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Summary. In this paper we give a survey about the classification of vector bun-
dles and torsion free sheaves on degenerations of elliptic curves. Coherent sheaves
on singular curves of arithmetic genus one can be studied using the technique of
matrix problems or via Fourier-Mukai transforms, both methods are discussed here.
Moreover, we include new proofs of classical results about vector bundles on elliptic
curves.

1 Overview

The aim of this paper is to give a survey of results on the classification of vector
bundles and torsion free sheaves on singular projective curves of arithmetic
genus one. We include new proofs of some classical results on vector bundles
on smooth elliptic curves, which use the technique of derived categories and
Fourier-Mukai transforms and are simpler than the original ones. Some results
about singular curves are new or at least presented in a new framework.

This research project had several sources of motivation and inspiration.
Our study of vector bundles on degenerations of elliptic curves was origi-
nally motivated by the McKay correspondence for minimally elliptic surface
singularities [Kah89]. Here we use as the main technical tool methods from
the representation theory of associative algebras, see for example [BD05]. In
particular, a key tool in our approach to classification problems is played by
the technique of “representations of bunches of chains” or “Gelfand prob-
lems” [Bon92]. At last, but not least we want to mention that our research
was strongly influenced by ideas and methods coming from the homological
mirror symmetry [Kon95, PZ98, FMW99].
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Many different questions concerning properties of the category of vector
bundles and coherent sheaves on degenerations of elliptic curves is encoded in
the following general set-up:

Problem 1. Let E −→ T be a flat family of projective curves of arithmetic
genus one such that the fiber Et is smooth for t 6= 0 and singular for t = 0.
What happens with the derived category Db(CohEt

), when t→ 0?

��

����

0
t

Db(Coh(E0))

Db(Coh(Et))

In order to start working on this question one has to consider the abso-
lute case first, where the base T is Spec(k). In particular, one has to describe
indecomposable vector bundles and indecomposable objects of the derived
category of coherent sheaves on degenerations of elliptic curves and develop
a technique to calculate homomorphism and extension spaces between inde-
composable torsion free sheaves as well as various operations on them, like
tensor products and dualizing.

For the first time we face this sort of problems when dealing with
the McKay correspondence for minimally elliptic singularities. Namely, let
S = Spec(R) be the spectrum of a complete (or analytical) two-dimensional

minimally elliptic singularity, π : X̃ −→ S its minimal resolution, and E

the exceptional divisor. Due to a construction of Kahn [Kah89], the functor5

M 7→ resE(π∗(M)∨∨) establishes a bijection between the reflexive R–modules
(maximal Cohen-Macaulay modules) and the generically globally generated
indecomposable vector bundles on E with vanishing first cohomology.

A typical example of a minimally elliptic singularity is a Tpqr – singularity,
given by the equation k[[x, y, z]]/(xp + yq + zr − λxyz), where 1

p
+ 1

q
+ 1

r
≤ 1

and λ 6= 0. If 1
p

+ 1
q

+ 1
r

= 1, then this singularity is simple elliptic and the
exceptional divisor E is a smooth elliptic curve. Thus, in this case a description

5 resE denotes the restriction to E
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of indecomposable maximal Cohen-Macaulay modules follows from Atiyah’s
classification of vector bundles on elliptic curves [Ati57]. The main result of
Atiyah’s paper essentially says:

Theorem 1 (Atiyah). An indecomposable vector bundle E on an elliptic
curve E is uniquely determined by its rank r, degree d and determinant
det(E) ∈ Picd(E) ∼= E.

In Section 2.3 we give a new proof of this result. However, if 1
p
+ 1

q
+ 1

r
< 1,

then S is a so-called cusp singularity and in this case E is a cycle of n projective
lines En, where E1 denotes a rational curve with one node.

E1 E6

A complete classification of indecomposable vector bundles and torsion free
sheaves on these curves in the case of an arbitrary base field k was obtained by
Drozd and Greuel [DG01]. For algebraically closed fields there is the following
description, which we prove in Section 3.2.

Theorem 2. Let En denote a cycle of n projective lines and Ik be a chain of
k projective lines, E an indecomposable torsion free sheaf on En.

