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SIMPLE VECTOR BUNDLES ON PLANE DEGENERATIONS OF

AN ELLIPTIC CURVE

LESYA BODNARCHUK, YURIY DROZD, AND GERT-MARTIN GREUEL

Abstract. In 1957 Atiyah classified simple and indecomposable vector bundles
on an elliptic curve. In this article we generalize his classification by describing the
simple vector bundles on all reduced plane cubic curves. Our main result states
that a simple vector bundle on such a curve is completely determined by its rank,
multidegree and determinant. Our approach, based on the representation theory
of boxes, also yields an explicit description of the corresponding universal families
of simple vector bundles.

1. Introduction

The theory of vector bundles on an elliptic curve and its degenerations is known
to be closely related with the theory of integrable systems (see e.g. [Kri77, Ma78,
Mu94]). Another motivation for studying vector bundles on elliptic fibrations comes
from the work of Friedman Morgan and Witten [FMW99], who discovered their
importance for heterotic string theory. The main motivation of our investigation
was the following problem. Let E → T be an elliptic fibration, where T is some
basis such that for any point t ∈ T the fiber Et is a reduced projective curve with
trivial dualizing sheaf.

E

T

��

Et

Et E0

•
• t

•t 0

In most applications, a generic fiber of this fibration is an elliptic curve and for
the points of the discriminant locus ∆ ⊂ T the fibers are singular (and possibly
reducible). Can one give a uniform description of simple vector bundles both on the
smooth and the singular fibers?

It is known that the category of all vector bundles of a singular genus one curve
E essentially depends on the singularity type of the curve. For example, in the case
of the Weierstraß family E → C

2 given by the equation zy2 = 4x3 +g2xz2 +g3z
3, the
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cuspidal fiber E = E(0,0) is vector-bundle-wild whereas all the other fibers E=E(g2,g3)

(smooth and nodal) are vector-bundle-tame1. This phenomenon seems to be rather
strange, since very strong continuity results for the Picard functor are known to be
true [AK79]. It is one of the results of this paper that the situation is completely
different if one restricts to the study of the simple 2 vector bundles. Namely we prove
that the category VB

s
E of simple vector bundles on E is indeed tame. Moreover, we

provide a complete classification of simple bundles and describe a bundle on the
moduli space, having certain universal properties.

The starting point of our investigation and the main source of inspiration was the
following classical result of Atiyah.

Theorem 1.1 ([Ati57]). Let E be an elliptic curve over an algebraically closed fieldk. Then a simple vector bundle E on E is uniquely determined by its rank r, degree
d, which should be coprime, and determinant det(E) ∈ Pic

d(E) ∼= E.

The main result of our article generalizes Atiyah’s theorem to all reduced plane
degenerations of an elliptic curve.

Singular fibers of elliptic fibered surfaces were described by Kodaira and through-
out this article we make use of his classification, see for example [BPV84, Table 3,
p.150]. In what follows the cycles of projective lines (also called Kodaira cycles)
are denoted by IN , where N is the number of irreducible components. Note that
a Kodaira cycle IN is a plane curve if and only if N ≤ 3. Besides them, there are
precisely three other Kodaira fibers. Thus, we study simple vector bundles on the
following six configurations:
In order to present our main theorem, let us fix some notations. Throughout this
article, let k be an algebraically closed field, and a curve be a reduced projective
curve. Let E be a plane degeneration of an elliptic curve, N = 1, 2, 3 the number of
its irreducible components and Lk the k-th component of E. For a vector bundle E
on E we denote

• dk = dk(E) = deg(E|Lk
) ∈ Z the degree of the restriction of E on Lk;

• d = d(E) = (d1, . . . , dN) ∈ ZN the multidegree of E ;
• d = deg(E) = d1 + · · · + dN the degree of E . In our cases it is equal to the

Euler-Poincaré characteristic: χ(E) = h0(E) − h1(E);
• r = rank(E) the rank of E .

Moreover, let Pic
d(E)3 be the Picard group of invertible sheaves of multidegree d on

E. The following theorem generalizes Atiyah’s classification and is the main result
of this article.

1 In representation theory a category is called tame if its indecomposable objects can be described
by some discrete and one continuous parameters, and wild if they are non-classifiable. An algebraic
variety X is called vector-bundle-wild or vector-bundle-tame if the category VBX of vector bundles
on X is wild or respectively tame (see [DG01]).

2A bundle is called simple if it admits no endomorphisms but homotheties.
3 Note that Pic

d(E) is E for an elliptic curve, k∗ for Kodaira cycles and k for the other Kodaira
fibers.
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N Kodaira cycles Kodaira fibers

N = 1 I1 : y2z = x3 + x2z II : y2z = x3

==
==

��
��

N = 2 I2 : z3 = xyz III : y2z = x2y

N = 3 I3 : xyz = 0 IV : xy2 = x2y

55
55

55

��
��
��

��������

66666666

Table 1.

Theorem 1.2. Let E be a reduced plane cubic curve with N irreducible components,
1 ≤ N ≤ 3.

(i) Then the rank r and the degree d of a simple vector bundle on E are coprime.
For any tuple of integers (r,d) ∈ N×ZN such that gcd(r, d1+· · ·+dN) = 1, let
M = VB

s
E(r,d) be the set of simple vector bundles of rank r and multidegreed. Then the map det : M → Pic

d(E) is a bijection.

(ii) The Jacobian Pic
(0,...,0)(E) acts transitively on M . The stabilizer of a point

is isomorphic to Zr if E is a Kodaira cycle, and is trivial in the remaining
cases.

Let Λ := k∗ if E is a Kodaira cycle and Λ := k if E is a Kodaira fiber of type II, III
or IV. By 1.2 (i) Λ is a moduli space of simple vector bundles of given rank r and
multidegree d provided gcd(r, d) = 1. By an observation of Burban and Kreußler
[BK4], for a given tuple of integers (r,d) ∈ N × ZN such that gcd(r, d) = 1, our
method yields an explicit construction of a vector bundle P = P(r,d) ∈ VBE×Λ

satisfying in the general case only the following universality properties:

• for any point λ ∈ Λ the vector bundle P(λ) := P|E×{λ} ∈ VB(E) is simple
of rank r and multidegree d;

• for any vector bundle E ∈ VB
s
E(r,d) there exists a unique λ ∈ Λ such that

E ∼= P(λ);
• for two points λ 6= µ from Λ we have P(λ) 6∼= P(µ).

If the curve E is irreducible, the vector bundle P is the universal family of stable
vector bundles of rank r and degree d.

Similarly to Atiyah’s proof [Ati57], the main ingredient of our approach is a con-
struction of various bijections VB

s
E(r,d) → VB

s
E(r′,d′), where r′ < r. However, our

method is completely different from Atiyah’s. We use a reduction of our classifi-
cation problem to the description of bricks in the category of representations of a
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certain box (or a differential biquiver). Moreover, we provide an explicit algorithm
(algorithm 7.2) that for a given tuple (r,d) ∈ N × ZN constructs a canonical form
of a matrix, describing the universal family of simple vector bundles of rank r and
multidegree d. The core of this algorithm is the automaton of reduction, which is
given for each of the listed curves and operates on discrete parameters like Euclidean
algorithm.

For a rather long time (till the middle of the 70s) there were no efficient methods
for studying moduli spaces of vector bundles of higher ranks on singular curves. In
order to study vector bundles on (possibly reducible) projective curves with only
nodes or cusps as singularities, Seshadri introduced the concept of the so-called
parabolic bundles (see [Ses82, Section 3]). This approach was later developed by
Bhosle, who introduced the notion of generalized parabolic bundles [Bho92, Bho96].

Our method of studying vector bundles on genus one curves is a certain categorifi-
cation of the language of parabolic bundles of Seshadri and Bhosle. It was originally
proposed in [DG01], see also [BDG01] and [BBDG] for some further elaborations.
The idea of this method can be explained as follows. Let X be a singular reduced

projective curve (typically rational, but with arbitrary singularities), π : X̃ → X its
normalization. Then a description of the fibers of the functor π∗ : VBX → VB

eX can
be converted to some representation theory problem, called a matrix problem. The
main application of this method concerns the case of curves of arithmetic genus one.
In the case of a cycle of N projective lines (Kodaira cycles IN ), the obtained matrix
problem turns out to be representation-tame, see [Bon92] and [CB89]. As a result,
it allows to obtain a complete classification of indecomposable torsion free sheaves
on these genus one curves, see [DG01] and [BBDG].

However, a description of the exact combinatorics of simple vector bundles on
a cycle of projective lines requires some extra work. This was done in [BDG01],
but the resulting answer was not very explicit. For the case of a nodal cubic curve
zy2 = x3 + x2z, in [Bur03] Burban derived the statement of Theorem 1.2 using
the classification of all indecomposable objects. In this article we give an improved
description of simple vector bundles on cycles I1, I2 and I3 using the technique of
the so-called small reductions of matrix problems.

As we have mentioned above, the representation-theoretic properties of the cate-
gory of torsion free sheaves on Kodaira cycles and the other degenerations of elliptic
curves are rather different. For example, for a cuspidal rational curve zy2 = x3 even
the classification of indecomposable semi-stable vector bundles of a given slope is
a representation-wild problem. However, if we additionally impose the simplicity
assumption, then the wild fragments of the matrix problem disappear and we can
reduce the matrices to a canonical form (see [BD03]).

The matrix problems describing simple vector bundles on nodal and cuspidal cubic
curves are relatively easy to deal with, since they are self-reproducing, i.e. after
applying one step of small reduction we obtain the same problem but with matrices
of smaller sizes. In fact, the matrix reduction operates on discrete parameters of
vector bundles as Euclidean algorithm. Carrying this out we obtain the statement
of Theorem 1.2 for irreducible degenerations of an elliptic curve. Unfortunately, the
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matrix problems for curves with many components are no longer self-reproducing.
However, they turn out to be such in some bigger class of matrix problems. To
study this class in a conceptual way we need more sophisticated methods from
representation theory. Namely, we describe our matrix problem as the category of
representations of a certain box (also called bocs, “bimodule over a category with a
coalgebra structure” or differential biquiver) see [Bod07].

The technique of boxes is known to be very useful for proving tame-wild dichotomy
theorems and various semi-continuity results, see [Dro79], [Dro01], [Dro05], [CB90]
etc. A new feature, illustrated in this article, is that the formalism of boxes can
be very efficiently applied for constructing canonical forms of representations “in
general position”. A usual approach to a matrix problem is a consecutive application
of a minimal edge reduction, which is a reduction of a certain block to its Gauß form.
However, since we are interested in bricks it turns out that it is sufficient to take
into account only small reductions, which are Gauß reductions provided that the
rank of the block is maximal. This way for each plane singular cubic curve and the
matrix problem corresponding to the family of simple vector bundles of rank r and
multidegree d we get an explicit algorithm constructing its canonical form. The
course of the construction is given as a path on some automaton, whose states are
boxes and transition arrows are small reductions.

