Литература -

- Башев В. А. Представления группы Z₂×Z₂ в поле характеристики 2 // Докл. АН СССР. 1961. Т. 141, № 5. С. 1015—1018.
 Бондаренко В. М. Представления диэдральных групп над полем характеристики 2 // Мат. сб. 1975. Т. 96, № 1. С. 63—74.
 Бондаренко В. М., Дрозд Ю. А. Представленческий тип конечных групп // Зап. науч. семинаров ЛОМИ АН СССР. 1977. Т. 71. С. 24—41.
 Боревич З. И., Фаддеев Д. К. Теория гомологий в группах. 11 // Вестн. Ленингр. ун-та. 1959. № 7. С. 72—87.
 Гудивок П. М. О представлениях конечных групп над полным дискретно нормированным кольцом // Тр. Мат. ин-та АН СССР. 1978. Т. 148. С. 96—105.
 Кругляк С. А. О представлениях группы (р, р) над полем характеристики р // Докл. АН СССР. 1963. Т. 153, № 6. С. 1253—1256.
 Назарова Л. А., Ройтер А. В. Линейно-алгебраический метод в теории представлений // Липейная алгебра и теория представлений. Киев, 1983. С. 3—18.
 Саркисян Р. А. Проблема сопряженности для наборов целочисленных матриц //

- Ставлении // Линеиная алгеора и теория представлений. Киев, 1983. С. 3—18.

 8. Саркисян Р. А. Проблема сопряженности для наборов целочисленных матриц // Мат. заметки. 1979. Т. 25, № 6. С. 811—824.

 9. Супруненко Д. А. Группы матриц. М., 1972. 352 с.

 10. Фаддеев Д. К. Обэквивалентности систем целочисленных матриц // Изв. АН СССР. Сер. мат. 1966. Т. 30, № 2. С. 449—454.
- 11. Brenner S. Modular representations of p-groups // J. Algebra. 1970. Vol. 15, N 1. P. 89-102.
- Friedland S. Simultaneous similarity of matrices // Advances in Math. 1983. Vol. 50. P. 189-265.
 Higman D. G. Indecomposable representations at characteristic p // Duke Math. J. 1954. Vol. 21. P. 377-381.
 Roggenkamp K. W. Darstellungen endlicher Gruppen in Polynomringen // Math. Ztschr. 1967. Bd 96. S. 399-407.

Ю. А. ДРОЗД

КОНЕЧНЫЕ МОДУЛИ НАД ЧИСТО НЕТЕРОВЫМИ АЛГЕБРАМИ

1. Введение

Назовем нетеревой алгеброй такое кольцо A, что его центр C нетеров и Aявляется конечно-порожденным C-модулем. Если, кроме того, A не содержит минимальных идеалов, будем говорить, что A — чисто нетерова алгебра. $\operatorname{mod-}A$ категорию конечно-порожденных (правых) А-модулей, рг-А — ее полную подкатегорию, состоящую из проективных модулей, и fin-A — категорию A-модулей конечной длины. Очевидно, fin-A=II $fin-A_{m_s}$ где \mathfrak{m} пробегает пространство максимальных идеалов центра $\mathfrak{max}\ \mathcal{C},\ \mathfrak{a}\ A_{\mathfrak{m}}$ обозначает m-адическое пополнение кольца A,

Хорошо известно [2], что если A = C — дедекиндово кольцо, то неразложимый A-модуль M конечной длины однозначно определяется своей длиной l_4 (M) и носителем s(M), т. е. единственным идеалом $\mathfrak{m} \in \max C$, для которого $M_{\mathfrak{m}} \neq 0$. Из работ [5, 16] следует, что если A — наследственная чисто нетерова алгебра, то для любого \mathfrak{m} \in \mathfrak{max} C кольцо $A_{\mathfrak{m}}$ обобщенно-однорядно, а потому неразложимый A-модуль M конечной длины однозначно определяется своей длиной, носителем и проективным накрытием (как $A_{\rm m}$ -модуля).

Напомним еще несколько примеров, в которых получено «хорошее» описание A-модулей конечной длины (как говорят, алгебра A — «ручная»).

- 1.1. A = K [x, y]/(xy), где K некоторое поле [3].
- 1.2. $A = K\langle x, y \rangle / (x^2, y^2)$ [1, 18].

Заметим, что в этом случае A можно отождествить с подкольцом в M_2 (K [t]), состоящим из таких матриц (a_{ij}) , в которых $a_{11}(0)=a_{22}(0)$, а $a_{12}(0)=0$ (для этого нужно отождествить x с e_{21} , а y с te_{12}).

1.3. Рассмотрим «задачу Гельфанда» [13]: описание диаграмм конечномерных векторных пространств вида

$$V_1 \stackrel{a}{\rightleftharpoons} V_2 \stackrel{d}{\rightleftharpoons} V_3$$

где $ab\!=\!cd$. Легко видеть, что такие диаграммы можно трактовать как модули конечной длины над подкольцом $A \subset M_3$ (K [t]), состоящим из матриц, в которых $a_{ij}(0)=0$ при $2\neq i\neq j$, для этого нужно отождествить V_i с Me_{ii} , оператор a с умножением на e_{21} , b — с умножением на te_{12} , c — на e_{23} и d — на te_{32} .

С другой стороны, если A = K[x, y], то, как показано в [4, 11], описание А-модулей конечной длины содержит в себе классификацию любых наборов линейных операторов (как говорят, алгебра A — «дикая»). Цель настоящей работы — установить, какие чисто нетеровы алгебры являются ручными, а какие дикими.

Для упрощения изложения будем предполагать, что \mathcal{C} — конечно-порожденная алгебра над алгебраически замкнутым полем К, либо локализация, либо пополнение такой алгебры по некоторому максимальному идеалу. В этом случае термин «ручной» и «дикий» можно определить, как в [6, 7]. Именно, назовем представлением A над некоторой K-алгеброй Λ бимодуль ${}_{\Lambda}F_A$, конечно-порожденный и проективный как левый Л-модуль. Такое представление назовем строгим, если из того, что $N \otimes_{\Lambda} F = M \otimes_{\Lambda} F$ для некоторых $N, M \in \text{fin-}\Lambda$, следует, что и $N \simeq M$. Алгебра A называется дикой, если у нее есть строгое представление над любой конечно-порожденной K-алгеброй Λ (как известно, для этого достаточно, чтобы A имела строгое представление над свободной алгеброй $\Sigma = K \langle x, y \rangle$ с двумя образующими).

