representations of a parametrized by $R^{\prime \prime}$.

As a rule, the category A will be finitely generated over K, i.e. with finite object set and a finite set of morphisms (generators) whose products span all spaces of morphisms $A(X, Y)$. A dimension of a representation of a is defined as a function $d: \mathbf{o b} A \rightarrow \mathbf{N}$. In cases when there is a notion of rank for finitely generated projective R-modules, we can associate to $M \in \operatorname{Rep}(\mathbf{a}, R)$ its dimension $\operatorname{dim} M: \mathbf{o b} A \rightarrow \mathbf{N}$, namely, $(\operatorname{dim} M)(X)=\operatorname{rank} M(X)$ and denote by $\operatorname{Rep}_{d}(\mathbf{a}, R)$ the set of representations having dimension \underline{d}. For instance, this is the case if $R=K$ (hence rank $=\operatorname{dim})$, so $\operatorname{Rep}_{d}(\mathbf{a})$ is defined. If \mathbf{S} is a system of generators for A, then each representation $M \in \operatorname{Rep}(\mathbf{a})$ determines (and is determined by) linear mappings $M(a): M(X) \rightarrow M(Y), a \in S, a: X \rightarrow Y$. Hence, treating all linear mappings $M(a)$ as matrices, we can consider $\operatorname{Rep}_{d}(\mathbf{a})$ as an algebraic variety lying in affine space $\mathbf{A}^{\|d\|}$, carrying the Zariski topology, where

$$
\|\underline{d}\|=\sum_{\substack{a \in S \\ a: X \rightarrow Y}} \underline{d}(X) \underline{d}(Y) .
$$

All considered bocses are supposed normal - which means that for any $X \in \mathbf{o b} A$ an element $\omega_{X} \in V(X, X)$ exists such that $\varepsilon\left(\omega_{X}\right)=1_{X}, \mu\left(\omega_{X}\right)=\omega_{X} \otimes \omega_{X}$. In this case the bimodule structure on V is completely determined if we know the kernel of the bocs $\mathbf{a}, \bar{V}=\operatorname{Ker} \varepsilon$ and for each $a \in A(X, Y)$ its differential $\partial a=a \omega_{X}-\omega_{Y} a \in \bar{V}$. Moreover, the coalgebra structure is determined if we know the differentials $\partial v=\mu(v)-v \otimes \omega_{X}-\omega_{Y} \otimes v \in \bar{V} \otimes_{A} V$ for all $v \in \bar{V}(X, Y)$.

In main applications free bocses arise, i.e. such that A is a free category (that of paths $K \Gamma$ of an oriented graph Γ) and the kernel \bar{V} is a free A-bimodule. A free bocs is completely determined if we know the set S_{0} of free generators of A, the set S_{1} of free generators of \bar{V} and their differentials. The set $S=S_{0} \cup S_{1}$ is called a set offree generators of the bocs a.

For technical purposes, semi-free bocses are needed. A semi-free category is, by definition, a category of the form $K \Gamma\left[g_{a}(a)^{-1}\right]$ where a ranges through the set of loops (i.e. elements of S_{0} such that $a: X \rightarrow X$) and $g_{a}(t) \in K[t]$ is a non-zero polynomial (depending on a). If $g_{a} \neq$ const, call the loop a marked. A bocs is called semi-free if A is a semi-free category, \bar{V} a free A-bimodule and $\partial a=0$ for all marked loops. In this case call S a set of semi-free generators of a.

If \mathbf{a} is free, then, of course, $\operatorname{Rep}_{d}(\mathbf{a}) \simeq \mathbf{A}^{\|d\|}$; if \mathbf{a} is semi-free, then $\operatorname{Rep}_{d}(\mathbf{a})$ is an open subset in $A^{\|d\|}$.