To put our results in a broader mathematical context we would like to mention
that the case of singular curves of genus one is special in many respects. We are
especially interested in the study of vector bundles on curves having trivial dual-
izing bundle. This automatically implies that they have arithmetic genus one, but
not vice versa. In [FMW99] Friedman, Morgan and Witten proposed a powerful
method of constructing vector bundles on irreducible genus one curves and elliptic
fibrations, based on the technique of the so-called spectral covers. Later, it was
realized that their construction can be alternatively described using the language
of Fourier-Mukai transforms, see e.g. [BK05], [BBHM02], [HLSP]. Although for
irreducible cubic curves Theorem 1.2 was previously known and can be proven us-
ing either geometric invariant theory or Fourier-Mukai transforms, our approach has
one particular advantage. Namely, it yields a very explicit description of a universal
family of simple vector bundles, which turned out to be important in applications.
In particular, it was used to get new solutions of the associative and quantum Yang-
Baxter equations, see [Pol07] and [BK4, Section 8].

We should also mention that the geometric point of view suggests to replace
the simplicity condition by Simpson stability. Both notions are closely related for
curves of arithmetic genus one. By this method in [Lo05] and [Lo06] López-Martin
described geometry of the compactified Jacobian in case of Kodaira fibers and elliptic
fibrations.

Organization of the material. In Section 2 we recall the construction of [DG01].
and replace the category of vector bundles VBE by the equivalent category of triples
TrE . Fixing bases of triples we turn to the category of matrices MPE . In Sections
3 and 4 this procedure is applied to all the curves from Table 1. In Section 5 we
study the properties induced by the simplicity condition and obtain some additional
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restrictions for the matrix problem MPE. In Section 6, we fix discrete parameters
(r,d), and reduce a brick-object4 of MPE(r,d) to its partial canonical form. Remark-
ably, this new matrix problem and its dimension vector s are completely determined
by the curve E the rank r and the multidegree d. In Tables 2 – 4 we provide this
correspondence for the curves with many components.

In Section 7 we provide a formal approach: we interpret a matrix problem as the
category of bricks BrA(s) of some box A and dimension vector s. We prove that any
break is a module in a general position, thus the Gauß reduction can be replaced by
the small one. A course of reduction can be presented as a path on some automaton,
where states are matrix problems and transitions are small reductions. We call a
box principal if BrA(s) ∼= VB

s
E(r,d). For fixed rank r and multidegree d, if the set

BrA(s) is nonempty, then there is a path p : A → A
′, where A

′ is principal, reducing
the dimension vector s to (1, 0, . . . , 0) :

VB
s
E(r,d)

∼=

��

Pic
(0,...,0)
E

∼=

��
BrA(s) p

∼
// BrA′(1, 0, . . . , 0).

A transition operates on the pair (d mod r, r−d mod r) as Euclidean algorithm and
for E ∈ VB

s
E(r,d) we obtain gcd(r, d) = 1. It turns out that this condition is not only

necessary but also sufficient for VB
s
E(r,d) to be nonempty. The canonical form of a

brick from BrA(s) can be recovered by reversing the path p. The whole procedure is
emphasized in algorithm 7.2.

In Sections 8 – 10 we construct automatons for each Kodaira cycle IN (N ≤ 3)
and show that a path on it also encodes a course of reduction for the Kodaira fiber
with N -components.

Analyzing how a path operates on the dimension vector s we deduce the first
part of Theorem 1.2. In Section 11 we illustrate algorithm 7.2 on some concrete
examples. In Section 12 we describe the action of Pic

(0,...,0)(E) on VB
s
E(r,d) and

morphisms between simple bundles, thus deduce the second part of the Theorem
1.2.

2. General approach

Category of triples. Let k be an algebraically closed field5, Sch := Sch /k the
category of Noetherian schemes over k and for any scheme T ∈ Sch by VBT , TFT

and CohT we denote the categories of vector bundles, torsion free coherent and
coherent sheaves on T respectively.

Let X be a singular curve over k. Fix the following notations:

• π : X̃ −→ X the normalization of X;

4A brick or a schurian object is a representation with no nonscalar endomorphisms.
5 Although the construction of triples and many classification results are valid for an arbitrary

field, the matrix problems that we obtain can be quite special and require different methods to
deal with. In order to get a uniform description for all cases we assume from the beginning the
ground field k to be algebraically closed.
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• O := OX and Õ := O
eX

the structure sheaves of X and X̃ respectively;

• J = AnnO(π∗Õ/O) the conductor of O in π∗Õ;

• ı : S →֒ X the subscheme of X defined by the conductor J and ı̃ : S̃ →֒ X̃

its scheme-theoretic pull-back to the normalization X̃.

Altogether they fit into a cartesian diagram:

S̃
ı̃ //

π̃

��

X̃

π

��
S

ı // X.

(1)

Remark 2.1. 1. In what follows we shall identify the structure sheaf OT of an
artinian scheme T with the coordinate ring k[T ].

2. The main property of the conductor is: for J̃ := I
eS we have J = π∗J̃ .

3. Let F ∈ CohX and F̃ ∈ Coh
eX be coherent sheaves on X and X̃ respectively.

With a little abuse of notation one can write: ı∗F = F ⊗O OS = F/JF ∈

CohS and ı̃∗F̃ = F̃ ⊗
eO O

eS
= F̃/J̃ F̃ ∈ Coh

eS
. Since S and S̃ are schemes

of dimension zero, ı∗ı
∗F and ı̃∗ ı̃

∗F̃ are skyscraper sheaves on X and X̃
respectively.

The usual way to deal with vector bundles on a singular curve is to lift them to the
normalization, and then to work on a smooth curve, see for example [Ses82, Bho92,
Bho96]. To describe the fibers of the map VBX → VB

eX
we recall the following

construction:

Definition 2.2. The category of triples TrX is defined as follows:

• Its objects are triples (F̃ ,M, µ̃), where F̃ ∈ VB
eX , M ∈ VBS and µ̃ : π̃∗M →

ı̃∗F̃ is an isomorphism of O
eS
–modules.

• A morphism (F̃ ,M, µ̃)
(F,f)

// (F̃ ′,M′, µ̃′) is given by a pair (F, f),

where F : F̃ → F̃ ′ is a morphism in VB
eX

and f : M → M′ is a morphism
in CohS, such that the following diagram commutes in Coh

eS
:

(2)

π̃∗M
µ̃ //

π̃∗f

��

ı̃∗F̃

ı̃∗F
��

π̃∗M′
µ̃′

// ı̃∗F̃ ′.

Raison d’être for the formalism of triples is the following theorem:

Theorem 2.3 ([DG01]). The functor Ψ : VBX −→ TrX taking a vector bundle F to

the triple (F̃ ,M, µ̃), where F̃ := π∗F , M := ı∗F and µ̃ is the canonical morphism
µ̃ : π̃∗ı∗F → ı̃∗π∗F is an equivalence of categories.
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Although the statement of Theorem 2.3 holds for arbitrary reduced curves, the
method based it can be efficiently used mainly for rational curves, since in this case
the description of vector bundles on the normalization is well understood.

Vector bundles on a projective line. According to the classical result known

as the Theorem of Birkhoff-Grothendieck, a vector bundle F̃ on a projective line P1

splits into a direct sum of line bundles:

(3) F̃ ∼= ⊕
n∈Z

(
OP1(n)

)rn
.

Let (z0 : z1) be homogeneous coordinates on P
1. Then an endomorphism F of F̃ can

be written in a matrix form:

(4) F =




. . . 0 . . . 0 0

. . . Fnn . . . 0 0
...

. . .
...

...
. . . Fmn . . . Fmm 0

...
...

. . .




,

where Fmn are blocks of sizes rm × rn with coefficients in the vector space

HomP1

(
OP1(n),OP1(m)

)
∼= k[z0, z1]m−n,(5)

since a morphism OP1(n) → OP1(m) is determined by a homogeneous form Q(z0, z1)
of degree m−n. In particular, the matrix F is lower-block-triangular and the diagonal
rn × rn blocks Fnn are matrices over k. The morphism F is an isomorphism if and
only if all the diagonal blocks Fnn are invertible.

Matrix problem MPX. To classify vector bundles on a rational projective curve

X with the normalization X̃ =
N
⊔

k=1
Lk one should describe iso-classes of objects in

TrX . Note that two triples (F̃ ,M, µ̃) and (F̃ ′,M′, µ̃′) are isomorphic only if F̃ ∼= F̃ ′

and M ∼= M′. By Birkhoff-Grothendieck theorem a bundle F̃ on X̃ can be given by
a tuple of integers r := {r(n, k)|n ∈ Z, 1 ≤ k ≤ N}. Let MPX :=

⋃r MPX(r) be the
following Krull-Schmidt category: an object of a stratum MPX(r) is a matrix µ̃ for

which there exists a triple (F̃ ,M, µ̃) ∈ TrX and the vector bundle F̃ ∈ VB
eX splits

into a direct sum of line bundles with the tuple of multiplicities r. For two objects

µ̃ and µ̃′ with triples (F̃ ,M, µ̃) and (F̃ ′,M′, µ̃′) respectively, a morphism from µ̃

to µ̃′ is a pair (̃ı∗F , π̃∗f) such that ı̃∗F · µ̃ = µ̃′ · π̃∗f, where F ∈ Hom
eX(F̃ , F̃ ′) and

f ∈ Hom(M,M′). The functor H : TrX −→ MPX is full and dense and there is a
natural projection

HomTrX

(
(F̃ ,M, µ̃), (F̃ ,M, µ̃′)

)
։ HomMPX

(µ̃, µ̃′).(6)

Definition 2.4. Replacing the set of morphisms by the set of invertible morphisms
in MPX(r) (also called matrix transformations) we obtain some groupoid. A matrix
problem is the problem of describing orbits of indecomposable (respectively simple)
objects. If it is possible, a solution consists in finding a canonical form of µ̃.
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The precise description of this procedure can be found in [Bod07]. For convenience
we choose k-bases of OS and O

eS
and rewrite µ̃, ı̃∗F and π̃∗f as tuples of matrices

over k.

3. Matrix problem for cycles of projective lines.

Let E be a cycle of N projective lines. The normalization Ẽ is a disjoint union
of N copies of P

1. For example, for N = 3 we have:

L1

•∞

•0

L2

•∞

•0

L3

•∞

•0

π //

55
55

55
55

5

��
��
��
��
�

•

• •

s1

s2 s3

E

Let s1, . . . sN be the intersection points ordered in such a way that sk and sk+1 belong
to the component Lk for k = 1, . . . , N − 1 and the points sN and s1 lay on LN . On
each component L := Lk choose the local coordinates such that the preimages of
sk and sk+1 on Lk, for k = 1, . . . , N − 1, and sN and s1 on LN have coordinates
0 := (0 : 1) and ∞ := (1 : 0). Then

OS = k(s1) ⊕ · · · ⊕ k(sN) and O
eS

=
N⊕

k=1

(k(0k) ⊕ k(∞k)).

To describe vector bundles on E for a triple (F̃ ,M, µ̃) we fix:

• a splitting F̃ ∼=
N⊕

k=1

(
⊕

n∈Z

OLk
(n)r(n,k)

)
with

∑
n∈Z

r(n, k) = r;

• an isomorphism M ∼= Or
S = (⊕N

k=1k(sk))
r.

• The choice of coordinates on each component L of X̃ fixes two canonical
sections z0 and z1 of H0

(
OL(1)

)
, and we use the following trivializations

OL(n) ⊗O
L∩eS

∼
−→ k(0) × k(∞)

ζ ⊗ 1 7−→ (ζ/zn
1 (0), ζ/zn

0 (∞)).