Рациональной алгеброй называется [6] конечно-порожденная K-алгебра Γ , такая, что $K[t] \subset \Gamma \subset K(t)$. Говорят, что алгебра A — ручная, если для любого т ϵ тах ϵ и любого натурального ϵ существует конечное множество представлений $\{F_1,\ldots,F_s\}$ алгебры A над некоторыми рациональными алгебрами Γ_1,\ldots,Γ_s соответственно, такое, что всякий неразложимый A-модуль длины l с носителем т изоморфен $N \otimes_{\Gamma} F$, для некоторого i и некоторого $N \in \text{fin-}\Gamma$.

Никакая алгебра не может быть одновременно ручной и дикой [6], причем Aручная тогда и только тогда, когда все $A_{\rm m}$ ручные. Более того, если некоторая $A_{\rm m}$ дикая, то и A дикая. Наследственная чисто нетерова алгебра ручная, так как имеет лишь конечное число неразложимых модулей с данной длиной и носителем. Из дальнейших выкладок следует, что, и наоборот, если для любых $m{l}$ и $\mathfrak m$ существует лишь конечное число неразложимых A-модулей длины l с носителем m (где A — чисто нетерова алгебра), то A наследственна.

Для формулировки основной теоремы введем следующие обозначения. Если $\mathfrak{m} \in \max C$, положим $J_{\mathfrak{m}} = \operatorname{rad} A_{\mathfrak{m}}$ (радикал Джекобсона), $B_{\mathfrak{m}} = \operatorname{End} J_{\mathfrak{m}}$ (как левого $A_{\mathfrak{m}}$ -модуля). Так как A чисто нетерова, естественный гомоморфизм $A_{\mathfrak{m}} o B_{\mathfrak{m}}$ инъективен, т. е. $A_{\mathfrak{m}}$ можно рассматривать как подкольцо в $B_{\mathfrak{m}}$. Обозначим $d_{\mathfrak{m}}(A) = \max_{U} l_{A}(B_{\mathfrak{m}} \bigotimes_{A} U)$, где U пробегает все простые левые A-модули.

 ${f T}$ e o ${f p}$ e ${f m}$ a ${f 1}$. Для того чтобы чисто нетерова алгебра ${f A}$ была ручной, необходимо и достаточно, чтобы для любого т (тах С выполнялись условия:

- 1) $B_{\mathbf{m}}$ наследственно;
- 2) rad $B_{\mathfrak{m}} = J_{\mathfrak{m}}$;
- 3) $d_{\mathfrak{m}}(A) \leqslant 2$.

В противном случае алгебра A дикая.

Замечание 1. При соответствующем изменении определений ручной и дикой алгебры теорема 1 остается верной для любых чисто нетеровых алгебр. Принципиальная схема доказательства также сохраняется, хотя выкладки становятся более громоздкими.

Замечание 2. Если алгебра $A_{\mathfrak{m}}$ является базисной, т. е. $A_{\mathfrak{m}}/J_{\mathfrak{m}}$ — прямое произведение тел, то $d_{\mathfrak{m}}(A)$ совпадает с числом образующих $B_{\mathfrak{m}}$ как правого $A_{\mathfrak{m}}$ -модуля. Однако в общем случае это не так. Действительно, пусть S=K[[t]] и A — подкольцо в $M_3(S)$, состоящее из таких матриц (a_{ij}) , в которых $a_{13}(0)=a_{23}(0)=0$. Тогда C=S содержит единственный максимальный идеал \mathfrak{m} , причем $A_{\mathfrak{m}}=A$. Легко видеть, что $J=\operatorname{rad} A=M_3(\mathfrak{m})$, а $B=\operatorname{End} J=M_3(S)$, откуда сразу получаем $d_{\mathfrak{m}}(A)=2$, но число образующих B как A-модуля равно 3. Этот пример показывает, что в формулировке основной теоремы, приведенной в докладе [8], условие (3) неверно: в нем вместо числа образующих должна фигурировать величина $d_{\mathfrak{m}}(A)$.

Замечание З. Из условий 1), 2) и результатов работы [10] следует, что $B_{\rm m}$ совпадает и с кольцом эндоморфизмов $J_{\rm m}$ как правого $A_{\rm m}$ -модуля. Поэтому в определениях и формулировке теоремы 1 можно заменять друг на друга слова «левый» и «правый» (в любом варианте).

2. Предварительные результаты

Очевидно, алгебра A удовлетворяет условиям 1)—3) тогда и только тогда, когда им удовлетворяют алгебры $A_{\mathfrak{m}}$ при всех $\mathfrak{m} \in \max C$. Поэтому далее предположим, что C — полная локальная алгебра с максимальным идеалом \mathfrak{m} , причем $C/\mathfrak{m}=K$. Обозначим $J=\operatorname{rad} A$, $B=\operatorname{End} J$ (как левого A-модуля).

Если $e \in A$ — идемпотент, обозначим $A_e = eAe$. Алгебру A_e назовем минором A. Если, кроме того, $e=e_1+\ldots+e_r$, где e_i — ортогональные, попарно не сопряженные, примитивные идемпотенты, будем говорить, что A_e является r-минором алгебры A. Из работы [15] непосредственно вытекает следующее утверждение.

2.1. Если алгебра A ручная, то и любой ее минор ручной, а если какойчибудь минор A дикий, то и алгебра A дикая.

Обозначим S=K [[t]]. При сделанных предположениях S — это единственная локальная наследственная алгебра. Алгебру A назовем полумаксимальной, если $A_e \simeq S$ для любого примитивного идемпотента e. Мы докажем уточненную версию основной теоремы.

Теорема 2. Следующие условия равносильны:

- а) алгебра А ручная;
- ам) все 1-миноры, 2-миноры и полумаксимальные 3-миноры алгебры А ручные;
- б) алгебра А удовлетворяет условиям 1)—3) теоремы 1;
- 6м) все 1-, 2- и полумаксимальные 3-миноры алгебры A удовлетворяют условиям 1)—3) теоремы 1;
 - в) алгебра А недикая;
 - вм) все 1-, 2- и полумаксимальные 3-миноры алгебры А недикие.
- Ввиду 2. 1 и того, что ручная алгебра не может быть дикой, достаточно доказать импликации вм) \Rightarrow б) \Rightarrow а). Отметим прежде всего, что все условия теоремы 2, как легко видеть, сохраняются при Морита-эквивалентности. Поэтому алгебру A далее будем считать базисной (в данном случае это означает,

что $A/J \simeq K^n$). Фиксируем разложение $1=e_1+\ldots+e_n$, где e_i — примитивные ортогональные идемпотенты. Всякий идемпотент в A сопряжен с некоторым $e=e_{i_1}+\ldots+e_{i_r}$, так что всякий r-минор A изоморфен некоторому A=A ($i_1i_2\ldots i_r$). Если V — какой-нибудь A-бимодуль, обозначим $V_{i,j}=e_iVe_j$, $V_i=V_{ii}$. Пирсовское разложение $V=\oplus V_{ij}$ будем записывать в «матричном виде»:

$$V = \begin{bmatrix} V_1 & V_{12} & \dots & V_{1n} \\ V_{21} & V_2 & \dots & V_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ V_{n1} & V_{n2} & \dots & V_{nn} \end{bmatrix}.$$

Следующий результат непосредственно вытекает из списка недиких локальных алгебр, данного К. М. Рингелем [19].