A semi-free category is called triangular if there exists a system S of semi-free generators and a function $h: S \rightarrow \mathbf{N}$ such that for any $a \in S \partial a$ belongs to the subbocs generated by $b \in S$ with $h(b)<h(a)$.

A representation $M \in \operatorname{Rep}(\mathbf{a}, R)$ is called strict if it satisfies the following two conditions:
(1) If $L \in \operatorname{Rep}\left(R, R^{\prime}\right)$ is indecomposable, then $M(L) \in \operatorname{Rep}\left(\mathbf{a}, R^{\prime}\right)$ is also indecomposable.
(2) If $L, L^{\prime} \in \operatorname{Rep}\left(R, R^{\prime}\right)$ are non-isomorphic, then $M(L) \nleftarrow M\left(L^{\prime}\right)$, too.

One can say that if such M exists, the representation theory of \mathbf{a} is at least as complicated as that of R.

If a set $F=\left\{M_{i} \mid M_{i} \in \operatorname{Rep}\left(\mathbf{a}, R_{i}\right)\right\}$ is given (each M_{i} can be a representation over its own R_{i}, we call F strict provided each M_{i} is strict and if $i \neq j$, then $M_{i}(L) \neq M_{j}\left(L^{\prime}\right)$ for any $L \in \operatorname{Rep}\left(R_{i}, R\right), L^{\prime} \in \operatorname{Rep}\left(R_{j}, R\right)$.

We need also "bimodule categories" defined as follows. Let U be an R_{1} -R_{2}-bimodule where R_{1}, R_{2} are some algebras. For each algebra R let $P_{i}=P_{i}(R)$ be the category of finitely generated projective $R_{i} \otimes R^{o p}$-modules. Consider a $P_{1^{-}}$ P_{2}-bimodule U_{R} such that $U_{R}\left(P_{1}, P_{2}\right)=\operatorname{Hom}_{R_{1} \otimes R^{\circ p}}\left(P_{1}, U \otimes_{R_{2}} P_{2}\right)$.

Take the elements of all $U_{R}\left(P_{1}, P_{2}\right)$ as objects of a new category $U(R)$ and as morphisms from $u \in U_{R}\left(P_{1}, P_{2}\right)$ to $u^{\prime} \in U_{R}\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ take all pairs $\left(f_{1}, f_{2}\right)$ with $f_{i} \in \operatorname{Hom}_{R_{1} \otimes R^{o p}}\left(P_{i}, P_{i}^{\prime}\right)$ such that $u^{\prime} f_{1}=f_{2} u$.

If $L \in \operatorname{Rep}\left(R, R^{\prime}\right)$, then $P_{i} \otimes_{R} L \in P_{i}\left(R^{\prime}\right)$, so L defines a natural mapping

$$
\otimes L: U_{R}\left(P_{1}, P_{2}\right) \rightarrow U_{R^{\prime}}\left(P_{1} \otimes_{R} L, P_{2} \otimes_{R} L\right)
$$

Hence, one can reproduce for bimodule categories the above notion of strictness.
Note that this definition is formally distinct from that of [D1] though they provide equivalent categories.

Usually the algebras R_{i} are finite-dimensional and in this case the following theorem is valid [D1]:

Theorem 1. If R_{1}, R_{2} are finite-dimensional algebras and U is a finite-dimensional $R_{1}-R_{2}$-bimodule, then there exists a free triangular bocs $\mathbf{a}=\mathbf{a}_{U}$ and for each algebra
R an equivalence of categories $T_{R}: \operatorname{Rep}(\mathbf{a}, R) \rightarrow U(R)$ commuting with tensor products, i.e.

$$
T_{R^{\prime}}\left(M \otimes_{R} L\right) \simeq T_{R}(M) \otimes_{R} L \quad \text { for any } L \in \operatorname{Rep}\left(R, R^{\prime}\right)
$$