This isomorphism only depends on the choice of coordinates on L ∼= P1. In such a

way we equip the O
eS
–module ı̃∗F̃ , where ı̃∗F̃|L = F̃ |L(0) ⊕ F̃|L(∞), with a basis

and get isomorphisms F̃|L(0) ∼=
⊕
n∈Z

k(0)rn and F̃|L(∞) ∼=
⊕
n∈Z

k(∞)rn.

Matrix problem MPE for Kodaira cycles IN . With respect to all the choices
the maps µ̃, ı̃∗F and π̃∗f can be written as matrices.

• The gluing map µ̃ : π̃∗M −→ ı̃∗F̃ can be given by 2N matrices over k
µ̃ =

(
µ1(0), µ1(∞), µ2(0), µ2(∞), . . . , µN(0), µN(∞)

)
.(7)

From the definition of the category of triples it follows that a vector bundle
on E corresponds to a tuple µ̃ such that all its matrices µk(0) and µk(∞)
are square and invertible.
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• If we have a morphism OL(n) → OL(m) given by a homogeneous form
Q(z0, z1) of degree m−n, then it induces a map OL(n)⊗O

eS
−→ OL(m)⊗O

eS

given by (Q(0), Q(∞)) := (Q(0 : 1), Q(1 : 0)). Hence, with respect to the
chosen trivializations of OL(n) at 0 and ∞ the map

ı̃∗F |L =
(
F k(0), F k(∞)

)
: kr(0) ⊕ kr(∞) −→ kr(0) ⊕ kr(∞)(8)

is given by a pair of lower block triangular matrices
(
F k(0), F k(∞)

)
consist-

ing of blocks F k
mn(0), F k

mn(∞) ∈ Matk(r(m, k)×r(n, k)), for m > n and with
common diagonal blocks Fnn ∈ Matk(r(n, k) × r(n, k)). The morphism F is
invertible, if all the diagonal blocks F k

nn belong to GL(k, r(n, k)).
• The same holds for the induced map π̃∗f = (f1, . . . , fN) : if (F, f) is invertible

then fk ∈ GL(k, r) for each component k.
• The transformation rule µ̃ 7→ (̃ı∗F ) · µ̃ · (π̃∗f)−1 can be rewritten for each

component k as µk(0) 7→ Fk(0)µk(0)f−1
k−1, and µk(∞) 7→ Fk(∞)µk(∞)f−1

k

assuming f0 = fN . It can be sketched as follows:

f1

f2

fn−1

fn

...

F1(∞)

��

F2(∞)

��
F2(0)

��

FN (∞)

��
FN (0)

��

F1(0)

��

.....................................................................................................................

.....................................................................................................................

.....................................................................................................................

Matrices µk(0) and µk(∞) are simultaneously divided into horizontal blocks labelled
by integers, called weights. A pair of such blocks with the same weight are called
conjugated and have the same number of rows. These types of matrix problems are
well-known in representation theory. They are called Gelfand problems or represen-
tations of bunches of chains (see [GP68, Bon92]). For an application of Gelfand
problems to the classification of torsion free sheaves on cycles of projective lines we
refer to [DG01] (see also[BBDG]).

4. Matrix problem for Kodaira fibers II, III and IV

In this section we formulate the matrix problem MPE for the other curves from
the Table 1. Let E be a Kodaira fiber with N (N ≤ 3) components. Let s be the
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unique singular point and π : Ẽ → E the normalization map. For example, for
N = 3 we have

L1 L2 L3

•
0

•
0

•
0 π //

ttttttttttttt

JJJJJJJJJJJJJ

s•

E

Note that Ẽ consists of a disjoint union of N projective lines. On each component
Lk choose coordinates (z0 : z1) such that the preimage of the singular point s = (0 :
0 : 1) on Lk is 0 := (0 : 1). Let Uk = {(z0 : z1)|z1 6= 0} be affine neighborhoods of 0
on Lk with local coordinates tk := z0/z1 for k = 1, . . . , N ; and let U be the union
⋃N

k=1 π(Uk). Let us calculate the normalization map O →֒ π∗Õ = π∗

( N

⊕
k=1

OLk

)
, the

conductor J and the structure sheaves OS, and O
eS

for each Kodaira fiber:

II. Let E be a cuspidal cubic curve in P2 given by the equation x3 − y2z = 0.
Then locally the normalization map is k[U ] = k[t2, t3] →֒ k[t]. Since on π(U)
the conductor is J = 〈t2, t3〉, we have OS

∼= k(s) and O
eS
∼=
(k[ε]/ε2

)
(s).

III. Let E be a tacnode curve given by the equation y(zy − x2) = 0. Then the
normalization map is k[U ] →֒ k[t1] ⊕ k[t2] taking 1 7→ (1, 1), x 7→ (t1, t2),
and y 7→ (0, t22). On π(U) for the conductor we have J = 〈(t21, 0), (0, t22)〉.
In other words, the ideal sheaf of the scheme-theoretic preimage of s is

J̃ =
(
I2

L1,0, I
2
L2,0

)
, where ILk,0 denotes the ideal sheaf of the point 0 on

the component Lk. Hence, O
eS
∼= Õ/J̃ = O1/I

2
L1,0 ⊕O2/I

2
L2,0. Altogether we

get OS
∼=
(k[ε]/ε2

)
(s), and O

eS
∼=
(k1[ε1]/ε

2
1

)
(s̃1) ⊕

(k2[ε2]/ε
2
2

)
(s̃2) and the

induced map OS →֒ O
eS takes ε to (ε1, ε2).

IV. Let E be a curve consisting of three concurrent projective lines in P
2, given

by the equation xy(x − y) = 0. Then the normalization map is k[U ] →֒k[t1] ⊕ k[t2] ⊕ k[t3], sending 1 7→ (1, 1, 1), x 7→ (t1, t2, 0), and y 7→ (t1, 0, t3).
Since J (U) = 〈x2, y2, xy〉, we have OS = k[x, y]/〈x2, y2, xy〉. Note that the

ideal sheaf J̃ := π∗J is locally generated by (t21, 0, 0), (0, t22, 0) and (0, 0, t23)

i.e. J̃ =
(
I2

L1,0, I
2
L2,0, I

2
L2,0

)
, where ILk ,0 is as above. Hence, O

eS
∼= Õ/J̃ ∼=

3
⊕

k=1
OLk

/I2
Lk,0.

Generalities for matrix problems MPE for Kodaira fibers II, III and IV.

For a triple (F̃ ,M, µ̃) we fix:

• a splitting F̃ ∼=
N⊕

k=1

(
⊕

n∈Z

OLk
(n)r(n,k)

)
with

∑
n∈Z

r(n, k) = r;

• an isomorphism M ∼= Or
S;

• for each component L := Lk we take the trivializations

OL(n) ⊗OL/I2
L,0 −→ k[εk]/ε

2
k,

ζ ⊗ 1 7−→ pr(
ζ

zn
1

)
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for a local section ζ of OLk
(n) on the open set Uk, where the projection

pr : k[Uk] −→ k[εk]/ε
2
k is the map induced by k[tk] −→ k[εk]/ε

2
k, mapping

tk 7→ εk.

With respect to all these choices in terms of matrices we have:

• The map µ̃ can be written as a combination of 2N r × r-matrices over k:

(9) µ̃ = (µ1, . . . , µN) =
(
µ1(0) + ε1 · µε1(0), . . . , µN(0) + εN · µεN

(0)
)
.

The morphism µ̃ is invertible if and only if all µk(0), for k = 1, . . . , N, are
invertible.

• If on a component L we have a morphism OL(n) → OL(m) given by a
homogeneous form Q(z0, z1) of degree m−n, then the induced map OL(n)⊗
O

eS −→ OL(m) ⊗O
eS is given by the map

pr(Q(z0, z1)/z
m−n
1 ) = Q(0 : 1) + ε dQ

dz0
(0 : 1).

Hence, for a morphism (F, f) : (F̃ ,M, µ̃) −→ (F̃ ′,M′, µ̃′) the induced map

ı̃∗F : ı̃∗F̃ −→ ı̃∗F̃ ′ on each component L := Lk is

ı̃∗F |L = Fk(0) + εdFk

dz0
(0) ∈ Mat(k[ε]/ε2, r),

where, as usual, F (0) denotes F (0 : 1).
• The morphism π̃∗f consists of N copies of the matrix f, where

– f ∈ Mat(k, r × r) for the cuspidal cubic;
– f = f(0) + fε(0) ∈ Mat(k[ε]/ε2, r × r), for ε = (ε1, ε2) for the tacnode

curve;

– f = f(0) + x · fx(0) + y · fy(0) ∈ Mat
(k[x, y]/〈x2, y2, xy〉, r × r

)
for the

three lines through a point in a plane (Kodaira fiber IV).

A morphism (F, f) is an automorphism if and only if all Fk(0) for k ∈ {1, . . . , N}
and f(0) are invertible r × r matrices over k.

For example, for the Kodaira fiber IV we get the following matrix problem. There
are six r × r matrices µ1(0), µε1(0), µ2(0), µε2(0) and µ3(0), µε3(0), where all µk(0)
are invertible. The pairs µk(0), µεk

(0) are simultaneously divided into horizontal
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blocks labelled by integers called weights.

F1(0)

��

fy(0)

55

fx(0) ))

F1(0)

��//
dF1
dz0

(0)

F2(0)

��

fx(0) ))
f(0) f(0)

F2(0)

��
//

dF2
dz0

(0)

f(0) f(0)

F3(0)

��

fy(0)

55

F3(0)

��//
dF3
dz0

(0)

If we restrict this problem on the first two components and assuming fy(0) = 0 and
fε := fx(0) we obtain the problem for a tacnode curve. If we restrict the problem
to the first component with fy(0) = fx(0) = 0 we get the problem for the cuspidal
cubic curve. Each of this problems is wild even for two horizontal blocks, see [Dro92,

Section 1]. However, the simplicity condition of a triple (F̃ ,M, µ̃) imposes some
additional restrictions making the problem tame.

5. Simplicity condition

A vector bundle on a curve X is called simple if it admits no endomorphisms
but homotheties, i.e. EndX(F) = k and the subcategory of simple vector bundles
is denoted by VB

s
X . This notion can be obviously translated to the language of

triples. In terms of matrix problems: an object µ̃ of MPX is called a brick if
EndMPX

(µ̃) = k. The full subcategory of bricks is denoted by MP
s
X and MP

s
X(r) if

the dimension vector r is fixed. Note that a nonscalar morphism (F, f) can have a
scalar restriction (̃ı∗F, π∗f).

Lemma 5.1. Let X be a rational singular curve and (F̃ ,M, µ̃) ∈ TrX be a triple.

Then the map EndTrX
(F̃ ,M, µ̃) → EndMPX

(µ̃) is bijective if and only if for all the

components L of X̃ and for all summands OL(n) ⊕ OL(m) of F̃ |L the canonical

maps Hom(OL(n),OL(m)) → k[S̃ ∩ L], taking Q 7→ ı̃∗Q, are bijective.