2. 2. Если алгебра A — локальная и недикая, то она изоморфна либо S, либо $T_1 = K$ [[x, y]]/(xy), либо $T_2 = K \ll x$, $y \gg /(x^2, y^2)$.

Для доказательства достаточно заметить, что алгебры типов 2-8 из списка Рингеля содержат минимальные идеалы, чисто нетерова алгебра типа 1 изоморфна T_1 и типа $9-T_2$.

2. 3. Следствие 1. Если все 1-миноры алгебры A недикие, то в C нет имъпотентов и Kr. dim C=1.

Доказательство. Ввиду 2. 2 для любого i алгебра A_i изоморфна либо T_1 , либо T_2 , либо S. В первом случае ее центр C_i изоморфен T_1 , в остальных — S, так что в C_i нет нильпотентов и Kr. dim C_i =1. Но C вкладывается в $\bigoplus C_i$, следовательно, то же верно и для C.

Напомним, что чисто нетерова наследственная алгебра всегда полупервична [14], а размерность Крулля ее центра равна 1 (это следует, например, из [17]). Поэтому далее будем считать, что в C нет нильпотентов и Kr. dim C=1.

Обозначим \tilde{C} полное кольцо частных C (оно является прямым произведением полей). Для любого C-модуля M пусть $\tilde{M} = M \otimes_{\tilde{C}} \tilde{C}$, а $\tilde{\varphi} : \tilde{M} \to \tilde{N}$ — гомоморфизм, индуцированный гомоморфизмом $\varphi : M \to N$. Так как алгебра A чисто нетерова, ее можно отождествить с $A \otimes 1 \subset \tilde{A}$. При этом B отождествляется с $\{a \in \tilde{A} \mid Ja \subset J\}$. Очевидно, алгебра \tilde{A} артинова.

По аналогии с [7] определим бимодуль $U=U_A$ над категорией рг-A формулой $U(Q,P)=\mathrm{Hom}_A(Q,PJ)$ и рассмотрим категорию R(U), множество объектов которой — объединение всевозможных U(Q,P), а морфизм из объекта $u\in U(Q,P)$ в объект $u'\in U(Q',P')$ определяется как такая пара (g,f), что $g:Q\to Q', f:P\to P'$ и fu=u'g. Сопоставляя u его коядро, получим полный функтор $\pi=\pi_A:R(U)\to \mathrm{mod}_A$. Обозначим $R_0(U)$ полную подкатегорию в R(U), состоящую из таких $u\in U(Q,P)$, что $\mathrm{Ker}\ u\in QJ$, а $R_1(U)$ — полную подкатегорию в $R_0(U)$, состоящую из тех u, для которых $\mathrm{Coker}\ \tilde{u}=0$.

2. 4. Ограничение π на $R_0(U)$ — представленческая эквивалентность, т. е. всякий объект из mod-A изоморфен некоторому $\pi(u)$, причем если $\pi(u) \simeq \pi(u')$, то и $u \simeq u'$. При этом $\pi(u) \in \text{fin-}A$ тогда и только тогда, когда $u \in R_1(U)$.

Доказательство первого утверждения аналогично [7], второе следует из того, что Kr. dim C=1, а потому fin- $A=\{M\in \operatorname{mod-}A\mid \widetilde{M}=0\}$.

Напомним [7], что для любой K-алгебры Λ можно определить бимодуль $U \otimes \Lambda$ над категорией pr- $A \otimes \Lambda$ (полагая для P, $Q \in \text{pr-}A$. ($U \otimes \Lambda$) (Q, P) = $U(Q, P) \otimes \Lambda$) и строгие элементы в нем. Повторяя рассуждения из § 5 работы [7], устанавливаем следующий результат.

2.5. Алгебра A дикая тогда и только тогда, когда найдется такой строгий элемент $u \in R(U \otimes \Sigma)$, что Сокег $\tilde{u} = 0$. Если же бимодуль U_A ручной, то и алгебра A ручная.

Надкольцом алгебры A назовем такую чисто нетерову алгебру $A' \supset A$, что $\mathfrak{m}^k A' \subset A$ для некоторого k. Это означает, что A' = A и фактор-модуль A'/A конечной длицы. В частности, алгебра B является надкольцом A.

2.6. Если какое-нибудь надкольцо A' алгебры A дикое, то и A дикая.*

Доказательство. Из теоремы Крула—Шмидта следует, что всякий проективный A'-модуль изоморфен прямому слагаемому некоторого модуля P' = PA', где P— проективный A-модуль. Если алгебра A' дикая, то ввиду (2.5) существует строгий элемент u, такой, что $\operatorname{Coker} \tilde{u} = 0$. Пусть $u \in (U_{A'} \otimes \Sigma)(Q_1, P_1)$. Подберем проективные A-модули Q и P, такие, что $Q' = Q_1 \oplus Q_2$ и $P' = P_1 \oplus P_2$. Увеличивая Q, можно добиться, чтобы существовал эпиморфизм $Q_2 \to P_2 J$. Тогда u продолжается до строгого элемента $u' \in (U_{A'} \otimes \Sigma)(Q', P')$, такого, что $\operatorname{Coker} \tilde{u}' = 0$. Выберем неделитель нуля $c \in \mathfrak{m}^{k+1}$. Тогда $cP' \subset \mathfrak{m}P \subset PJ$, т. е. cu' можно рассматривать как элемент из $(U_A \otimes \Sigma)(Q, P)$. Очевидно, он строг и $\operatorname{Coker} c\tilde{u}' = 0$, значит, ввиду 2.5, алгебра A дикая.