2 Tame and wild open subcategories

Let a be a finitely generated bocs and $\mathbf{X} \subset \operatorname{Rep}(\mathbf{a})$ a full subcategory. Call \mathbf{X} an open subcategory if it satisfies the following conditions:
(1) If $M \in \mathbf{X}$ and $N \simeq M$, then $N \in \mathbf{X}$;
(2) $M \oplus N \in \mathbf{X}$ if and only if $M \in \mathbf{X}$ and $N \in \mathbf{X}$;
(3) for each dimension \underline{d} the subset $\mathbf{X}_{d}=\mathbf{X} \cap \operatorname{Rep}_{d}(\mathbf{a})$ is open in $\operatorname{Rep}_{d}(\mathbf{a})$.

For any algebra R put $\mathbf{X}(R)=\{M \in \operatorname{Rep}(\mathbf{a}, R) \mid M(\bar{L}) \in \mathbf{X}$ for any $L \in \operatorname{Rep}(R)\}$. It is clear that if $M \in \mathbf{X}(R)$ and $L \in \operatorname{Rep}\left(R, R^{\prime}\right)$, then $M(L) \in \mathbf{X}\left(R^{\prime}\right)$.

Call \mathbf{X} wild if for any finitely generated algebra R there exists a strict representation $M \in \mathbf{X}(R)$. Non-formally this means that to know the representations of \mathbf{X} we have to know the representations for all finitely generated algebras.

It is well-known (and easy to check) that to prove wildness it is sufficient to find a strict representation $M \in \mathbf{X}(K\langle x, y\rangle)$ (free non-commutative algebra with 2 generators), as the latter has a strict representation over any other one. A little more complicated but also known (cf. [GP] or [D2]) is that here we can replace $K\langle x, y\rangle$ by the polynomial ring $K[x, y]$ or even the power series ring $K[|x, y|]$.

Call a rational algebra any algebra of the form $K\left[x, f(x)^{-1}\right]$ for a non-zero polynomial $f(x)$, i.e. the affine algebra of a smooth rational affine curve.
Theorem 2. Let $\mathbf{a}=(A, V)$ be a finitely generated semi-free bocs, $\mathbf{X} \subset \operatorname{Rep}(\mathbf{a})$ an open subcategory. Then the following conditions are equivalent:
(1) \mathbf{X} is non-wild;
(2) for each dimension \underline{d} there exists a subvariety $X_{\underline{d}} \subset X_{\underline{d}}$ such that

$$
\operatorname{dim} X_{\underline{\mathrm{d}}} \leqq|\underline{\mathrm{~d}}|=\sum_{T \in \mathrm{bbA}} \underline{\mathrm{~d}}(T)
$$

and any representation from $\mathbf{X}_{\mathbf{d}}$ is isomorphic to one belonging to X_{d};
(3) for each dimension $\underline{\mathrm{d}}$ there exists a subvariety $Y_{\mathbf{d}} \subset \mathbf{X}_{\mathrm{d}}$ such that $\operatorname{dim} Y_{\mathrm{d}} \leqq 1$ and any indecomposable representation from \mathbf{X}_{d} is isomorphic to one belonging to Y_{d};
(4) there exists a strict set $\left\{M_{i} \mid i \in I, M_{i} \in \mathbf{X}\left(R_{i}\right)\right\}$ with rational algebras R_{i} such that for each dimension $\underline{\mathrm{d}}$ all indecomposable representations from \mathbf{X}_{d} except a finite number (up to isomorphism) are isomorphic to $M_{i}(L)$ for some $\bar{i} \in I_{\underline{d}}$ and some $L \in \operatorname{Rep}\left(R_{i}\right)$ where I_{d} is a finite subset of I (depending on d).
(If these conditions are satisfied, call \mathbf{X} tame).
Proof. (4) \Rightarrow (3) as any indecomposable n-dimensional representation L of a rational algebra $K\left[x, f(x)^{-1}\right]$ maps x to a Jordan cell $J(\lambda)$ with eigenvalue λ such that $f(\lambda) \neq 0$. Hence representations $M_{i}(L)$ for such L produce a 1 -dimensional subvariety of \mathbf{X}_{d} and as d is fixed, n is also fixed.
$(3) \Rightarrow(2)$ is quite evident as $|\underline{d}|$ is an upper bound for the maximal number of indecomposable direct summands of any representation of dimension d.
(2) \Rightarrow (1) if $M \in \mathbf{X}_{\mathrm{d}}(K\langle x, y\rangle)$ is strict, then $M(L)$ for $L \in \operatorname{Rep}_{n}(K\langle x, y\rangle)$ form in $X_{n d}$ a subset of dimension at least n^{2} consisting of pairwise non-isomorphic representations and $n^{2}>|n \underline{d}|$ if $n>|\mathrm{d}|$.