This obvious lemma implies certain nice properties for a matrix problem under the
simplicity condition. For instance, we have the following:

Lemma 5.2. Let E be a Kodaira fiber IN , (for N ∈ N) II, III or IV, and let

(F̃ ,M, µ̃) ∈ TrX be a simple triple. Then for each component L := Lk (1 ≤ k ≤ N)
we have

F̃|L =
(
OL(nk)

)r−d̄k ⊕
(
OL(nk + 1)

)d̄k(10)

for some nk ∈ Z and 1 ≤ d̄k ≤ r.
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Proof. Assume that π∗F|L contains a summand OL(n)⊕OL(m) with m ≥ n+2. Let
(z0 : z1) be the local coordinates as in Section 3 and 4. Since the degree m− n ≥ 2
there exists a nonzero homogeneous form Q ∈ HomL(OL(n),OL(m)) ∼= k[z0, z1]m−n

such that ı̃∗Q = 0. Indeed, if E is a Kodaira cycle then ı̃∗Q = (Q(0), Q(∞)) and if

E is a Kodaira fiber of type II, III or I then the restriction of J̃ to the component
L is I2

L,0 ⊂ OL,0 and thus ı̃∗Q = Q(0) + ∂Q

∂z0
(0). In both cases the map Q 7→ ı̃∗Q is

not injective and we get a contradiction to the condition of Lemma 5.1. �

Remark 5.3. Note that the twists nk do not affect the matrix problem. Hence we
can assume that the blocks have weights 0 and 1 for each component Lk and replace
the multidegree d by (d̄1, . . . , d̄N) and the degree d by d̄ := d̄1 + · · · + d̄N , where
d̄k = dk mod r. Having the twists nk we can recover the multidegree of d by the rule
dk = r · nk + d̄k.

6. Primary reduction.

Applying condition (10) to the matrix problem MPE we obtain that each matrix
consists of at most two horizontal blocks. Despite of this simplification the problem
remains quite cumbersome. However, it can be reduced to a partial canonical form,
such that all its matrices but one consist of identity and zero blocks. We denote by
M the remaining nonreduced matrix and formulate for it a new matrix problem. It
seems reasonable to introduce some simplified system of notations.

• Let 1 denotes the identity blocks, 0 the zero blocks,
• use the star ∗ to denote nonreduced blocks and small Latin letters for a finer

specification.

The matrix M is divided into blocks, the set of column-blocks coincides with the
set of row-blocks and is denoted by I = {1, 2, . . . |I|}. Then s = (s1, . . . , s|I|) ∈ NI

is the dimension vector of M.

6.1. Nodal cubic curve. According to Section 3 the matrix problem MPE for the
nodal cubic curve E and on two blocks is as follows:

F (0)

��
F (∞)

��

f

µ(0) µ(∞)

Since the normalization consists of a unique component L we skip the indices by
F, f and µ. As it was mentioned above both matrices µ(0) and µ(∞) are invertible.
We reduce one of them, say µ(0), to the identity form:

µ(0) =
1 0

0 1 and M := µ(∞) =
a1 b

c a2

.
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To preserve µ(0) unchanged we assume f = F (0). Reformulate the problem for the
matrix M := µ(∞). The transformation rule is M 7→ SM(S ′)−1, where

(S, S ′) := (F (∞), F (0)) =

(
w1 0

u w2

w1 0

v w2

)
.

Note that the sizes of blocks are determined by rank and degree: (s1, s2) = (r− d̄, d̄),
where d̄ := d mod r.

6.2. Cuspidal cubic curve. Recall the problem MPE on two blocks for the cuspidal
curve:

F (0)

��
F (0)

��

f

//
dF
dz0

(0)
µ(0) µε(0)

As in the case of a nodal curve we skip the indices by F, f and µ. The matrix µ(0)
can be reduced to the identity form. To preserve this form unchanged we assume
F (0) = f. Moreover, using transformations 4 we can make zero on the left lower
block of µε(0):

µ(0) =
1 0

0 1 and M := µε(0) =
a1 b

0 a2

.

We obtain a new matrix problem which reads: M 7→ SMS−1 mod ( 0 0
× 0 ) , where the

matrix S inherits the same lower-block-triangular structure as F (0) :

S := F (0) = f =
w1 0

u w2

.

As in the previous case the sizes of blocks are determined by rank and degree:
(s1, s2) = (r − d̄, d̄), where d̄ := d mod r.

6.3. Cycle of two lines. According to Section 3 the original matrix problem MPE

for a cycle of two lines with two blocks on each component is

F1(0)

��
F1(∞)

��

f1 f2

F2(∞)

��
F2(0)

��

All four matrices (µ1(0), µ1(∞), µ2(∞)µ2(0)) are invertible. Two diagonal matrices,
say µ1(0) and µ2(0), can be reduced to the identity form. Then one of the others,
say µ2(∞), can be reduced to the form:
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µ2(∞) =

1 2 3 41 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1 1

3

2

4

(11)

Transformations (F, f) preserving the reduced matrices µ1(0), µ2(0) and µ2(∞) un-
changed satisfy the equations

(12) f1 = F1(0), f2 = F2(0) and F2(∞)µ2(∞) = µ2(∞)f1.

This implies the following triangular structures for F1(0) and F2(∞) :

F1(0) =

w1 0 0 0

x21 w2 0 0

x31 0 w3 0

x41x42x43 w4

and F2(∞) =

w1 0 0 0

x31 w3 0 0

x21 0 w2 0

x41x43x42 w4

.(13)

Since the diagonal blocks of Fk(0) and Fk(∞) coincide (for k = 1, 2), we also have:

F1(∞) =

w1 0 0 0

x12 w2 0 0

y31y32 w3 0

y41y42x43 w4

and F2(0) =

w1 0 0 0

x31 w3 0 0

z21 z23 w2 0

z41 z43 x42 w4

.

Reduced matrix problem. Thus we obtain a new problem for the matrix B :=
µ1(∞) with the transformations M 7→ SM(S ′)−1, where (S, S ′) := (F1(∞), F2(0)).
Note that if the sizes of blocks 1 and 4 are both nonzero then taking a nonzero entry
x41 of the matrices F2(∞) and F1(0) we obtain a nonscalar endomorphism. Hence,
there are no sincere bricks and the maximal tuples of blocks are I = (1, 2, 3) and its
dual I = (2, 3, 4). The dimension vector s = (s1, s2, s3) and the matrix problem are
determined by r and (d̄1, d̄2), where d̄k = dk mod r and d̄ = d̄1 + d̄2, as follows:

condition set I dimention vector s state

1. r ≥ d̄ (1, 2, 3) (r − d̄, d̄2, d̄1) A+

1′. r < d̄ (2, 3, 4) (r − d̄1, r − d̄2, d̄ − r) A−

Table 2.
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where A+ denotes the problem M 7→ SM(S ′)−1, on the set of blocks I = {i1, i2, i3}
with

M =

i1 i3 i2

a1 ∗ ∗

∗ ∗ a2

∗ a3 ∗

i1

i2

i3

(S, S ′) =




i1 i2 i3

i1

i2

i3

w1 0 0

∗ w2 0

∗ ∗ w3

i1 i3 i2

w1 0 0

∗ w3 0

∗ ∗ w2

i1

i3

i2




;

in accordance with our notations, the problem A− : is M 7→ SM(S ′)−1, on the set
of vertices I = {i1, i2, i3}, where

M =

i2 i1 i3

∗ a1 ∗

a2 ∗ ∗

∗ ∗ a3

i1

i2

i3

(S, S ′) =




i1 i2 i3

i1

i2

i3

w1 0 0

∗ w2 0

∗ ∗ w3

i2 i1 i3

w2 0 0

∗ w1 0

∗ ∗ w3

i2

i1

i3




.

Note that since matrices S and S ′ are low triangular, both problems A+ or A− can
be recognized by the form of the matrix M.

6.4. Tacnode curve. Analogously as in the previous case, we reduce the matrix
µ1(0) to the identity form and the matrix µ2(0) to the form (11). Then for the
transformations we have the restrictions:

(14) f(0) = F1(0) and F2(0)µ2(0) = µ2(0)f(0),

and consequently F1(0) is as in (13). By the transformation fε we can reduce one
of the matrices µε1(0) or µε2, say µε2(0), to the zero form. In the remaining matrix
M := µε1(0) : the blocks (31),(32), (41) and (42) can be reduced to zero by the
transformation dFk

dz0
(0) and the blocks (21), (23), (41) and (43) can be killed by fε.

Reduced matrix problem. Thus we obtain a new problem for the matrix M with
the transformations M 7→ SMS−1 modulo zero block-entries of M :

M := µε1(0) =

a1 b12 b13 b14

0 a2 0 b24

0 0 a3 b34

0 0 0 a4

and S := F1(0) =

w1 0 0 0

x21 w2 0 0

x31 0 w3 0

x41x42x43 w4

.

It is easy to see that if the sizes of blocks 1 and 4 are both nonzero then there is a
nontrivial endomorphism. As in the previous case there are no sincere bricks and
the admissible tuples of blocks I and sizes s are the same as in Table 2, whereas the
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configurations A+ and A− are respectively the matrix problems with

M =

a1 ∗ ∗

a2

a3

S =

w1

∗ w2

∗ w3

and M =

a2 ∗

a3 ∗

a4

S =

w2

∗ w3

∗ w4

.

We replaced the zero-blocks by the empty spaces, since they do not play a role in
calculations, and thus such notation seems to be more appropriate.

Example 6.1. Let E be a Kodaira fiber I2 or III and (F̃ ,M, µ̃) be a triple corre-
sponding to a simple vector bundle. If r ≥ d̄ then the matrix µ̃ can be respectively
transformed to the form




1 0 0

0 1 0

0 0 1 ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗1 0 0

0 0 1
0 1 0

1 0 0

0 1 0

0 0 1



or




1 0 0

0 1 0

0 0 1 + ε1

∗ ∗ ∗

0 ∗ 0

0 0 ∗1 0 0

0 0 1
0 1 0

+ ε2

0 0 0

0 0 0

0 0 0




.

6.5. Cycle of tree lines. According to Section 3 the original matrix problem MPE

with two blocks on each component is

F1(0)

��

f1

F1(∞)

��

f2

F2(0)

��

f3

F2(∞)

��

F3(∞)

��
F3(0)

��

Matrices µ1(0), µ2(0) and µ3(0) can be reduced to the identity form. The matrix
µ3(∞) can be reduced to the form (11). For the morphisms we have

(15) f1 = F1(0), f2 = F2(0), f3 = F3(0) and F3(∞)µ3(∞) = µ3(∞)f1.

Then the matrix f3 has a special block-triangular structure. In other words, the
matrix µ2(∞) is subdivided into four column-blocks: a column can be added to any
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other column from a block on the left and it cannot be added to a column from
another block on the right. Thus µ2(∞) can be reduced to the form

µ2(∞) =

1 2 5 6 3 4 7 81 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
1

5

3

7

2

6

4

8

(16)

Reduced matrix problem. The remaining nonreduced matrix is M := µ1(∞).
For it we obtain the problem M 7→ SM(S ′)−1, where the transformations are
(S, S ′) = (F1(∞), f3). Equations (15) together with F2(∞)µ2(∞) = µ2(∞)f3 im-
ply the triangular forms for the matrices Fk(0), Fk(∞) and fk (for k = 1, 2, 3); in
particular:

(S, S ′) =




1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

w1 0 0 0 0 0 0 0

∗ w2 0 0 0 0 0 0

∗ ∗ w3 0 0 0 0 0

∗ ∗ ∗ w4 0 0 0 0

∗ ∗ ∗ ∗ w5 0 0 0

∗ ∗ ∗ ∗ ∗ w6 0 0

∗ ∗ ∗ ∗ ∗ ∗ w7 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ w8

1 5 3 7 2 6 4 8

w1 0 0 0 0 0 0 0

∗ w5 0 0 0 0 0 0

∗ ∗ w3 0 0 0 0 0

∗ ∗ ∗ w7 0 0 0 0

∗ ∗ ∗ ∗ w2 0 0 0

∗ ∗ ∗ ∗ ∗ w6 0 0

∗ ∗ ∗ ∗ ∗ ∗ w4 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ w8

1

5

3

7

2

6

4

8




The stars ∗ denote arbitrary blocks and wi for i = 1, . . . , 8 are the common diagonal
blocks. The transformations of row and column -blocks of M are clear: a row can
be added to any other one from a block below and it can’t be added to a row from
a block above it. and a column can be added to any other column from a block on
the left and it can not be added to a column from a block on the right.