1. If E is locally free of rank r, then there is an étale covering πr : Enr −→ En,
a line bundle L ∈ Pic(Enr) and a natural number m ∈ N such that

E ∼= πr∗(L) ⊗Fm,

where Fm is an indecomposable vector bundle, recursively defined by the
sequences

0 −→ Fm−1 −→ Fm −→ O −→ 0, m ≥ 2, F1 = O.

2. If E is not locally free then there exists a finite map pk : Ik −→ En and
a line bundle L ∈ Pic(Ik) (where k, pk and L are determined by E) such
that E ∼= pk∗(L).

This classification is completely analogous to Oda’s description of vector
bundles on smooth elliptic curves [Oda71] and provides quite simple rules for
the computation of the decomposition of the tensor product of any two vector
bundles into a direct sum of indecomposable ones. It allows to describe the
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dual sheaf of an indecomposable torsion free sheaf as well as the dimensions of
homomorphism and extension spaces between indecomposable vector bundles
(and in particular, their cohomology), see [Bur03, BDG01]. We carry out these
computations in Section 3.2.

However, the way we prove this theorem, essentially uses ideas from rep-
resentation theory and the technique of matrix problems [Bon92]. Using a
similar approach, Theorem 2 was generalized by Burban and Drozd [BD04]
to classify indecomposable complexes of the bounded (from the right) de-
rived category of coherent sheaves D−(Coh(E)) on a cycle of projective lines
E = En.

The situation turns out to be quite different in the case of other singular
projective curves of arithmetic genus one. For example, in the case of a cuspi-
dal rational curve zy2 = x3 even a classification of indecomposable semi-stable
vector bundles of a given slope is a representation-wild problem.6 However,
if we restrict our attention only on stable vector bundles, then this problem
turns out to be tame again.7 Moreover, the combinatorics of the answer is
essentially the same as for smooth and nodal Weierstraß curves8:

Theorem 3 (see [BD03, BK3]). Let E be a cuspidal cubic curve over an
algebraically closed field k then

• The rank r and the degree d of a stable vector bundle E over E are coprime.
• A stable vector bundle E is determined completely by its rank r, its degree

d, that should be coprime and its determinant det(E) ∈ Picd(E) ∼= k.

The technique of matrix problems is a very convenient tool for the study
of vector bundles on a given singular projective rational curve of arithmetic
genus one. However, to investigate the behavior of the category of coherent
sheaves on genus one curves in families one needs other methods. One possible
approach is provided by the technique of derived categories and Fourier-Mukai
transforms [Muk81, ST01], see Section 3.4. The key idea of this method is that
we can transform a sky-scraper sheaf into a torsion free sheaf by applying an
auto-equivalence of the derived category. In a relative setting of elliptic fibra-
tions with a section one can use relative Fourier-Mukai transforms to construct
examples of relatively semi-stable torsion free sheaves, see for example [BK2].

6 An exact k–linear category A over an algebraically closed field k is called wild if it
contains as a full subcategory the category of finite-dimensional representations
of any associative algebra.

7 For a formal definition of tameness we refer to [DG01] where a wild-tame di-
chotomy for vector bundles and torsion free sheaves on reduced curves was proven.

8 In this paper we call a plane cubic curve Weierstraß curve. If k is algebraically
closed and char(k) 6= 2, 3 then it can be written in the form zy2 = 4x3 − g2xz2 −
g3z

3, where g2, g3 ∈ k. It is singular if and only if g3
2 = 27g2

3 and unless g2 = g3 = 0
the singularity is a node, whereas in the case g2 = g3 = 0 the singularity is a
cusp.
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Theorem 4 (see [BK1]). Let E be an irreducible projective curve of arith-
metic genus one over an algebraically closed field k. Then

1. The group of exact auto-equivalences of the derived category Db(Coh(E))
transforms stable sheaves into stable ones and semi-stable sheaves into
semi-stable ones.

2. For any rational number ν the abelian category Cohν(E) of semi-stable
coherent sheaves of slope ν is equivalent to the category Coh∞(E) of co-
herent torsion sheaves and this equivalence is induced by an exact auto-
equivalence of Db(Coh(E)).

3. For any coherent sheaf F on E such that End(F) = k there exists a point
x ∈ E and Φ ∈ Aut(Db(Coh(E))) such that F ∼= Φ(k(x)).