At last, (1) $\Rightarrow(4)$ can be proved just by repeating the proof of the above Theorem 1 given in [D1] if we make the following simple observation. Let $a \in A(X, Y)$ with $\partial a=0$. Then if $M \simeq N$ in $\operatorname{Rep}(\mathbf{a})$, we have $N(a)=D M(a) C^{-1}$ for some isomorphisms $C: M(X) \rightarrow M(Y)$ and $D: N(X) \rightarrow N(Y)(C=D$ if $X=Y)$. Denote $\mathbf{X}(a)=\{M(a) \mid M \in \mathbf{X}\}$. As \mathbf{X} is an open subcategory, $\mathbf{X}(a)$ form an open subset in the space of all linear mapping $L \rightarrow L^{\prime}$ for any fixed $L=M(X)$ and $L^{\prime}=M(Y)$. Then the only possibilities for $\mathbf{X}(a)$ are:

- if $X \neq Y$, either all linear mappings, or those $F: L \rightarrow L^{\prime}$ with $\mathrm{rk} F=\operatorname{dim} L$, or those with $\operatorname{rk} F=\operatorname{dim} L^{\prime}$ or isomorphisms only;
- if $X=Y$ there exists a finite subset $E(a) \subset K$ such that $\mathbf{X}(a)=\{F: L \rightarrow L \mid F$ has no eigenvalue from $E(a)\}$.

Of course, the proof of [D1], based on algorithms of reduction of matrices, is rather complicated. Unfortunately, till now the only known way to obtain the equivalences $(1) \Leftrightarrow(2) \Leftrightarrow(3)$ is to prove that $(1) \Rightarrow(4)$.

3 Cohen-Macaulay algebras

In this paragraph we consider algebras Λ over K satisfying the following conditions:
(A1) The centre Z of A is a complete local noetherian Cohen-Macaulay ring of Krull dimension 1 with residue field K;
(A2) Λ is a (finitely generated) Cohen-Macaulay module over Z;
(A3) A is semi-prime, i.e. has no nilpotent ideals.
We call such algebras CM-Algebras. Denote by $\mathrm{CM}(\Lambda)$ the category of Λ modules which are maximal Cohen-Macaulay modules over Z, i.e., in our case, finitely generated and torsion free. Call them $\mathrm{CM}-\Lambda$-modules.

If A is a CM-algebra, its full quotient ring Q is a semi-simple artinian ring and there exists a (not necessarily unique) maximal overring \bar{A}, i.e. a $C M$-algebra such that $\Lambda \subset \bar{A} \subset Q$ and there are no CM-algebras $\Lambda^{\prime} \neq \bar{A}$ with $\bar{\Lambda} \subset \Lambda^{\prime} \subset Q$ (cf. [D3]). It follows from [Rog] that \bar{A} is always hereditary, i.e. any $C M-\bar{A}$-module is projective over \bar{A}.