Nontrivial morphisms. Analogously as in the case of a cycle of two lines there
are some pairs (ij) ∈ I × I such that if si · sj > 0 then there exists a nontrivial
endomorphism. Such blocks are called mutually excluding and denoted by i ∩ j.

• If the matrices F3(∞) and F1(0) contain at least one of the following entries:
(71), (81), (72) or (82) then there is a nontrivial endomorphism. In our
short notations we have an intersection 1, 2 ∩ 7, 8. In the same way we have
1, 5 ∩ 4, 8. The nontrivial morphisms are induced by the matrices F3(0) and
F2(∞).
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• The blocks 1 and 6 are mutually excluding; the endomorphism is induced
by the entry (61) of the matrices F3(0), F3(∞) and F2(∞). Similarly, there
is an endomorphism for the pair (38) induced by the matrices F1(0), F3(∞)
and F3(0).

All the mutually excluding blocks can be indicated on the intersection diagram:

(17)

1
2 3 − 5

T

7 − 6 4
8

The diagram reads as follows: a matrix M is a brick if it contains no pair of blocks
(ij) such that i and j in the diagram are separated by ∩ and either in the same
column or one of them is 1 or 8.

In the following table we present the maximal tuples of blocks I = (i1, i2, i3, i4) for
M being a brick, express the dimension vector s = (si1 , si2, si3, si4) ∈ N4 in terms of
rank and multidegree and moreover, answer the question when such tuple of blocks
appears and specialize the matrix problems in each case.

condition set I dimention vector s state

1. r ≥ d̄ (1, 2, 3, 5) (r − d̄, d̄3, d̄2, d̄1) A+

1′. d̄ ≥ 2r (4, 6, 7, 8) (r − d̄1, r − d̄3, r − d̄2, d̄ − 2r) A−

2. d̄ > r > (d̄2 + d̄3), (d̄1 + d̄3) (2, 3, 5, 6) (r − (d̄1 + d̄3), d̄3, r − (d̄2 + d̄3), d̄ − r) A−

2′. (d̄2 + d̄3), (d̄1 + d̄3) > r (3, 4, 6, 7) (2r − d̄, (d̄2 + d̄3) − r, r − d̄3, (d̄1 + d̄3) − r) A+

3. (d̄2 + d̄3) ≥ r ≥ (d̄1 + d̄3) (2, 3, 4, 6) (r − (d̄1 + d̄3), r − d̄2, (d̄2 + d̄3) − r, d1) C

3′. (d̄1 + d̄3) ≥ r ≥ (d̄2 + d̄3) (3, 5, 6, 7) (r − d̄1, r − (d̄2 + d̄3), d̄2, (d̄1 + d̄3) − r) C

Table 3.

The configurations A+, A− and C on the set of blocks I = {i1, i2, i3, i4} encode
matrix problems M 7→ SM(S ′)−1, where S and S ′ are block-triangular and the
matrix M is defined as follows:

A+ =

i1 i4 i3 i2

ai1 ∗ ∗ ∗

∗ ∗ ∗ ai2

∗ ∗ ai3 ∗

∗ ai4 ∗ ∗

i1

i2

i3

i4

A− =

i3 i2 i1 i4

∗ ∗ ai1 ∗

∗ ai2 ∗ ∗

ai3 ∗ ∗ ∗

∗ ∗ ∗ ai4

i1

i2

i3

i4

and C =

i2 i1 i4 i3

∗ ai1 ∗ ∗

ai2 ∗ ∗ ∗

∗ ∗ ∗ ai3

∗ ∗ ai4 ∗

i1

i2

i3

i4

.(18)

6.6. Thee concurrent lines in a plane. Let E be the Kodaira fiber IV and MPE

the matrix problem formulated in Subsection 4 with two blocks for each component.
In this section we reduce it to a partial canonical form. At first we reduce matrices
µ1(0) and µ2(0) as in the case of a tacnode curve. Then the transformations satisfy
equations (14). Let us find a canonical form of µ3(0) with respect to the trans-
formations µ3(0) 7→ F3(0)µ3(0)f(0)−1. The splitting of F3(0) and f(0) into blocks
induces the same column block structure for µ3(0) as in the case of a cycle of three



SIMPLE VECTOR BUNDLES ON PLANE DEGENERATIONS OF AN ELLIPTIC CURVE 21

lines. However, on the contrary to that case, there is no addition from the third
column-block to the second one. Thus proceeding as before instead of the form (16)
we obtain only the following:

µ3(0) =

1 2 5 6 3 4 7 81 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 ∗ 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
1

5

3

7

2

6

4

8

It turns out that the remaining block ∗ can be reduced to the form ( 0 01 0 ) as well.
That implies subdivisions for the reduced blocks marked by 3 and 6: and change of
notations is required: 3 7→ (3, 0) and 6 7→ (0, 6).

The equation F3(0)µ3(0) = µ3(0)f(0) implies that the matrix F1(0) preserving
µ3(0) is as follows:

F1(0) =

1 2 3 0 4 5 0 6 7 8

1w0 0 0 0 0 0 0 0 0 0

2 ∗ w1 0 0 0 0 0 0 0 0

3 ∗ 0 w2 0 0 0 0 0 0 0

0 ∗ x ∗ z 0 0 0 0 0 0

4 ∗ ∗ ∗ ∗ w4 0 0 0 0 0

5 ∗ 0 0 0 0 w5 0 0 0 0

0 ∗ x 0 0 0 ∗ z 0 0 0

6 ∗ ∗ 0 0 0 ∗ ∗ w7 0 0

7 ∗ 0 ∗ y 0 ∗ y 0 w8 0

8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ w9

As usually the stars ∗ denote different blocks appearing only one time and x, y and z
are some blocks appearing twice. By proper fx(0) and fy(0) the matrices µε2(0) and
µε3(0) can be reduced to zero. Taking into account equations Fk(0)µk(0) = µk(0)f(0)
for k = 2, 3 we obtain that there are nonzero matrices fx(0) and fy(0) leaving the
matrices µε2(0) and µε3(0) in the zero form. This consideration becomes important
below, where we are looking for endomorphisms.

Reduced matrix problem. As usually take M := µε1(0) and transformations
M 7→ SMS−1 modulo zero blocks of M, where S := F1(0). By proper F1(0), fx(0)
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and fy(0) it can be reduced to the form

M =

1 2 3 0 4 5 0 6 7 8

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 0 ∗ 0 0y ∗ 0 0y ∗ 0 ∗

3 0 0 ∗ ∗ ∗ 0 0 0 ∗ ∗

0 0 0 0 0z ∗ 0 0 0 0x ∗

4 0 0 0 0 ∗ 0 0 0 0 ∗

5 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0z ∗ 0x ∗

6 0 0 0 0 0 0 0 ∗ 0 ∗

7 0 0 0 0 0 0 0 0 ∗ ∗

8 0 0 0 0 0 0 0 0 0 ∗

The blocks denoted by 0x (respectively 0y or 0z) are the so called adjoint blocks,
which means that there is a unique block x (respectively y or z) operating on both
of them, and thus only one block from an adjoint pair can be reduced to zero.

Nontrivial morphisms. Let us analyze matrices dFk

dz0
(0), fx(0) and fy(0) looking

for an endomorphism. As in the case of a tacnode curve there are places (ij), where
zero can be obtained in two or more different ways. That is if si · sj > 0 then
there exists a nonscalar endomorphism. The diagram of mutually excluding blocks
is almost the same as diagram (17) for the cycle of three lines but with one extra
relation (now blocks 3 and 6 are mutually excluding):

1

2 0 3 − 5
T

7 − 6 0 4

8

(19)

In Table 4 we present the maximal tuples I = {i1, i2, i3, i4}, interpret the dimension
vector s in terms of rank and multidegree and specialize matrices that we get in
each case.
By Aσ and Bσ(j) we denote the matrix problems given by the following coincidence
matrices M :

i1 i2 i3 i4

∗ ∗ ∗ ∗

∗

∗

∗

i1

i2

i3

i4

A+

i1 i2 i3 i4

∗ ∗

∗ ∗

∗ ∗

∗

i1

i2

i3

i4

A−

i1 i2 i3 i4

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗

i1

i2

i3

i4

B−(i3)

i1 i2 i3 i4

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

∗

i1

i2

i3

i4

B+(i2)

.(20)

As usually, the matrix problems are M 7→ SMS−1 modulo empty spaces and the
transformation S has the form transposed to M.
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condition set I dimention vector s state

1. r ≥ d̄ (1, 2, 3, 5)
`

r − d̄, d̄3, d̄2, d̄1

´

A+

1′. d̄ > 2r (4, 6, 7, 8)
`

r − d̄1, r − d̄2, r − d̄3, d̄ − 2r
´

A−

2. d̄ > r > d̄i + d̄j

for all i, j ∈ {1, 2, 3};
(2, 3, 5, 0)

“

r − (d̄1 + d̄2), r − (d̄1 + d̄3), r − (d̄2 + d̄3), d̄ − r
”

A−

2′. d̄i + d̄j > r and 2r > d̄

for all i, j ∈ {1, 2, 3};
(0, 4, 6, 7)

“

2r − d̄, (d̄2 + d̄3) − r, (d̄1 + d̄3) − r, (d̄1 + d̄2) − r
”

A+

3. (d̄2 + d̄3) > r and
r > (d̄1 + d̄2), (d̄1 + d̄3)

(2, 3, 0, 4)
“

r − (d̄1 + d̄2), r − (d̄1 + d̄3), d̄1, (d̄2 + d̄3) − r
”

B−(0)

3′. (d̄1 + d̄2), (d̄1 + d̄3) > r

r > (d̄2 + d̄3)
(5, 0, 6, 7)

“

r − (d̄2 + d̄3), r − d̄1, (d̄1 + d̄3) − r, (d̄1 + d̄2) − r
”

B+(0)

4. (d̄1 + d̄3), (d̄2 + d̄3) > r

and r > (d̄1 + d̄2),
(2, 0, 4, 6)

“

r − (d̄1 + d̄2), r − d̄3, (d̄2 + d̄3) − r, (d̄1 + d̄3) − r
”

B+(0)

4′. (d̄1 + d̄2) > r and
r > (d̄1 + d̄3), (d̄2 + d̄3)

(3, 5, 0, 7)
“

r − (d̄1 + d̄3), r − (d̄2 + d̄3), d̄3, (d̄1 + d̄2) − r
”

B−(0)

5. (d̄1 + d̄3) > r and
r > (d̄1 + d̄2), (d̄2 + d̄3)

(2, 5, 0, 6)
“

r − (d̄1 + d̄2), r − (d̄2 + d̄3), d̄2, (d̄1 + d̄3) − r
”

B−(0)

5′. (d̄1 + d̄2), (d̄2 + d̄3) > r

and r > (d̄1 + d̄3)
(2, 0, 4, 7)

“

r − (d̄1 + d̄3), r − d̄2, (d̄2 + d̄3) − r, (d̄1 + d̄2) − r
”

B+(0)

Table 4.