Пусть V — конечнопорожденный A-бимодуль, $\bar{V} = V/(JV + VJ)$ и $\bar{V}_{ij} = e_i \bar{V} e_j$. Положим $d_{ij}(V) = [V_{ij} \colon K]$ (размерность над полем K) и определим колчан $\operatorname{sq}(V)$ как граф с 2n вершинами σ_i и τ_i ($i=1,\ldots,n$), в котором из σ_i в τ_i ведет $d_{ij}(V)$ стрелок для любых i,j (и других стрелок нет). Если V — подбимодуль в \bar{A} , то найдется такой неделитель нуля $c \in C$, что $cV \subset J$. Очевидно, $\operatorname{sq}(cV) \simeq \operatorname{sq}(V)$. Учитывая, что $V_{ij} \simeq \operatorname{Hom}_A(P_j, P_i V)$, где $P_i = e_i A$, из 2.5 непосредственно получаем следующее утверждение.

2.7. Если V — конечно-порожденный A-подбимодуль в \tilde{A} (например, идеал или надкольцо A), причем колчан $\operatorname{sq}(V)$ дикий, то и алгебра A дикая.

Замечание 4. Если A удовлетворяет условиям 1)—2) теоремы 1, то условие 3) равносильно тому, что $[Be_j/Je_j\colon K]\leqslant 2$ для любого номера j, т. е. $\Sigma_id_{if}(B)\leqslant 2$ (иными словами, в колчане $\mathrm{sq}\,(B)$ в каждую точку входит не более двух стрелок).

3. Доказательство импликации вм) \Rightarrow б)

Сохраним все предположения и обозначения § 2. Тогда $B_{ij} = \bigcap_{k=1}^n B_{ij}^{(k)}$, где $B_{ij}^{(k)} = \{a \in \tilde{A}_{ij} | J_{ki}a \subset J_{kj}\} \simeq \operatorname{Hom}_{A_k}(J_{ki}, J_{kj})$. Поскольку при $i \neq j$ идемпотенты e_i и e_j не сопряжены в A, то $J_{ij} = A_{ij}$. Пусть, далее, A удовлетворяет условию вм) теоремы 2.

3.1. Алгебра A полупервична.

Доказательство. Полупервичность равносильна полупростоте A. Обозначим $\tilde{I}=\operatorname{rad}\tilde{A},\ I=A\cap \tilde{I}.$ Из 2.2 следует, что все алгебры A_i полупервичны, так что $I_i=0$. Покажем, что если $I_{ij}\neq 0$, то минор A(ij) дикий. Для упрощения обозначений будем считать, что $A=A(ij),\ i=1,\ j=2$. Так как $I_{21}I_{12}=I_{12}I_{21}=0$, то I_{21} — идеал в A и достаточно доказать дикость $A/I_{21}.$ Поэтому можно считать, что $I_{21}=0$. Так как алгебры A_i полупростоты, у A_i есть максимальное надкольцо A_i' [9], а у A— надкольцо $A_1'+A_2'+A_1'I_{12}A_2'$. Если I_i — примитивные идемпотенты в A_i' , то $I_iA'I_i\simeq S$. Пусть $I_i=I_1+I_2$. В силу 2.1

^{*)} Из теоремы 2 легко вывести, что если А ручная, то и любое ее надкольцо ручное.

т 2.6 достаточно доказать дикость алгебры A_f' , поэтому можно считать, что $A=A_f'$. Тогда A изоморфна алгебре матриц вида

$$\begin{bmatrix} S & W \\ 0 & S \end{bmatrix}$$
,

тде $W = A_{12}$ — некоторый S-бимодуль.

Рассмотрим в W ряд подмодулей W_k , где $W_0=W$ и $W_{k+1}=tW_k+W_kt$. Так как W конечно порожден и не содержит конечномерных подмодулей, то $W_k \neq W_{k+1}$. Выберем $\omega_k \in W_k \setminus W_{k+1}$ и рассмотрим элемент $u \in (U_A \otimes \Sigma)(P_1^5 \oplus P_2^2, P_1^5)$, задаваемый матрицей

$$\begin{bmatrix} t & 0 & 0 & 0 & 0 & \omega_0 & 0 \\ 0 & t^3 & 0 & 0 & 0 & 0 & \omega_1 \\ 0 & 0 & t^5 & 0 & 0 & \omega_2 & \omega_2 \\ 0 & 0 & 0 & t^7 & 0 & \omega_3 & \omega_3 x \\ 0 & 0 & 0 & 0 & t^9 & \omega_4 & \omega_4 y \end{bmatrix}$$

(мы учитываем, что $\operatorname{Hom}_{A}(P_{j},\ P_{i})\simeq A_{ij}$). Очевидно, $\operatorname{Coker} \tilde{a}=0$. Проверим, что u — строгий элемент. Пусть в Σ -модуле M умножение на x задается матрицей X, а умножение на y — матрицей Y. Тогда элемент $u\otimes M\in U$ ($P_{1}^{5}\otimes M\oplus P_{2}^{5}\otimes M,\ P_{1}^{5}\otimes M$) задается матрицей

$$u(X, Y) = \begin{bmatrix} tE & 0 & 0 & 0 & 0 & \omega_0 E & 0 \\ 0 & t^3 E & 0 & 0 & 0 & 0 & \omega_1 E \\ 0 & 0 & t^5 E & 0 & 0 & \omega_2 E & \omega_2 E \\ 0 & 0 & 0 & t^7 E & 0 & \omega_3 E & \omega_3 X \\ 0 & 0 & 0 & 0 & t^9 E & \omega_4 E & \omega_4 Y \end{bmatrix},$$

где E — единичная матрица.

Пусть Σ -модуль N задается парой матриц (X', Y'). Морфизм $\varphi: u \otimes M \to u \otimes N$ задается парой матриц $\Phi = (\Phi_{ij})$ $(i, j = 1, \ldots, 5)$ и $\Psi = (\Psi_{ij})$ $(i, j = 1, \ldots, 7)$, такой, что $\Phi u(X, Y) = u(X', Y') \Psi$. При этом для $i, j = 1, \ldots, 5$ элементы Φ_{ij} и Ψ_{ij} лежат в $\operatorname{Hom}_A(P_1 \otimes M, P_1 \otimes N) \simeq \operatorname{Mat}_{a \times b}(S)$, где a = [N:K], b = [M:K]. Если i, j = 6, 7, то Ψ_{ij} лежат в $\operatorname{Hom}_A(P_2 \otimes M, P_2 \otimes N) \simeq \operatorname{Mat}_{a \times b}(S)$. Если $i \geqslant 6, j \leqslant 5$, го $\Psi_{ij} = 0$, и если $i \leqslant 5, j \geqslant 6$, то $\Psi_{ij} \in \operatorname{Hom}_A(P_2 \otimes M, P_1 \otimes N) \simeq \operatorname{Mat}_{a \times b}(W)$. Приравнивая элементы на местах с номером (16) в матрицах $\Phi u(X, Y)$ и $u(X', Y') \Psi$, получим $\Phi_{11} \omega_0 \equiv \omega_0 \Psi_{66} \pmod{M_1}$, откуда $\Phi_{11} \equiv \Psi_{66} \pmod{t}$. На месте (27) аналогично получим $\Phi_{22} \equiv \Psi_{77} \pmod{t}$. На местах с номерами (ij), где $1 \leqslant j \leqslant i \leqslant 5$, получаем $\Phi_{ij} \equiv 0 \pmod{t^{2(i-j)}}$, а при $1 \leqslant i \leqslant j \leqslant 5 - \Psi_{ij} \equiv 0 \pmod{t^{2(i-j)}}$.