If R is any K-algebra, denote by $\mathrm{CM}(\Lambda, R)$ the category of R - Λ-bimodules M satisfying the following conditions:
(M1) M is finitely generated as bimodule;
(M2) ${ }_{2} M$ is torsion free;
(M3) M_{R} is flat;
(M4) $M(L)=M \otimes_{R} L$ is a CM- Λ-module for any $L \in \operatorname{Rep}(R)$.
If R / m is finite-dimensional over K for any maximal left ideal $m \subset R$, then (M4) is equivalent to
(M4') for any non-zero divisor $\lambda \in Z$ the R-module $M / \lambda M$ is also flat.
Surely, if $M \in \mathrm{CM}(A, R)$ and $L \in \operatorname{Rep}\left(R, R^{\prime}\right)$, then $M(L) \in \mathrm{CM}\left(A, R^{\prime}\right)$. So we are able to define strict modules $M \in \mathrm{CM}(A, R)$ and strict sets of such modules just as in Sect. 1. If R is a finitely generated commutative K-algebra of Krull dimension d, call any bimodule $M \in \mathrm{CM}(\Lambda, R)$ a d-parameter family of $\mathrm{CM}-\Lambda$-modules (with base R).

Call $\Lambda \mathrm{CM}$-wild if for every finitely generated algebra R there exists a strict module $M \in \mathrm{CM}(\Lambda, R)$. Again we have to check the existence of M only for $R=K\langle x, y\rangle$, or $R=K[x, y]$, or $R=K[|x, y|]$.

If a Λ-module M is torsion free (over Z) it can be embedded into the Q-module $Q \otimes_{A} M$, so if Λ^{\prime} is an overring of Λ, i.e. a CM-algebra such that $\Lambda \subset \Lambda^{\prime} \subset Q$, we can consider the Λ^{\prime}-module $\Lambda^{\prime} M$, which is the image of $\Lambda^{\prime} \otimes_{A} M$ in $Q \otimes_{A} M$. If M was a CM-module, then so is $\Lambda^{\prime} M$. In this case $Q \otimes_{A} M$ is finitely generated over Q, thus $Q \otimes_{\Lambda} M \simeq r_{1} Q_{1} \oplus \cdots \oplus r_{t} Q_{t}$ where Q_{1}, \ldots, Q_{t} are all pairwise nonisomorphic simple Q-modules. Call the vector $\underline{\mathrm{r}}(M)=\left(r_{1}, \ldots, r_{t}\right)$ the (vector) rank of M and denote $\mathrm{CM}_{\underline{\mathrm{r}}}(\Lambda)$ the set of all $\mathrm{CM}-\Lambda$-modules of rank $\underline{\mathrm{r}}$.
Theorem 3. For a CM-algebra 1 the following conditions are equivalent:
(1) Λ is not CM -wild;
(2) for any rank $\underline{\mathrm{r}}=\left(r_{1}, \ldots, r_{t}\right)$ there exists a d-parameter family M of CM -A-modules with $d \leqq|\mathbf{r}|=\sum_{i=1}^{\mathrm{t}} r_{i}$ such that any $\mathrm{CM}-1$-module of rank $\underline{\underline{r}}$ is isomorphic to some $M(L)$;
(3) for any rank $\underline{\underline{r}}$ there exists a 1-parameter family M of $\mathrm{CM}-A$-modules such that any indecomposable CM-A-module of rank $\underline{\mathrm{r}}$ is isomorphic to some $M(L)$;
(4) there exists a strict set $\left\{M_{i} \mid i \in I, M_{i} \in \mathrm{CM}\left(\Lambda, R_{i}\right)\right\}$ with rational alyebras R_{i} such that for each rank $\underline{\mathrm{r}}$ all indecomposable $\mathrm{CM}-\Lambda$-modules of rank $\underline{\mathrm{r}}$ except a finite number (up to isomorphism) are isomorphic to $M_{i}(L)$ for some $i \in I_{\underline{\Sigma}}$ and $L \in \operatorname{Rep}\left(R_{i}\right)$ where $I_{\underline{\Sigma}}$ is a finite subset of I (depending on r).