This theorem shows a fundamental difference between a nodal and a cus-
pidal Weierstraß curve. Namely, let E be a singular Weierstraß curve and s
its singular point. Then the category of finite-dimensional modules over the
complete local ring ÔE,s has different representation types in the nodal and
cuspidal cases. For a nodal curve, the category of finite dimensional repre-
sentations of k[[x, y]]/xy is tame due to a result of Gelfand and Ponomarev
[GP68]. In the second case, the category of finite length modules over the ring
k[[x, y]]/(y2 − x3) is representation wild, see for example [Dro72].

The correspondence between sky-scraper sheaves and semi-stable vector
bundles on irreducible Weierstraß curves was first discovered by Friedman,
Morgan and Witten [FMW99] (see also [Teo00]) and afterwards widely used
in the physical literature under the name “spectral cover construction”.

Theorem 5 (see [FMW99]). Let E be an irreducible Weierstraß curve, p0 ∈
E a smooth point and E a semi-stable torsion free sheaf of degree zero. Then
the sequence

0 −→ H0(E(p0)) ⊗O ev−→ E(p0) −→ coker(ev) −→ 0

is exact. Moreover, the functor Φ : E 7→ coker(ev) establish an equivalence
between the category Coh0(E) of semi-stable torsion-free sheaves of degree zero
and the category of coherent torsion sheaves Coh∞(E).

This correspondence between torsion sheaves and semi-stable coherent
sheaves can be generalized to a relative setting of an elliptic fibration E −→ T.
In [FMW99] it was used to construct vector bundles on E which are semi-stable
of degree zero on each fiber, see also [BK2].

As was shown in [BK1], the functor Φ is the trace of a certain exact auto-
equivalence of the derived category Db(Coh(E)). Using this equivalence of
categories and a concrete description of k[[x, y]]/xy–modules in terms of their
projective resolutions, one can get a description of semi-stable torsion free
sheaves of degree zero on a nodal Weierstraß curve in terms of étale coverings
[FM, BK1]. In Section 3.4 we give a short overview of some related results
without going into details.
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2 Vector bundles on smooth projective curves

In this section we review some classical results about vector bundles on smooth
curves. However, we provide non-classical proofs which, as we think, are sim-
pler and fit well in our approach to vector bundles and torsion free sheaves
over singular curves. The behavior of the category of vector bundles on a
smooth projective curve X is controlled by its genus g(X).

If g(X) = 0 then X is a projective line P1 and any vector bundle on it splits
into a direct sum of line bundles OP1(n), n ∈ Z. This result, usually attributed
to Grothendieck [Gro57], was already known in an equivalent form to Birkhoff
[Bir13]. We found it quite instructive to include Birkhoff’s algorithmic proof
in our survey.

A classification of vector bundles in the case of smooth elliptic curves i.e.
g(X) = 1 was obtained by Atiyah [Ati57]. He has shown that the category of
vector bundles on an elliptic curve X is tame and an indecomposable vector
bundle E is uniquely determined by its rank r, its degree d and a point of the
curve x ∈ X. A modern, and in our opinion more conceptual way to prove
Atiah’s result uses the language of derived categories and is due to Lenzing and
Meltzer [LM93]. In the case of an algebraically closed field of characteristics
zero an alternative description of indecomposable vector bundles via étale
coverings was found by Oda [Oda71]. This classification was a cornerstone in
the proof of Polishchuk and Zaslow [PZ98] of Kontsevich’s homological mirror
symmetry conjecture for elliptic curves, see also [Kre01].

The case of curves of genus bigger than one is not considered in this survey.
In this situation even the category of semi-stable vector bundles of slope one
is representation wild and the main attention is drawn to the study of various
moduli problems and properties of stable vector bundles, see for example
[LeP97].

Throughout this section we do not require any assumptions about the base
field k.

2.1 Vector bundles on the projective line

We are going to prove the following classical theorem.

Theorem 6 (Birkhoff-Grothendieck). Any vector bundle E on the projec-
tive line P1 splits into a direct sum of line bundles:

E ∼=
⊕

n∈Z

OP1(n)rn .
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A proof of this result based on Serre duality and vanishing theorems can
be found in a book of Le Potier [LeP97]. However, it is quite interesting to give
another, completely elementary proof, based on a lemma proven by Birkhoff
in 1913.