7. Matrix problems

In this section we use the technique of boxes and follow the notations of [BD09].
From now on let A be a Roiter box and (Q, ∂) its differential biquiver, where
Q = (I, Q0, Q1) with the set of vertices I and the sets of solid and dotted arrows
respectively Q0 and Q1. Let A-mod be the category of finite dimensional A-modules
and BrA its full subcategory of bricks. For details concerning boxes we also refer to
[Dro01] and [Bod07].

Summarizing previous sections we conclude that our approach provides a full and
dense functor VBE

∼
−→ TrE −→ MPE and the primary reduction is an equivalence of

categories MP
s
E(r) ∼

−→ BrA(s), for some special box A and dimension vector s. The

composition of these functors yields an equivalence VB
s
E(r,d)

∼
−→ BrA(s), where

both the box A and the tuple s are uniquely defined by the curve E, the rank r and
the multidegree d.

In most situations it is useful to present a representation M as a block-matrix with
the block M(x) on the place (ij) for x ∈ Q0(j, i). With a little abuse of notations we
write M in a form of a table with x on the ij-entry instead of M(x). In accordance
with notations from Section 6 “1” and “0” denote an identity block and a zero block.
The morphisms S are given in a similar way.

Class of BC-boxes. A box A with the differential biquiver (Q, ∂) is of BC-type if
its solid arrows form an I ×I matrix. There are two total orders on the set I : a row
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order denoted by <r and a column order denoted by <c . The set of dotted arrows
Q1 consists of two subsets: {u ∈ Q1(k, j)|j >r k} and {v ∈ Q1(i, l)|l >c i}. For each
x ∈ Q0(i, j), the differential is

∂(x) =
∑
l<ci

x′v −
∑

j<rk

ux′′,

where x′ ∈ Q0(l, j) and x′′ ∈ Q0(i, k) are uniquely defined as the entries (jl) and
(ki) of the matrix I × I. Such boxes can be presented via matrices M and (S, S ′)
and matrix multiplications: M 7→ SM(S ′)−1, where

M =

c1 . . . cn

xr1c1 . . . xr1cn

...
. . .

...

xrnc1 . . . xrncn

r1

...

rn

(S, S ′) =




wr1 0 0

...
. . . 0

urnr1 . . . wrn

wc1 0 0

...
. . . 0

vcnc1 . . . wcn




and (r1 . . . rn) and (c1, . . . cn) are orders <r and <c on I, i.e. r1 <r r2 <r · · · <r rn

and c1 <c c2 <c · · · <c cn. The reduced matrix problem for a nodal curve from
Subsection 6.1 as well as all the problems A+, A−, and C from Subsections 6.3 and
6.5 are of BC-type.

Class of BT-boxes. A box A with the differential biquiver (Q, ∂) is of BT-type if
there exists a set of distinguished loops: a := {ai ∈ Q0(i, i)|i ∈ I}, an injective map:
v : Q0 \ a →֒ Q1, mapping a solid arrow a : i → j to an opposite directed dotted

arrow va := v(a) : j +3 i , and for each distinguished loop ai ∈ a we have

∂ai =
∑

c: ·→i

c · vc −
∑

d: i→·

vd · d.(21)

For a box A of BT-type its biquiver Q can be encoded as follows: a vertex i ∈ I is
denoted by a bullet •; on the set of vertices we draw the graph with arrows Q0 \ a;
Such system of notations becomes quite useful since in most of our cases the way to
recover the differential is clear.

The BT-box A obtained Subsection 6.2 for a cuspidal cubic curve is 1• •2oo .

The problems on three vertices A+ and A− from Subsection 6.4 and the problems
on four vertices: A+, A−, B+(j) and B−(i) from Subsection 6.6 are also of BT-type:

• •

•

oo
����
��

i • •

•

oo

[[6666
j •

• •

•i
��

oo
����

��
��

�

•

• •

•

j

����
��

��
�

oo

��
•

• •

•i

j

��

//
OO

oo
����

��
��

�

•

• •

•i

j
OO

oo

��
//

??�������

A+ A− A+ A− B+(j) B−(i)

Remark 7.1. Described BT-boxes and the BT-boxes which appear in the following
sections determine partially ordered sets (I,≺), by the rule i ≺ j if there exists
x ∈ Q0(j, i). In most of our cases a poset determine the box, however in general,
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it does not provide enough information to recover the differential. On the other
hand, a pair of linear orders <r and <c determine a partial order ≺ by the rule
i ≺ j if i <r j and i <c j. Posets obtained in such a way relay BC and BT-boxes.
Moreover, for the BT-box they determine the canonical minimal edge (ij), where i
is the minimal with respect to the total order <r and j is the maximal with respect
to <c . Thus having a fixed dimension vector s, not only for a BC-box but also for
the corresponding BT-box we have the canonical course of reduction.

Bricks and small reduction. Boxes of BC and BT-types possess a common prop-
erty. The following proposition allow us to replace the usual matrix reduction by
the small one.

Proposition 7.2. Let A be a box of BC or BT type, b : i → j its minimal edge and
M a brick. Then M(b) has maximal rank.

Proof. Let A be a box of BC-type. Since A is an example of bunches of chains, we
can assume that M is reduced to its canonical form. Also assume that M(b) = ( 0 0

1 0 ) .
Let rows and columns of M be ordered 1, . . . , R. For a place t ∈ {1, . . . , R} by r(t)
and c(t) we denote the row-block and the column-block containing t. For example,
since rows and columns are ordered, we have r(1) = j and c(R) = i. If M is invertible
then there exist places m and n such that M1m = MnR = 1 and all the other entries
in the first row and the last (R-th) column are zero. A nonscalar endomorphism
(S, S ′) of M can be constructed by taking nonzero Sn1 = −S ′

Rm, diagonal entries to
be, for example, 1 and all the other non-diagonal entries to be zero. Since c(m) <c i
and r(n) >r j the block Sr(n)r(1) containing the entry Sn1 and the block S ′

c(R)c(m)

containing the entry S ′
Rm are nonempty. If M is degenerated the proof is even

simpler: if the first row (or the last column) is zero we add it to any other one and
obtain a nonscalar endomorphism.

If A is a box of BT-type then after a step of minimal edge reduction there is a
dotted arrow which is not involved in any differential and hence there is a nonscalar
endomorphism (for details see [BD09, Lemma 4.6]). �

7.1. Small reduction automaton. Recall that an automaton is an oriented graph
on the set of vertices called states, whose arrows are transitions from a state to a
state. In our case the states are the matrix problems and the transitions encode
either admissible or canonical steps of reduction.

Definition 7.3. A small-reduction automaton is an oriented graph Γ on the set of
internal states, where

• Γ is a finite set of boxes, whose differential biquivers have the same finite set
of vertices I.

• The set of transitions is I × I.
• For a minimal solid arrow either j → i or i → j the transition (ij) : γ → γ′

acts on the space of sizes N
|I| as follows: s 7→ s′, where s′k = sk for k 6= i

and si 7→ si − sj. If an arrow l → k is not minimal then the transitions
(lk), (kl) : γ → γ do not act at all and we omit them.
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A sequence p := (injn) . . . (i2j2)(i1j1) of transitions is called a path if the target of
(ikjk) coincides with the source of (ik+1jk+1). A path operates on the set of sizes:
p : s 7→ s′, where s ≥ s′ i.e. si ≥ s′i for all i ∈ I. Two paths p1 and p2 with a common
source and a common target are called equivalent if for any tuple of sizes s ∈ NI

we have p1(s) = p2(s). The semigroup of paths modulo the equivalence relation is
called the semigroup of the automaton and is denoted by Ω.

Principal states. Let Γ be an automaton of small reduction starting with one of
the boxes form Tables 2–4. A state γ ∈ Γ is called principal if it can be interpreted in
terms of vector bundles Brγ(s) ∼= VB

s
E(r,d) i.e if it can be found in the corresponding

table. (Note that an interpretation of a state is not unique in general). In the
following sections our main goal is to show that the set Brγ(s) ∼= VB

s
E(r,d) is

nonempty if and only if gcd(r, d) = 1. Then we obtain that for a rank r and a
multidegree d such that gcd(r, d) = 1 there exists a path p connecting principal
states on the automaton such that

VB
s
E(r,d)

∼=
��

Pic
(0,...,0)(E)

∼=
��

BrA(s) p

∼
// BrA′(1, 0, . . . , 0).

In the following sections we construct the small reduction automaton for each plane
degeneration of an elliptic curve. Then a canonical form of a simple vector bundle
can be constructed as follows.

7.2. Algorithm. Let E be a plane degeneration of an elliptic curve with N com-
ponents, (r,d) ∈ N × Z

N be a tuple of integers, such that gcd(r, d) = 1; where

d =
∑N

k=1 dk and let λ ∈ k be a continuous parameter.

(1) By Euclidean algorithm we find integers ck, d̄k such that dk = nkr + d̄k for
k = 1, . . . , N, and recover the normalization vector bundle (10):

F̃|Lk
=
(
OLk

(nk)
)r−d̄k ⊕

(
OLk

(nk + 1)
)d̄k .

(2) By the primary reduction we obtain the matrix problem BrA and the tuple
of integers s ∈ NN+1.

(3) Use the matrix problem BrA(s) as the input data for the corresponding small-
reduction automaton. Choose a path p on it such that p(s) = (1, 0, . . . , 0).

(4) Starting with the one-dimensional matrix λ ∈ Brk[t](1) reverse course of
reduction along the path p. This way step-by-step, we recover the canonical
form B(λ) = p−1(λ) ∈ BrA(s) ∼= VB

s
E(r,d).

8. Small reduction for nodal and cuspidal cubic curves

The categories obtained in Subsections 6.1 and 6.2 can be interpreted as the
categories A-mod(s1, s2), where A are boxes of either BC and BT-types. We present
A for a nodal curve as a differential biquiver, despite the agreement to present
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BC-boxes by tables, in order to illustrate the language of boxes:

1a1 88

c

��

u

33

v

?? 2
b

ss a2ff

∂(b) = 0,
∂(a1)= bu,
∂(a2)= −vb,
∂(c) = −va1 + a2u.

and

1a1 88
v

55 2
b

uu
a2ff

∂(b) = 0,
∂(a1)= bv
∂(a2)= −vb.

In both cases the steps of small reduction are A
(12),(21)+3 A. In other words, both

problems are self-reproducing, and the small-reduction automaton is

 '!&"%#$(21) :: (12)dd .(22)

The transitions act on sizes as (21) : (s1, s2) 7→ (s1, s2 − s1) and (12) : (s1, s2) 7→
(s1 − s2, s2). In terms or rank and degree we get

(21) :VB
s
E(r, d̄) → VB

s
E(r − d̄, 2d − r) and (12) : VB

s
E(r, d̄) → VB

s
E(r − d̄, d̄).