If these conditions are satisfied, call Λ CM-tame.
Proof. Again $(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$ is clear, so we have only to prove $(1) \Rightarrow(4)$.
Fix an overring $\Lambda^{\prime} \supset \Lambda$ and denote by $\operatorname{CM}\left(\Lambda \mid \Lambda^{\prime}\right)$ the full subcategory in $\mathrm{CM}(\Lambda)$ consisting of all modules M such that $\Lambda^{\prime} M$ is Λ^{\prime}-projective. Of course, if Λ^{\prime} is hereditary (e.g. maximal), then $\mathrm{CM}\left(\Lambda \mid \Lambda^{\prime}\right)=\mathrm{CM}(\Lambda)$. Let $I \subset \operatorname{rad} \Lambda$ be a twosided Λ^{\prime}-ideal such that $\operatorname{dim}_{K} \Lambda^{\prime} / I<\infty$ (it exists as $\Lambda^{\prime} / \Lambda$ is a finitely generated torsion Z-module). Then $I M \subset M \subset \Lambda^{\prime} M$ for any $C M$-module M and any homomorphism $\varphi: M \rightarrow N$ can be uniquely prolonged to $\varphi^{\prime}: \Lambda^{\prime} M \rightarrow \Lambda^{\prime} N$. Put

$$
\Lambda_{1}=\Lambda / I, \quad \Lambda_{2}=\Lambda^{\prime} / I
$$

and consider a new category $C=C\left(A \mid \Lambda^{\prime}\right)$ whose objects are pairs (P, X) with P a (finitely generated) projective Λ_{2}-module, $X \subset P$ a Λ_{1}-submodule, and morphisms $(P, X) \rightarrow\left(P_{1}, X_{1}\right)$ are Λ_{2}-homomorphisms $\varphi: P \rightarrow P_{1}$ such that $\varphi(X) \subset X_{1}$. Define a functor $T: \mathrm{CM}\left(\Lambda \mid \Lambda^{\prime}\right) \rightarrow C$ putting $T(M)=\left(\Lambda^{\prime} M / I M\right.$, $M / I M$) and let C_{0} be the full subcategory of C consisting of all such pairs (P, X) that $\Lambda_{2} X=P$. Then the following lemma is evident (cf. [GR] or [RR]):

Lemma 1. $T(M) \in C_{0}$ for any $M \in \mathrm{CM}\left(\Lambda \mid \Lambda^{\prime}\right)$ and the functor $T: \mathrm{CM}\left(\Lambda \mid \Lambda^{\prime}\right) \rightarrow C_{0}$ is full, dense and reflects isomorphisms and indecomposability.

Now consider the $\Lambda_{1}-\Lambda_{2}$-bimodule $U=\Lambda_{2}$ and define a functor Im: $U(K) \rightarrow C$ putting, for $\varphi: P_{1} \rightarrow P_{2}, \underline{\operatorname{Im} \varphi} \varphi=\left(P_{2}, \operatorname{Im} \varphi\right)$. Denote \mathbf{X} the full subcategory of $U(K)$ consisting of all such φ that $\operatorname{Ker} \varphi \subset \operatorname{rad} P_{1}$ and $\Lambda_{2} \cdot \operatorname{Im} \varphi=P_{2}$. Certainly, these conditions define an open subset in $\operatorname{Hom}_{A}\left(P_{1}, P_{2}\right)=U\left(P_{1}, P_{2}\right)$ and are stable under direct sums and summands. As Λ_{1} is artinian, any Λ_{1}-module X possesses a projective cover whence we obtain the following lemma:
 reflects isomorphisms and indecomposability.

Identify according to Theorem $1, U(K)$ with Rep(a) for a free triangular bocs a. Then \mathbf{X} becomes an open subcategory in $\operatorname{Rep}(\mathbf{a})$, thus Theorem 2 is applicable, i.e. \mathbf{X} is either tame or wild.