A projective line P1 is a union of two affine lines A1
i (i = 0, 1). If (x0 : x1)

are homogeneous coordinates in P1 then A1
i = {(x0 : x1)|xi 6= 0}. The affine

coordinate on A1
0 is z = x1/x0 and on A1

1 it is z−1 = x0/x1. Thus we can
identify A1

0 with Spec(k[z]) and A1
1 with Spec(k[z−1]), their intersection is

then Spec(k[z, z−1]). Certainly, any projective module over k[z] is free, i.e.
all vector bundles over an affine line are trivial. Therefore to define a vec-
tor bundle over P1 one only has to prescribe its rank r and a gluing matrix
M ∈ GL(r,k[z, z−1]). Changing bases in free modules over k[z] and k[z−1]
corresponds to the transformations M 7→ T−1MS, where S and T are invert-
ible matrices of the same size, over k[z] and k[z−1] respectively.

Proposition 1 (Birkhoff [Bir13]). For any matrix M ∈ GL(r,k[z, z−1])
there are matrices S ∈ GL(r,k[z]) and T ∈ GL(r,k[z−1]) such that T−1MS
is a diagonal matrix diag(zd1 , . . . , zdr ).

Proof. One can diagonalize the matrix M in three steps.

Step 1. Reduce the matrix M = (aij) to a lower triangular form with diagonal
entries aii = zmi , wheremi ∈ Z andm1 ≤ m2 ≤ · · · ≤ mr. Indeed, since k[z] is
a discrete valuation ring, using invertible transformations of columns over k[z]
we can reduce the first row (a11, a12, . . . , a1r) of M to the form (a1, 0, . . . , 0),
where a1 is the greatest common divisor of a11, a12, . . . , a1r.

Let M ′ be the (r − 1) × (r − 1) matrix formed by the entries aij , i, j ≥ 2.
Since det(M) = a1 · det(M ′) and det(M) is a unit in k[z, z−1], it implies that
a1 = zm1 and det(M ′) is a unit in k[z, z−1], too. Then we proceed with the
matrixM ′ inductively. Note, that the diagonal entries can be always reordered
to satisfy m1 ≤ m2 ≤ · · · ≤ mr.

Step 2. Consider the case of a lower-triangular (2 × 2)-matrix

M =

(
zm 0

p(z, z−1) zn

)

with m ≤ n. We show by induction on the difference n −m that M can be
diagonalized performing invertible transformations of rows over k[z−1] and
invertible transformations of columns over k[z].

If m = n then we can simply kill the entry p = p(z, z−1). Assume now
that m < n and p 6= 0. Without loss of generality we may suppose that
p ∈ 〈zm+1, . . . , zn−1〉. Therefore there exist two mutually prime polynomials

a and b in k[[z]] such that ap + bzn = zd and m < d < n. Then

(
a zn−d

b p/zd

)

belongs to GL(2,k[z]) and
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(
zm 0
p zn

) (
a zn−d

b p/zd

)
=

(
zma zn+m−d

zd 0

)
.

In order to conclude the induction step it remains to note that |n+m−2d| <
|n−m|.
Step 3. Let M be a lower-diagonal matrix with the diagonal elements

zm1 , . . . , zmr with m1 ≤ m2 ≤ · · · ≤ mr. We show by induction on
r∑

i,j=1

|mi −

mj | thatM can be diagonalized. This statement is obvious for
r∑

i,j=1

|mi−mj | =

0. Assume that
r∑

i,j=1

|mi − mj | = N > 0. Introduce an ordering on the set

{(i, j)|1 ≤ j ≤ i ≤ r}:

(2, 1) < (2, 3) < · · · < (r − 1, r) < (3, 1) < · · · < (r − 2, r) < · · · < (r, 1).

Let (i0, j0) be the smallest pair such that ai0j0 6= 0. Then we can apply
the algorithm from the Step 2 to the (2 × 2) matrix formed by the entries

(j0, j0), (j0, i0), (i0, j0) and (i0, i0) to diminish the sum
r∑

i,j=1

|mi −mj |. This

completes the proof of Birkhoff’s lemma.
Now it remains to note that 1 × 1 matrix (td) defines the line bundle

OP1(−d). This implies the statement about the splitting of a vector bundle
on a projective line into a direct sum of line bundles.