That implies the statement of Theorem 1.2 for irreducible cubic curves.

Remark 8.1. The semigroup of paths Ω = 〈(21), (12)〉 generates the group SL(2, Z).
On the other hand it is interesting to note that the group of autoequivalences
Aut(Db(CohE)) = 〈TO, Tk(p0)〉 also acts as SL(2, Z) on the K-group, or what is
equivalent, on rank and degree. By Theorem 4.1 of [BK06] autoequivalences TO

and Tk(p0) send stable sheaves to stable sheaves. Moreover, a continuous parameter
λ can be considered as a regular point on the curve E, hence it is preserved under the
action of TO and Tkp0 . Therefore, for singular Weierstraß curves the action on dis-
crete parameters of the matrix reduction coincides with the action of Fourier-Mukai
transforms, namely: (21) acts as TO and (12) acts as (Tk(p0))

−1.

9. Small reduction for a Kodaira fibers I2 and III.

In Subsections 6.3 and 6.4 we obtained an equivalence MP
s(r,d)

∼=
−→ BrA(s),

where the box A is the configuration Aσ, of BC or BT-type, σ ∈ {+,−} depending
on whether r > d̄ or r < d̄. Applying small reduction to the box Aσ we obtain
one other type of boxes on 3 blocks, called B configuration defined by the standard
numeration of blocks (1,2,3). In the BC-case we get:

B =

1 2 3

a1 ∗ ∗

∗ a2 ∗

∗ ∗ a3

1

2

3

(S, S ′) =




1 2 3

1

2

3

w1 0 0

u3 w2 0

u2 u1 w3

1 2 3

w1 0 0

v3 w2 0

v2 v1 w3

1

2

3




.
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As was mentioned in Remark 7.1 column and row-orders define a poset. Configura-
tions A+, A− and B determine respectively the posets

• •

•

oo
����
��
�

1 3

2

A+

• •

•

oo

[[66666
1 3

2

A−

and
• •

•

oo

[[66666����
��
�

1 3

2

B

To a poset one can associate a BT-differential biquiver. For example, for A− we
have the following BT-differential biquiver:

(Q, ∂) =
2

a2

��
vc

��
1a1 88

vb

88 3 a3ff
boo

c

^^====

∂(b) = ∂(c) = 0,
∂(a1) = bvb,
∂(a2) = cvc,
∂(a3) = −vbb − vcc.

(23)

and for B we have the following BT-differential biquiver:

(Q, ∂) =
2

a2

��
vc

��a����
��

1a1 88

va
11

vb

88 3 a3ff
boo

c

^^====

∂(b) = 0,
∂(a) = bvc, ∂(c) = −vab,
∂(a1) = bvb + ava,
∂(a2) = cvc − vaa,
∂(a3) = −vbb − vcc.

(24)

In Subsection 6.4 we obtained an equivalence MP
s(r, d1, d2)

∼=
−→ BrA(s1, s2, s3),

where A was a BT-box of type either A+ or A−. Hence, the small reduction automa-
ton for a cycle of two lines and the canonical one for a tacnode curve is

A+

(12)

((
(21) 55 B

(31)

))

(13)

ii A−

(32)

hh (23)ii(25)

We claim that the reduction can terminate only at the states A+ and A−, which
are principal. Indeed, assume that we have the box B with sizes s1 = s3. Then the
matrix can be reduced to the canonical form:

1 2 3

0 0 1
0 J1 0

J2 0 0

1

2

3

where J1 and J2 are Jordan cells with nonzero eigenvalues. It is quite obvious
that this matrix is decomposable. Analogously in the case of Kodaira fiber III:
the reduction can terminate only at a state of type A. Indeed, if s1 = s3 then the
configuration B produces a splitting; and for A+ we get the problem BrA(s1, s2),
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where A is the box as for a cuspidal cubic curve with sizes (s1, s2, s3) 7→ (s1, s2) :

• •

•

b
oo

c
[[66666

a

����
��
�

1 3

2

(31),(13)+3 •2 •3 and
• •

•

b
oo

a

����
��
�

1 3

2

(31) +3 • •
aoo1 2

By gluing paths we can construct the automaton on principal states:

(26) A+

(31)(12)

))
(21)

,,

(13)(12)

22 A−

(13)(32)

ii

(23)
rr

(31)(32)

ll

For a principal configuration Aσ we introduce its new discrete parameters (α, β) :
for A+ let (α, β) := (s1, s2 + s3) and and (α, β) := (s1 + s2, s3) for A−.

Lemma 9.1. Let p : Aσ → Aσ′

be a path on the principal automaton (26) takings 7→ s′ and respectively (α, β) → (α′, β ′). Then gcd(α, β) = gcd(α′, β ′).

Proof. It is sufficient to prove the statement on the following transitions: (23), (32)(31) :
A− → A− and (13)(32) : A− → A+. Indeed, we have

(23) : (s1, s2, s3) 7→ (s1, s2 − s3, s3) and hence (α, β) 7→ (α − β, β);
(32)(31) : (s1, s2, s3) 7→ (s1, s2, s3 − (s1 + s2)) and (α, β) 7→ (α, β − α);
(13)(32) : (s1, s2, s3) 7→ (s1 + s2 − s3, s2, s3 − s2) and (α, β) 7→ (α − β, β).

�

Let VB
s
E(r,d)

∼=
−→ VB

s
E(r′,d′) be a functorial bijection obtained by the course of

small reductions along the path p. Replacing the dimension vector s by the tuple
(r,d) using Table 2 we obtain (α, β) = (r−d mod r, d mod r). If gcd(r, d) = 1, at the

end of reduction we get VB
s
E(r,d)

∼=
−→ Pic

(0,0)(E), and there is no bricks otherwise.
Hence, Lemma 9.1 implies Theorem 1.2 for curves I2 and III.

10. Small reduction for Kodaira fibers I3 and IV.

In Subsection 6.5 we obtained equivalences MP
s(r,d)

∼=
−→ BrA(s), s ∈ N4, where

A is a BC-box of type A+, A− or C. To fix the notations we rewrite the configurations
for the set of vertices I = {1, 2, 3, 4} :

A small reduction automaton starting from the configuration A+ is as follows:

A+
(12)

//(21) 55 B+(2)

(31)
//

(13)

��

C(2,3)

(32)
oo

(23)
//
B−(3)

(24)
oo

(42)

��

A−

(43)
oo (34)ii

D

(14)

bbEEEEEEEEEEEE

(41)

||yy
yy

yy
yy

yy
yy

D∗

(41)

<<yyyyyyyyyyyy

(14)

""EE
EE

EE
EE

EE
EE

A−

∗

(42)
//(24) 44 B−(2)

(34)
//

(43)

OO

C(3,2)

(32)
oo

(23)
//
B+(3)

(21)
oo

(12)

OO

A+
∗

(13)
oo (31)jj

(27)
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Let us explain the notations: the other configurations of type A are

1 4 3 2

a1 ∗ ∗ ∗

∗ ∗ ∗ a2

∗ ∗ a3 ∗

∗ a4 ∗ ∗

1

2

3

4

A+

1 2 3 4

∗ ∗ a3 ∗

∗ a2 ∗ ∗

a1 ∗ ∗ ∗

∗ ∗ ∗ a4

3

2

1

4

A−

1 4 2 3

a1 ∗ ∗ ∗

∗ ∗ ∗ a3

∗ ∗ a2 ∗

∗ a4 ∗ ∗

1

3

2

4

A+
∗

1 3 2 4

∗ ∗ a2 ∗

∗ a3 ∗ ∗

a1 ∗ ∗ ∗

∗ ∗ ∗ a4

2

3

1

4

;

A−

∗

the configurations of type B are

1 2 4 3

a1 ∗ ∗ ∗

∗ a2 ∗ ∗

∗ ∗ ∗ a3

∗ ∗ a4 ∗

1

2

3

4

B+(2)

1 2 3 4

∗ a2 ∗ ∗

a1 ∗ ∗ ∗

∗ ∗ a3 ∗

∗ ∗ ∗ a4

2

1

3

4

B−(3)

1 3 4 2

a1 ∗ ∗ ∗

∗ a3 ∗ ∗

∗ ∗ ∗ a2

∗ ∗ a4 ∗

1

3

2

4

B+(3)

1 3 2 4

∗ a3 ∗ ∗

a1 ∗ ∗ ∗

∗ ∗ a2 ∗

∗ ∗ ∗ a4

3

1

2

4

B−(2)

and configurations of types C and D are

1 2 4 3

∗ a2 ∗ ∗

a1 ∗ ∗ ∗

∗ ∗ ∗ a3

∗ ∗ a4 ∗

2

1

3

4

C(2,3)

1 3 4 2

∗ a3 ∗ ∗

a1 ∗ ∗ ∗

∗ ∗ ∗ a2

∗ ∗ a4 ∗

3

1

2

4

C(3,2)

1 3 2 4

a1 ∗ ∗ ∗

∗ ∗ a2 ∗

∗ a3 ∗ ∗

∗ ∗ ∗ a4

1

2

3

4

D

1 2 3 4

a1 ∗ ∗ ∗

∗ ∗ a3 ∗

∗ a2 ∗ ∗

∗ ∗ ∗ a4

1

3

2

4

D∗

In Subsection 6.6 we obtained equivalences MP
s(r,d)

∼=
−→ BrA(s), s ∈ N4, where

A is a BC-box of type A+, A− or B. Since the boxes of BC and BT types are related
as explained in the Remark 7.1, thus the canonical small reduction automaton in
this case can be obtained from the automaton (27) by gluing states Aσ with Aσ

∗ D
with D∗ :

B+(2)

(31)
//

(13)

##GG
GGGG

GGGG
GGG

C(2,3)

(32)
oo

(23)
//
B−(3)

(24)
oo

(42)

{{www
wwwww

wwwww

A+

(13)
""EE

EE
EE

EE
EE

EE

(12)

<<yyyyyyyyyyyy

(31)

��

(21)

LL D
(14)

oo
(41)

// A−

(43)

bbEEEEEEEEEEEE

(42)
||yy

yy
yy

yy
yy

yy

(34)

��

(24)

RR

B+(3)

(21)
//

(12)

;;wwwwwwwwwwwww
C(3,2)

(32)
oo

(23)
//
B−(2)

(34)
oo

(43)

ccGGGGGGGGGGGGG

(28)



SIMPLE VECTOR BUNDLES ON PLANE DEGENERATIONS OF AN ELLIPTIC CURVE 31

For the BT-boxes we have

•

• •

•1

2 3

4
��

oo
����

��
��

�

•

• •

•1

2 3

4oo

__???????

OO

•

• •

•1

2 3

4

oo
__???????����

��
��

�

oooo •

• •

•1

2 3

4

//

��
oo

OO

•

• •

•1

2 3

4

OO

��

__???????����
��

��
�

oo oo

A+=A+
∗ A−=A−

∗ C(2,3) C(3,2) D=D∗

and four configurations of type B :

•

• •

•1

2 3

4

oo

��

__???????����
��

��
�

oo •

• •

•1

2 3

4

//

��

__???????

OO

oo •

• •

•1

2 3

4

//

��

OO

����
��

��
�

oo •

• •

•1

2 3

4

oo
__???????