Let $u \in \mathbf{X}(R)$ for some algebra R. Then $u: P_{1} \rightarrow P_{2}$ where P_{i} is a projective $\Lambda_{i} \otimes R^{o p}$-module. Call u good provided $P_{i} \simeq \widetilde{P}_{i} / I \widetilde{P}_{i}$ where \widetilde{P}_{1} (resp. \widetilde{P}_{2}) is a projective $\Lambda \otimes R^{o p}$-module (resp. $\Lambda^{\prime} \otimes R^{o p}$-module) and Coker u is flat over R. In this case denote $\tilde{u}: \widetilde{P}_{1} \rightarrow \widetilde{P}_{2}$ some homomorphism for which $u=\tilde{u}(\bmod I)$.

Lemma 3. (a) If $u \in \mathbf{X}(R)$ is good and $M=\operatorname{Im} \tilde{u}$, then $M \in \operatorname{CM}(A, R)$.
(b) If $\left\{u_{i} \mid i \in I, u_{i} \in \mathbf{X}\left(R_{i}\right)\right\}$ is a strict set, all u_{i} are good and $M_{i}=\operatorname{Im} \tilde{u}_{i}$, then $\left\{M_{i} \mid i \in I\right\}$ is also a strict set.

Proof. (a) Remark that Coker $u \simeq \operatorname{Coker} \tilde{u}$, so we have an exact sequence

$$
0 \rightarrow M \rightarrow \tilde{P}_{2} \rightarrow N \rightarrow 0
$$

with R-flat N and hence an exact sequence

$$
0 \rightarrow M \otimes_{R} L \rightarrow \tilde{P}_{2} \otimes_{R} L \rightarrow N \otimes_{R} L \rightarrow 0
$$

for any $L \in \operatorname{Rep}(R)$ where $\widetilde{P}_{2} \otimes_{R} L$ is A^{\prime}-projective. This does imply all properties (M1)-(M4) for M.
(b) follows directly from Lemmas 1 and 2.

Lemma 4. Let $u \in \mathbf{X}(R)$ for a finitely generated commutative domain R. Then there exists a non-zero $f \in R$ such that $u_{f} \in \mathbf{X}\left(R_{f}\right)$ is good.