Далее, место с номером (17) дает $\Psi_{67} \equiv 0 \pmod{t}$, а место с номером (26) — $\Psi_{76} \equiv 0 \pmod{t}$. Тогда на месте с номером (36) получаем, что $\Phi_{33} \equiv \Psi_{66} \pmod{t}$, на месте с номером (37) — $\Phi_{33} \equiv \Psi_{77} \pmod{t}$, а на местах с номерами (46) и (56) — $\Phi_{44} \equiv \Phi_{55} \equiv \Psi_{66} \pmod{t}$. Итак, все диагональные элементы в Φ и Ψ сравнимы между собой по модулю t; это общее значение обозначим Φ_0 . Наконец, места с номерами (47) и (57) дают, что $\Phi_0 X \equiv X' \Phi_0$ и $\Phi_0 Y \equiv Y' \Phi_0 \pmod{t}$. Поэтому если φ — изоморфизм, то пары матриц (X, Y) и (X', Y') сопряжены, т. е. модули M и N изоморфны, что и требовалось доказать. Итак, u — строгий элемент, значит, минор A(ij) дикий, что невозможно. Следовательно, $I_{ij} = 0$ для любых номеров i, j, откуда I = 0, т. е. алгебра A полупервична.

Замечание 5. Поскольку доказательства строгости всегда сводятся к стандартным выкладкам, подобным тем, которые были только что проделаны, в дальнейшем эти вычисления мы будем опускать, ограничиваясь явным указанием строго элемента.

Обозначим $H_i = \operatorname{End} J_i = B_{ii}^{(i)}$. Ввиду 2. 2 каждая из алгебр A_i изоморфна S, T_1 или T_2 . В первом случае $H_i = A_i$, а тогда и $B_i = A_i$, в остальных H_i наследственно, является единственным минимальным надкольцом A_i и всякий A_i -модуль без кручения либо содержит свободное прямое слагаемое, либо является H_i -модулем [10]. В частности, либо $A_{ij} \simeq A_j$ как правый и $A_{ij} \simeq A_i$ как левый модуль, либо $H_i A_{ij} H_j = A_{ij}$.

 $3.2. B_i = H_i$ для всех i.

Доказательство. Пусть $B_i\!\neq\! H_i$. Тогда $A_{ji}H_i\!\neq\! A_{ji}$ для некоторого $j\!\neq\! i$. Поэтому $A_{ji}\!\simeq\! A_i$ как правый модуль, откуда следует, что $A_j\!\simeq\! A_i$ и минор A (ij) изоморфен кольцу матриц вида

$$\begin{bmatrix} A_i & I \\ A_i & A_i \end{bmatrix},$$

где I — идеал кольца A_{ϵ} .

Покажем, что A (ij) — дикая алгебра. Вновь предположим, что A = A (ij), $i=1,\ j=2$. Заменяя A надкольцом, можно считать, что $I=I_1$. Так как $A_1 \not\simeq S$, найдутся элементы $\alpha,\ \beta \in I$, линейно независимые по модулю I^2 . Тогда строгий элемент $u \in (U \otimes \Sigma)$ $(P_1 \oplus P_2, P_1)$ задается матрицей

$$\begin{bmatrix} 0 & \beta & \alpha \\ \alpha & \alpha x & \beta + \alpha y \end{bmatrix}.$$

Полученное противоречие с условием вм) и доказывает, что $B_i = H_i$.

3.3. Следствие 2. $B_i A_{ij} B_j = A_{ij}$ для любых $i \neq j$.

3.4. Если $A_i \neq B_i$ или $A_j \neq B_j$, то $B_{ij} = A_{ij}$.

Доказательство. Обозначим $W=B_{ij}^{(i)}\cap B_{ij}^{(j)}$ и покажем, что если $W\neq A_{ij}$, то минор A(ij) дикий. Отсюда будет следовать, что $W=A_{ij}$ и, тем более, $B_{ij}=A_{ij}$. Поэтому далее можно считать, что A=A (ij), i=1, j=2, а тогда $W=B_{12}$. Пусть $A_1\neq B_1$, но $W\neq A_{12}$. Из 3.3 вытекает, что, заменяя A_2 на B_2 , получим надкольцо A с тем же радикалом, так что можно считать $A_2=B_2$. Заменяя, если нужно, A минором, как в доказательстве 3.1, можно считать, что $A_2=S$. Тогда A_{12} — простой A_1 -модуль, а потому $A_{12}\subset J_1B_{12}$ (это следует из результатов [10]). Кроме того, $B_{12}B_{21}\subset J_1$, откуда $A_{12}A_{21}\subset J_1B_{12}B_{21}\subset J_1^2$. Следовательно,

$$J^2 = \begin{bmatrix} J_1^2 & \widetilde{M}_{12} \\ M_{21} & J_2 \end{bmatrix},$$

где M_{ij} — максимальный подмодуль в A_{ij} . Поэтому колчан $\operatorname{sq}(J)$ имеет вид $\tau_2 \leftarrow \sigma_1 \rightrightarrows \tau_1 \leftarrow \sigma_2$ и является диким [12], т. е. A дикая согласно 2.7. Случай $A_2 \not= B_2$ рассматривается аналогично.

3.5. Если $A_i = B_i$ и $A_j = B_j$, то минор A(ij) либо наследствен, либо изоморфен кольцу T_3 , где

$$T_3 = \begin{bmatrix} S & tS \\ tS & S \end{bmatrix}.$$

Доказательство. Так как $A_i \simeq A_j \simeq S$, то A(ij) имеет вид

$$\begin{bmatrix} S & t^k S \\ t S & S \end{bmatrix} (k \geqslant 0).$$

Если k=0, то A(ij) наследствен. Покажем, что если k>1, то минор A(ij) дикий. Снова считаем, что A=A(ij), i=1, j=2, причем, очевидно, достаточно рассмотреть случай k=2. Но тогда в $(U\otimes \Sigma)(P_1^2\oplus P_2^2, P_1^2\oplus P_2^2)$ есть строгий элемент u, заданный матрицей

$$\begin{bmatrix} t & 0 & 0 & t^2 \\ 0 & t^2 & t^3 x & t^3 y \\ t & 0 & t^2 & 0 \\ 0 & t & 0 & t \end{bmatrix}.$$

Итак, остается случай k=1, т. е. $A\left(ij\right)\simeq T_{3}$.