OO

����
��

��
�

oo

B+(2) B−(2) B+(3) B−(3)

All edge arrows of the poset A are minimal. The posets B and D are of height
2, and the differential biquivers are uniquely defined, by the rule as follows: for a
triangle i ≺ j ≺ k and arrows a : j → i, b : k → i, and c : k → j the arrow b is
minimal ∂(a) =

∑
k bvc and ∂(c) = −

∑
i vab (i.e. the differential in a triangle is as

in (24)). For the poset C one should additionally give a pair of minimal edges: for
C(2, 3) they are 3 → 2 and 4 → 1, for C(3, 2) they are 2 → 3 and 4 → 1. The the
differential of another arrow consist of the path of length 3 and degree one.

Rank and degree. For configurations of types A, C and B let Imin ⊂ I be the
subset of minimal vertices and Imax ⊂ I be the subset of maximal vertices. For a
dimension vector s ∈ N4 let us introduce new discrete parameters (α, β):

– for a box of type either A or C define α :=
∑

i∈Imin

si and β :=
∑

k∈Imax

sk;

– for a box Bσ(j) define define α := sj +
∑

i∈Imin

si and β := sj +
∑

k∈Imax

sk.

Lemma 10.1. Let Γ be the automaton either (27) or (28) and p : γ → γ′ a path
on it connecting principal states γ and γ′ and taking s 7→ s′ and (α, β) 7→ (α′, β ′).
Then gcd(α, β) = gcd(α′, β ′).

Proof. It is sufficient to check the statement on the shortest paths. For the transi-
tions (i.e. paths paths of length one.) A → B or C → B we have (α′, β ′) = (α, β).
For the transitions A → A, B → C or a path of length two B → A, we have

(α′, β ′) =

{
(α − β, β), if α ≥ β;
(α, β − α), if otherwise.

That completes the proof. �

To obtain the statement of the Theorem 1.2 for Kodaira fibers I3 and IV we should
replace the pair (α, β) by the rank and degree (r, d) using Tables 3 and 4. In every
case from Tables 2 – 4 but cases 2 and 2′ of 4 we have (α, β) = (r−d mod r, d mod r).
I the cases 2 and 2′ of 4 we have respectively (α + β, β) = (r − d mod r, d mod r)
and (α, α + β) = (r − d mod r, d mod r).
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11. Examples and remarks

Example 11.1. Let E be a curve from the list with 2 components i.e. the Kodaira
cycle I2 or the fiber III. Let us describe vector bundles on E of rank r = 9 and
multidegree (d1, d2) = (3, 2) using the algorithm 7.2.

(1) The normalization bundle F̃ is

F̃|L1 = O6
L1

⊕
(
OL1(1)

)3
and F̃ |L2 = O7

L2
⊕
(
OL1(1)

)2
.

(2) Since d̄ = d = 5 < 9 = r thus the input state for the automaton is A+ for
E = I2 and A+(1) for E = III; and the dimension vector is s = (s1, s2, s3) =
(4, 2, 3).

(3) Taking on automaton (25) the path

p : A+ (12)
−→ B

(31)
−→ A− (23)

−→ A− (23)
−→ A− (32)

−→ B
(13)
−→ A+ (12)

−→ B
(31)
−→ A−

we get the reduction of sizes:

(4, 2, 3)
(12)
7−→ (2, 2, 3)

(31)
7−→ (2, 2, 1)

(23)
7−→ (2, 1, 1)

(23)
7−→ (2, 0, 1)

(32)
7−→ (2, 0, 1)

(13)
7−→ (1, 0, 1)

(12)
7−→ (1, 0, 1)

(31)
7−→ (1, 0, 0).

(4) Reversing the path p we construct a canonical form of the matrix M ∈ BrA(4, 2, 3).

If E be Kodaira cycle I2 then

1

λ 1
(31)
7−→

1 3

0 1

λ 0

1

3

(12)
7−→

1 3

0 1

λ 0

1

3

(13)
7−→

1 3

0 1 0

0 0 1

λ 0 0

1

3

(32)
7−→

1 3

0 1 0

0 0 1

λ 0 0

1

3

(23)
7−→

1 2 3

0 0 0 1

0 1 0 0

0 0 1 0

λ 0 0 0

2

1

3

(23)
7−→

1 2 3

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

λ 0 0 0 0

2

1

3

(31)
7−→

1 2 3

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

λ 0 0 0 0 0 0

1

2

3

(12)
7−→

1 3 2

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

λ 0 0 0 0 0 0 0 0

1

2

3

Let us construct the canonical form for the tacnode curve. Besides zeros we also use
the empty spaces to mark out blocks, where zeros appears for some general reasons
and the corresponding box contains no such arrow. Note that the order of row and
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column blocks are chosen in such a way that the matrices have block triangular form
(probably with some additional holes).

1

λ 1
(31)
7−→

1 3

λ 1

0

1

3

(12)
7−→

1 3

λ 1

0

1

3

(13)
7−→

1 3

λ 1 0

0 0 1

0

1

3

(32)
7−→

1 3

λ 1 0

0 0 1

0

1

3

(23)
7−→

2 1 3

0 1

λ 1 0

0 0 1

0

2

1

3

(23)
7−→

2 1 3

0 1 0

0 0 1

λ 1 0

0 0 1

0

2

1

3

(31)
7−→

1 2 3

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

λ 1 0

0 0 1

0 0 0

1

2

3

(12)
7−→

1 3 2

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

λ 1 0

0 0 1

0 0 0

0 0

0 0

1

3

2

Remark 11.2. For a Kodaira fiber II, III and IV the parameter λ of the canonical
form of M(λ) can be moved to any place on the diagonal, as well as it can be
distributed as λ

r
to each diagonal entries. This way the canonical form resembles to

the Jordan normal form. For instance in the last example we get:

λ
9

0 0 0 1 0 0 0 0

0 λ
9

0 0 0 1 0 0 0

0 0 λ
9

0 0 0 0 1 0

0 0 0 λ
9

0 0 0 0 1
λ
9

1 0

0 λ
9

1

0 0 λ
9

λ
9

0

0 λ
9

(29)

12. Properties of simple vector bundles

12.1. Tensor products. Let Λ := k∗ if E a Kodaira cycle and k if E is a Kodaira

fiber (Λ ∼= Pic
(0,...,0)(E)). Let E(λ) ∈ VB

s
E(r,d) and L(λ) ∈ Pic

(0,...,0)
E be respectively

a simple vector bundle and the line bundle with the matrix M = M(λ) ∈ BrA and
the parameter λ ∈ Λ.
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Proposition 12.1. For λ1, λ2 ∈ Λ we have

E(λ1) ⊗ L(λ2) =

{
E(λ1 · λ

r
2) if E is a Kodaira cycle I1, I2 or I3;

E(λ1 + r · λ2) if E is a Kodaira fiber II, III or IV.

Proof. Let (F̃ , V, µ̃′(λ1)) and (Õ,OS, µ̃′′(λ2)) be the triples of the vector bundle
E(λ1), the line bundle L(λ2). Then the triple of the vector bundle E(λ1) ⊗O L(λ2)

is (F̃ , V, µ̃ := µ̃′(λ1) ⊗ µ̃′′(λ2)).
For Kodaira fiber I: OS = k and O

eS = k ⊕ k, µ̃′(λ1)) = (I, M(λ1)) and µ̃′′(λ2)) =
(1, λ2).

µ̃ = µ̃′(λ1) ⊗
OeS

µ̃′(λ2)) =
(
I, M(λ1

)
· (1, λ2)

= (I, λ2 · M(λ1)
)

= (I, M(λ1 · λ
r
2)
)
.

To obtain the last equality one should reduce λ2 · M(λ1) to the canonical form
preserving the first I-matrix. Let as illustrate it on the case r = 2 :

(
µ̃(0), µ̃(∞)

)
=

(
1 0

0 1
, λ2

0 1

λ1 0

)
=

(
1 0

0 1
,

0 λ2

λ1λ2 0

)

=

(
1

λ2

0

0 1
,

0 1

λ1λ2 0

)
=

(
1 0

0 1
,

0 1

λ1λ
2
2 0

)
.

For Kodaira fiber II: OS = k and O
eS

= k[ε]/ε2, µ̃′(λ1)) = I + ε · M(λ1) and
µ̃′′(λ2)) = 1 + ε · λ2.

µ̃ = µ̃′(λ1) ⊗
OeS

µ̃′′(λ2)) =
(
I + ε · M(λ1)

)
· (1 + ε · λ2)

= I + ε ·
(
M(λ1) + λ2 · I

)
= I + ε · M(λ1 + λ2).

The last equality follows emmediately if we rewrite M(λ) in the “diagonal” form
(29). For example, if r = 2 and d = 1 we have

µ̃ = µ̃(0) + εµ̃ε(0) =
1 0

0 1
+ ε ·

(
λ1

2
1

0 λ1

2

+
λ2 0

0 λ2

)
=

1 0

0 1
+ ε

λ1+2λ2

2
1

0 λ1+2λ2

2

.

For Kodaira cycles I2, I3 and fibers III and IV the calculations should be carried out
on each component. On the first component the picture is similar to the cases of I
and II. On the other components we have µ̃k = µ̃′

k. �

Example 12.2. If r = 3 and d = (1, 1) for Kodaira cycle I2 we have



1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

λ1 0 0

1 0 0

0 0 1

0 1 0

1 0 0

0 1 0

0 0 1




·

(
1 λ2

1 1

)
=




1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

λ1λ
3
2 0 0

1 0 0

0 0 1

0 1 0

1 0 0

0 1 0

0 0 1



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and for Kodaira fiber III taking λ := λ1 + 3λ2 we have



1 0 0

0 1 0

0 0 1

+ ε1

λ1 1 0

0 0 1

0 0 0

1 0 0

0 0 1

0 1 0

+ ε2

0 0 0

0 0 0

0 0 0




·

(
1 + ε1 λ2

1 + ε2 0

)
=




1 0 0

0 1 0

0 0 1

+ ε1

λ 1 0

0 0 1

0 0 0

1 0 0

0 0 1

0 1 0

+ ε2

0 0 0

0 0 0

0 0 0




.

12.2. Morphisms.

Proposition 12.3. Let E be one of the curves from Table (1). Then

HomE

(
E(λ1), E(λ2)

)
= 0.

Proof. From the equivalence VB
s
E(r,d)

∼
→ BrA(s) we have:

HomE

(
E(λ1), E(λ2)

)
= HomA

(
M(λ1), M(λ2)

)

Let (S, S ′) or S ∈ HomA

(
M(λ1), M(λ2)

)
. If r = 1 and (S, S ′) 6= 0 then S ′ = S ∈ k∗

and since M(λ1) = λ1 , and M(λ2) = λ2 , we get a contradiction: Sλ1S
−1 =

λ2. Recall that a path p on a small reduction automaton gives an equivalence of

the categories BrA(s) p
−→ BrA′(s′), where s′ ≤ s. Thus the statement follows by

induction on the dimension vector s along the path p. �

Remark 12.4. By the same approach one can also describe torsion free sheaves
which are not vector bundles. We are going to consider this situation in further
works. One can also consult [Bod07] Sections 3.3, 4.5 and 7.7 about torsion free
sheaves on cuspidal and tacnode curves.
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