Proof. Denote by F the quotient field of R. Then $(\Lambda / \operatorname{rad} \Lambda) \otimes F$ is semi-simple $[\mathrm{B} 1]$, hence $\operatorname{rad}(\Lambda \otimes F)=(\operatorname{rad} \Lambda) \otimes F$ and $(\Lambda \otimes F) / \operatorname{rad}(\Lambda \otimes F) \simeq(\Lambda / \operatorname{rad} \Lambda) \otimes F$. Hence in $\Lambda \otimes F$ idempotents can be lifted modulo radical and any projective $(\Lambda \otimes F)$-module is of the form $P \otimes F$ for some projective Λ-module P. The same is true for the algebras Λ^{\prime} and $\Lambda_{i}(i=1,2)$. As $\Lambda_{1}=\Lambda / I$ and $I \subset \operatorname{rad} A$, any projective $\left(\Lambda_{1} \otimes F\right)$-module is of the form $(P \otimes F) / I(P \otimes F)$. Therefore, if P is a projective $\Lambda_{1} \otimes R$-module, there exists a non-zero $f \in R$ such that $P_{f} \simeq \widetilde{P} / I \tilde{P}$ for a projective $\Lambda_{1} \otimes R_{f}$-module \tilde{P}. So if $u \in \mathbf{X}(R), u: P_{1} \rightarrow P_{2}$, we can find $f \in R$ for which $\left(P_{i}\right)_{f} \simeq \tilde{P}_{i} / I \tilde{P}_{i}$. But as Λ_{i} are finite-dimensional, $N=$ Coker u_{f} is finitely generated over R_{f} and there exists a non-zero $g \in R$ such that N_{g} is flat [B2], thus $u_{f g}$ is good.
Corollary 1. If \mathbf{X} is wild, then Λ is wild.
Proof. Let $u \in \mathbf{X}(R), R=K[x, y]$, be strict. Find $f \in R$ such that u_{f} is good and a maximal ideal $m \subset R$ such that $f \notin m$. As the m-adique completion of R is isomorphic to $\hat{R}=K[|x, y|] u_{f}$ provides a good and strict element $\hat{u} \in \mathbf{X}(\hat{R})$. Then Lemma 3 implies that Λ is CM-wild.
Corollary 2. If Λ^{\prime} is hereditary and \mathbf{X} is tame, then Λ is $\mathbf{C M}$-tame.
Proof. Let $\left\{u_{i} \mid i \in I, u_{i} \in \mathbf{X}\left(R_{i}\right)\right\}$ be a strict set satisfying conditions (4) of Theorem 2. Remark that if R is a rational algebra, then $\operatorname{Rep}_{d}(R)-\operatorname{Rep}_{d}\left(R_{f}\right)$ is finite for any non-zero $f \in R$ and any dimension d. Therefore, Lemma 4 allows us to suppose all u_{i} good. But as Λ^{\prime} is hereditary, $\mathrm{CM}\left(\Lambda \mid \Lambda^{\prime}\right)=\mathrm{CM}(\Lambda)$. Hence, Lemmas $1-3$ imply that the set $\left\{M_{i} \mid i \in I\right\}$ with $M_{i}=\operatorname{Im} \tilde{u}_{i}$ satisfies condition (4) of Theorem 3.

Now $(1) \Rightarrow(4)$ follows from Corollaries 1 and 2.

References

[B1] Bourbaki, N.: Algèbre, Chap. VIII. Paris: Hermann 1938
[B2] Bourbaki, N.: Algèbre commutative. Paris: Hermann 1964, 1965, 1968, 1969
[D1] Drozd, YU.A.: Tame and wild matrix problems. In: Yu. A. Mitropol'skií (ed.) representations and quadratic forms, pp. 39-74. Kiev: 1979: Engl. translation in: Transl., Am. Math. Soc. II. Ser. 128, 31-55 (1986)
[D2] Drozd, YU.A.: Representations of commutative algebras. Funkts. Anal. Prilozh. 6 (no. 4), 41-43 (1972)
[D3] Drozd, YU.A.: On existence of maximal orders. Mat. Zametki 37, 313-316 (1985)
[DF] Donovan, P., Freislich, M.R.: Some evidence for an extension of the Brauer-Thrall conjecture. Sonderforschungsber. Theor. Math. 40, Bonn, 24-26 (1972)
[GP] Gelfand, I.M., Ponomarev, V.A.: Remark on classification of pairs of commuting linear mappings in finite-dimensional vector space. Funkts. Anal. Prilozh. 3 (no. 4), 81-82 (1969)
[GR] Green, E.L., Reiner, I.: Integral representations and diagrams. Mich. Math. J. 25, 53. 84 (1978)
[J] Jacobinsky, H.: Sur les ordres commutatif avec un nombre fini de réseaux indécomposable. Acta Math. 118, 1-31 (1967)
[M] MacLane, S.: Homology. Berlin: Springer 1963
[Roi] Roiter, A.V.: Matrix problems and representations of BOCS's. In: Yu. A. Mitropol'skiir (ed.) Representations and quadratic forms, pp. 3-38. Kiev: 1979
[Rog] Roggenkamp, K.W.: Lattices over orders, II. (Lect. Notes Math., vol. 142) Berlin Heidelberg New York: Springer 1970
[RR] Ringel, C.M., Roggenkamp, K.W.: Diagrammatic methods in the representation theory of orders. J. Algebra 60, 11-42 (1979)