3. 6. Пусть $A_i\simeq A_j\simeq A_k\simeq S$. Тогда не менее двух из миноров A (ij), A (ik), A (jk) наследственны.

Доказательство. Минор A(ijk) полумаксимален. Предположим, что два из указанных миноров, например A(ij) и A(jk), ненаследственны, и покажем, что тогда A(ijk) дикий. Будем считать A=A(ijk), i=1, j=2, k=3. Тогда, согласно 3.5, $A_{12}\simeq A_{13}\simeq T_3$ и алгебру A можно заменить надкольцом вида

$$\begin{bmatrix} S & tS & tS \\ tS & S & tS \\ tS & S & S \end{bmatrix}.$$

Но тогда в $(U \otimes \Sigma)(P_1^2 \oplus P_1^2 \oplus P_3, P_1^2 \oplus P_2^2)$ содержится строгий элемент, задаваемый матрицей

$$\begin{bmatrix} t & 0 & t & 0 & 0 \\ 0 & t & 0 & t & 0 \\ t & 0 & 0 & t & 0 \\ 0 & t & tx & ty & t \end{bmatrix},$$

и алгебра A дикая. Полученное противоречие и доказывает утверждение.

3.7. rad B = J.

Доказательство. Обозначим $I=\operatorname{rad} B$. Нужно проверить, что $I_{ij}=I_{ij}$ для любых i,j. Если i=j, это следует из 3. 2, так как $\operatorname{rad} H_i=J_i$. Пусть $i\neq j$. Если $A_i\not\simeq S$ или $A_j\not\simeq S$, то $I_{ij}=B_{ij}=A_{ij}=J_{ij}$ согласно 3. 4. Если же $A_i\simeq A_j\simeq S$, то равенство $I_{ij}=J_{ij}$ следует из 3. 5, так как для алгебры T_3 оно проверяется непосредственно.

Из работы [10] следует, что B — наследственное кольцо, причем BJ = JB = J. 3.8. Алгебра A удовлетворяет условию б) теоремы 2.

Доказательство. Остается проверить, что $d_{\mathrm{m}}(A) \leqslant 2$, т. е. $\Sigma_i[\bar{B}_{ij}:K] \leqslant 2$ для всех j. Ввиду 3. 4 если $A_j \not\simeq S$, то $\bar{B}_{ij} = 0$ для всех $i \neq j$. Так как $[\bar{B}_j:K] = 2$, для таких индексов получаем требуемое неравенство. Пусть $A_j \simeq S$. Если $A_i \not\simeq S$, то снова $\bar{B}_{ij} = 0$ согласно 3. 4. Если $A_i \simeq S$ и минор A(ij) наследствен, то $B_{ij} = A_{ij}$. Ввиду 3. 6 найдется не более одного номера $i \neq j$, для которого A(ij) ненаследствен и $A_i \simeq S$. Тогда, по 3. 5, $A(ij) \simeq T_3$, откуда $[\bar{B}_{ij}:K] = 1$. Так как $[\bar{B}_i:K] = 1$, вновь получается нужное неравенство и доказательство окончено.

4. Доказательство импликации $6 \Rightarrow a$

Пусть теперь алгебра A удовлетворяет условию б) теоремы 2. Доказательство того, что A ручная, основывается на рассуждении 2.5. При этом используем функтор $\rho: R(U_A) \to R(U_B)$, который гомоморфизму $u \in \operatorname{Hom}_A(Q, PJ)$ сопостав-

ляет индупированный им гомомор ризм $\rho(u): QB \to PJB$ (заметим, что JB = BJ = J [10]).

4.1. Всякий элемент $v \in R(U_B)$ разлагается в прямую сумму $v = \bigoplus_i v_i$, где $v_i \in U_B(Q_i, P_i)$, причем каждый из модулей Q_i , P_i либо неразложим, либо нулевой.

Доказательство следует из [5].

4. 2. Пусть $u \in U_A(Q, P)$. Обозначим O(u) множество классов изоморфизма таких элементов $u' \in U_A(Q, P)$, что $\rho(u') \simeq \rho(u)$. Тогда существует биекция O(u) на множество двойных смежных классов $(\operatorname{Aut} Q \times \operatorname{Aut} P) \setminus (\operatorname{Aut} QB \times \operatorname{Aut} PB) / \operatorname{Aut} \rho(u)$.

Доказательство непосредственно следует из определения изоморфизма в категории $R\left(U\right)$.

Для любого A-модуля P обозначим $\bar{P} = P/PJ$. Если P проективен, то естественный гомоморфизм $\operatorname{Aut} P \to \operatorname{Aut} \bar{P}$ эпиморфен, причем ядро эпиморфизма $\operatorname{Aut} PB \to \operatorname{Aut} \bar{PB}$ содержится в $\operatorname{Aut} P$, откуда получаем такое следствие.

4. 3. Существует биекция O(u) на множество

$$(\operatorname{Aut} \overline{Q} \times \operatorname{Aut} \overline{P}) \setminus (\operatorname{Aut} \overline{QB} \times \operatorname{Aut} \overline{PB}) / A(u),$$

тде A(u) — образ $\operatorname{Aut}_{\rho}(u)$ при эпиморфизме

$$\operatorname{Aut} QB \times \operatorname{Aut} PB \to \operatorname{Aut} \overline{QB} \times \operatorname{Aut} \overline{PB}.$$

Пусть \bar{R} — фактор-категория категории $R(U_B)$ по идеалу, состоящему из морфизмов, сравнимых с нулем по модулю J; $D=\operatorname{pr-}(\bar{A}\times\bar{A})$. Объекты категории D можно рассматривать как пары \bar{A} -модулей (Y,X). Поскольку алгебра A полусовершенна, всякий \bar{A} -модуль изоморфен P/PJ для некоторого $P\in\operatorname{pr-}A$. Определим $D-\bar{R}$ -бимодуль V, полагая $V((Y,X),u)=\operatorname{Hom}_A(Y,\bar{Q})\oplus\operatorname{Hom}_A(X,\bar{P})$, если $u\in U_B(Q,P)$. Обозначим $R_0(V)$ полную подкатегорию в R(V), состоящую из тех пар (f,g), в которых f и g — изоморфизмы. Тогда предложение (4.3) можно переформулировать следующим образом.

4.4. Существует представленческая эквивалентность категории $R_0(U_A)$ на категорию $R_0(V)$. В частности, если бимодуль V ручной, то и бимодуль U_A ручной, а потому A — ручная алгебра.

Обозначим Q_1, \ldots, Q_m все попарно неизоморфные проективные B-модули, $U_{ij} = \operatorname{Hom}_B(Q_j, Q_i J)$. Если $v \in U_{ij}$, а $w \in U_{kl}$, обозначим $R_1(v, w)$ и $R_2(v, w)$ проекции R(v, w) соответственно на $\operatorname{Hom}_B(Q_j, Q_l)$ и на $\operatorname{Hom}_B(Q_i, Q_k)$. Следующий результат описывает строение категории \overline{R} .

4.5. Пусть $v \in U_{ij}$, $w \in U_{kl}$, причем $v \not\simeq w$. Тогда $[\bar{R}(v, w) : K] \leqslant 1$, причем либо $\bar{R}(v, w) = \bar{R}_1(v, w)$, либо $\bar{R}(v, w) = \bar{R}_2(v, w)$ и, кроме того, $[\bar{R}_1(v, w) \oplus \bar{R}_1(w, v) : K] = \delta_{ik}$.

Доказательство. Пусть $(g, f) \in R(v, w)$. Если $i \neq k$ $(j \neq l)$, то f = 0 $(\bar{g} = 0)$. Пусть i = k. Тогда либо w = fv, где $f: Q_i \to Q_l$, либо w = f'v, где $f': Q_l \to Q_j$ [5], причем так как $v \not\simeq w$, то f = 0 (или f' = 0), поэтому одновременно оба равенства невозможны. Следовательно, либо пара (1, f) порождает $\bar{R}_2(v, w)$, а $\bar{R}_2(w, v) = 0$, либо пара (1, f') порождает $\bar{R}_2(w, v)$, а $\bar{R}_2(v, w) = 0$. Аналогично при j = l либо v = wg, пара (g, l) порождает $\bar{R}_1(v, w)$, а $\bar{R}_1(w, v) = 0$, либо w = vg', пара (g', l) порождает $\bar{R}_1(w, v)$, а $\bar{R}_1(v, w) = 0$. Остается заметить, что при i = k и j = l одновременно равенства w = fv и v = wg невозможны, так как из первого следует, что $l_B(\operatorname{Coker} w) < l_B(\operatorname{Coker} v)$, а из второго — противоположное неравенство.

4.6. Спедствие 3. Неизоморфные неразложимые объекты из \bar{R} можно занумеровать $\{v_t\}$ целыми числами, так, что если $v_t \in U_{ij}$, а $v_s \in U_{il}$ (или $v_s \in U_{kj}$), то $\bar{R}_2(v_t, v_s) = 0$ при t > s и $\bar{R}_2(v_t, v_s) \simeq K$ при t < s (соответственно $\bar{R}_1(v_s, v_t) = 0$ при t > s и $\bar{R}_1(v_s, v_t) \simeq K$ при t < s).

Если $v_t \in U_{ij}$, обозначим $i = \alpha(t)$ и $j = \beta(t)$. Положим также $H_{ij} = \operatorname{Hom}_A(\bar{P}_i, \bar{Q}_j)$.

4.7. $[H_{ij}:K] \leqslant 1$ для любых i, j. Кроме того, для любого номера i найдется не более двух таких j, что $H_{ij} \neq 0$, и для любого j найдется не более двух таких i, что $H_{ij} \neq 0$. Наконец, если $H_{ij} \neq 0$ и $H_{ik} \neq 0$, где $j \neq k$, то $H_{ij} = 0$ для всех $l \neq i$, а если $H_{ij} \neq 0$ и $H_{kj} \neq 0$, где $i \neq k$, то $H_{il} = 0$ для всех $l \neq j$.

Доказательство. Поскольку $d_{\mathfrak{m}}(A) \leqslant 2$, в колчане $\operatorname{sq}(B)$ в каждую точку входят не более двух стрелок, причем, поскольку $B_i \neq J_i$, всегда присутствуют стрелки $\sigma_i \to \tau_i$. Пусть в нем есть стрелка $\sigma_i \to \tau_k$, где $i \neq k$. Это значит, что $B_{ik} \neq A_{ik}$, т. е. $B_{ik} \subset J$, а потому в кольце B идемпотенты e_i и e_k сопряжены. Следовательно, и $B_{ki} \neq A_{ki}$, т. е. в колчане $\operatorname{sq}(B)$ есть стрелка $\sigma_k \to \tau_i$. Но тогда этот колчан распадается в несвязное объединение компонент вида:

I II III
$$\sigma_{i} \rightarrow \tau_{i} \quad \sigma_{i} \Rightarrow \tau_{i} \quad \downarrow \quad \uparrow \\ \tau_{k} \leftarrow \sigma_{k}$$

Для компонент вида І $P_iB=P_i\simeq Q_j$ для некоторого j, откуда $H_{ij}\simeq K$, $\omega H_{ik}=0$ и $H_{lj}=0$ при $k\neq j$ и $l\neq i$. Для компоненты вида ІІ $P_iB/P_iJ\simeq \bar{P}_i^2$. В этом случае $P_iB\simeq Q_j\oplus Q_k$, причем $j\neq k$, так как иначе $\bar{B}_i\simeq M_2(K)$, что невозможно. Аналогично Q_j не может входить в разложение P_lB при $l\neq i$, а потому $H_{lj}=0$. Наконец, для компоненты вида ІІІ $P_iB/P_iJ\simeq P_kB/P_kJ\simeq \bar{P}_i\oplus \bar{P}_k$. Тогда P_iB и P_kB неразложимы, так как $B_i=A_i$ и $B_k=A_k$, т. е. $P_iB\simeq P_kB\simeq Q_j$. Следовательно, $H_{ij}\simeq H_{kj}\simeq K$, причем $H_{lj}=0$ для всех l, кроме i и k, а $H_{il}=0$ для всех $l\neq j$, что и требовалось доказать.

4.8. Бимодуль V ручной.

Доказательство. Пусть $X=\bigoplus_i \bar{P}_i^{x_i},\ Y=\bigoplus_j \bar{P}_j^{y_j},\ v=\bigoplus_t v_i^{z_t}.$ Представим $V\left((X,\ Y),\ v\right)$ в виде прямой суммы $V_1\oplus V_2$, где $V_1=\bigoplus_{i,\ i}H_i^{x_i^{z_t}}$, и $V_2=\bigoplus_{j,\ i}H_{j,\ \beta(i)}^{y_{j,z_t}}.$ Из утверждений 4.6 и 4.7 легко выводится, что всякий элемент из V_1 изоморфен прямой сумме нулевых гомоморфизмов, изоморфизмов $\bar{P}_i\cong \bar{Q}_j$ для некоторых $i,\ j,\$ таких, что $H_{ij}\neq 0,\$ изоморфизмов $\bar{P}_i\oplus \bar{P}_k\to \bar{Q}_j$ для таких $i,\ j,\ k,\$ что $H_{ij}\neq 0\neq H_{kj},\$ и диагональных вложений $\bar{P}_i\to \bar{Q}_j\oplus \bar{Q}_k$ для таких $i,\ j,\ k,\$ что $H_{ij}\neq 0\neq H_{ik}.$ Поэтому далее можно рассматривать лишь те элементы $\omega\in V\left((X,\ Y),\ v\right),\$ для которых $\omega=\omega_1+\omega_2,\$ где $\omega\in V_i,\$ причем ω_1 имеет указанный выше вид. Но тогда нетрудно убедиться, учитывая 4.6, что для компоненты ω_2 получится матричная задача, решенная в работе [13]. Из данного там описания неразложимых элементов следует, что эта задача, а потому и бимодуль V, ручные.

Из утверждения 4. 4 и 4. 8 вытекает, что A — ручная алгебра, это завершает доказательство теоремы 2, а тем самым и теоремы 1.

Замечание 6. Учитывая 2. 4 и 4. 4, мы видим, что для ручной алгебры с локальным центром получается «рациональная параметризация» не только модулей конечной длины, но и всех конечно-порожденных модулей. В общем случае это приводит к описанию «родов» конечно-порожденных модулей (двамодуля, M и N, принадлежат одному роду, если $M_m \simeq N_m$ для всех $m \in \max C$).

Описание же модулей с точностью до изоморфизма требует применения техники аделей либо какого-нибудь ее эквивалента для «локально-глобального перехода».

Литература

- 1. Бон даренко В. М. Представления диздральных групп над полем характеристики 2 // Mar. cб. 1975. T. 96, № 1. C. 63—74.

- Z // Мат. со. 1975. Т. 96, № 1. С. 63—74.
 2. Бурбаки Н. Коммутативная алгебра. М., 1971. 707 с.
 3. Гельфанд И. М., Пономарев В. А. Неразложимые представления группы Лоренца // Успехи мат. наук. 1968. Т. 23, № 2. С. 3—60.
 4. Гельфанд И. М., Пономарев В. А. Замечание о классификации пары коммутирующих линейных преобразований в конечномерном пространстве // Функцион. анализ и его прил. 1969. Т. 3, № 4. С. 81—82.
 5. Дрозд Ю. А. Об обобщенно однорядных кольцах // Мат. заметки. 1975. Т. 18, № 5. С. 705—710.
 6. И розд Ю. А. Об обобщено однорядных кольцах // Мат. заметки.
- 6. Дрозд Ю. А. Оручных и диких матричных задачах // Матричные задачи. Киев, 1977. С. 104—114.
 7. Дрозд Ю. А. Ручные и дикие матричные задачи // Представления и квадратичные
- формы. Киев, 1979. С. 39-74.
- 8. ДроздЮ. А. О классификации конечнопорожденных модулей над нетеровыми алгебрами // IV Всесоюз. симпоз. по теории колец, алгебр и модулей. Кишинев, 1980. С. 36.
- рами // TV Всесоюз. симпоз. по теории колец, алгебр и модулей. Кишинев, 1980. С. 36. 9. Дрозд Ю. А. О существовании максимальных порядков // Мат. заметки. 1985. Т. 37, № 3. С. 313—316. 10. Дрозд Ю. А., Кириченко В. В. О квазибассовых порядках // Изв. АН СССР. Сер. мат. 1972. Т. 36, № 2. С. 328—370. 11. Кругля к С. А. О представлениях группы (р, р) над полем характеристики р // Докл. АН СССР. 1963. Т. 153, № 6. С. 1263—1265. 12. Назарова Л. А. Представления колчанов бесконечного типа // Изв. АН СССР. Сер. мат. 1973. Т. 37, № 3. С. 752—791. 13. Назарова Л. А., Ройтер А. В. Ободной проблеме Гельфанда // Функцион. анализи его прил. 1972. Т. 6, № 1. С. 41—43. 14. С hatters A. W. A decomposition theory for Noetherian hereditary rings // Bull. London Math. Soc. 1972. Vol. 4, N 1. P. 125—126. 15. Drozd Ju. A. Minors and theorems of reduction // Colloquym Publ. Math. Soc. J. Во-

- 15. Drozd Ju. A. Minors and theorems of reduction // Colloquym Publ. Math. Soc. J. Bolyai. 1971. Vol. 6. P. 173-176.
 16. Eisenbud D., Griffith Ph. Serial rings // J. Algebra. 1972. Vol. 17, N 3. P. 389-
- 400.
- Michler G. Structure of semi-perfect hereditary rings // J. Algebra. 1969. Vol. 13, N 3. P. 327—344.
 Ringel C. M. The indecomposable representations of the dihedral 2-groups // Math. Ann. 1975. Vol. 214, N 1. P. 19—34.
 Ringel C. M. The representation type of local algebras // Lecture Notes Math. 1975. Vol. 488. P. 282—305.

А. Е. ЗАЛЕССКИЙ

СОБСТВЕННОЕ ЗНАЧЕНИЕ 1 МАТРИЦ КОМПЛЕКСНЫХ ПРЕДСТАВЛЕНИЙ КОНЕЧНЫХ ГРУПП ШЕВАЛЛЕ

Введение

В настоящей статье рассматривается вопрос о существовании собственного значения 1 матриц, соответствующих полупростым элементам простых групп Шевалле в их комплексных представлениях. По-видимому, лишь в порядке исключения представление φ простой группы G может обладать тем свойством, что для некоторого элемента $g \in G$ матрица $\psi(g)$ не имеет собственного значения 1. Таким образом, задача состоит в том, чтобы описать все исключения. Можно ставить вопрос несколько шире: не предполагая простоты группы G, рассматривать элементы, никакая степень которых не является отличным от 1 центральным элементом группы G. Для унипотентных элементов простого порядка групп Мевалле эта задача рассматривалась в статье автора [2]; для полноты картины