2.2 Projective curves of arithmetic genus bigger then one are
vector bundle wild

In this subsection we are going to prove the following

Theorem 7 (see [DG01]). Let X be an irreducible projective curve of arith-
metic genus g(X) > 1 over an algebraically closed field k. Then the abelian
category of semi-stable vector bundles of slope 9 one is representation wild.

In order to show the wildness of a category A one frequently uses the
following lemma:

Lemma 1. Let A be an abelian category, M,N ∈ Ob(A) with HomA(M,N) =
0 and ξ, ξ′ ∈ Ext1

A
(N,M) two extensions

ξ : 0 −→M
α−→ K

β−→ N −→ 0,

ξ′ : 0 −→M
α′

−→ K ′ β′

−→ N −→ 0.

Then K ∼= K ′ if and only if there exist two isomorphisms f : M −→ M and
g : N −→ N such that fξ = ξ′g.

9 The slope of a coherent sheaf F is µ(F) = deg(F)
rk(F)

.
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Proof. The statement is clear in one direction: if fξ = ξ′g in Ext1
A
(N,M), then

K ∼= K ′ by the 5-Lemma.
Now suppose K ∼= K ′ and let h : K −→ K ′ be an isomorphism. Then

im(hα) is a subobject of im(α′). Indeed, otherwise the map β′hα : M −→ N
would be non-zero, a contradiction. Therefore we get the following commuta-
tive diagram:

0 // M
α //

f

��

K

h

��

β // N //

g

��

0

0 // M
α′

// K ′
β′

// N // 0.
In the same way we proceed with h−1. Hence f is an isomorphism, what

proves the lemma.

Let us come back to the proof of the theorem. Suppose now that X is an
irreducible projective curve of arithmetic genus g > 1, O = OX. Then for any
two points x 6= y from X we have Hom(O(x),O(y)) ∼= H0(X,O(y − x)) = 0
and the Riemann-Roch theorem implies that Ext1(O(x),O(y)) ∼= H1(X,O(y−
x)) ∼= kg−1. Fix 5 different points x1, . . . , x5 of the curve X, choose non-
zero elements ξij ∈ Ext1(O(xj),O(xi)) for i 6= j and consider vector bundles
F(A,B), where A,B ∈Mat(n× n,k) and F(A,B) is given as an extension

0 −→ (O(x1) ⊕O(x2))
n

︸ ︷︷ ︸
B

−→ F(A,B) −→ (O(x3) ⊕O(x4) ⊕O(x5))
n

︸ ︷︷ ︸
A

−→ 0

corresponding to the element ξ(A,B) of Ext1(A,B) presented by the matrix

(
ξ13I ξ14I ξ15I
ξ23I ξ24A ξ25B

)
,

where I denotes the unit n × n matrix. If (A′, B′) is another pair of ma-
trices, and F(A,B) → F(A′, B′) any morphism, then the previous lemma
implies that there are morphisms φ : A → A′ and ψ : B → B′ such that
ψξ(A,B) = ξ(A′, B′)φ Now one can easily deduce that Φ = diag(S, S, S) and
Ψ = diag(S, S) for some matrix S ∈ Mat(n × n, k) such that SA = A′S and
SB = B′S.

If we consider a pair of matrices (A,B) as a representation of the free al-
gebra k〈x, y〉 in 2 generators, the correspondence (A,B) 7→ F(A,B) becomes
a full, faithful and exact functor k〈x, y〉 − mod −→ VB(X). In particular, it
maps non-isomorphic modules to non-isomorphic vector bundles and indecom-
posable modules to indecomposable vector bundles. Using the terminology of
representation theory of algebras, we say in this situation that the curve X is
vector bundle wild. For a precise definition of wildness we refer to [DG01].

Recall that the algebra k〈x, y〉 here can be replaced by any finitely
generated algebra Λ = k〈a1, . . . , an〉. Indeed, any Λ–module M such that
dimk(M) = m is given by a set of matrices A1, . . . , An of size m ×m. One
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gets a full, faithful and exact functor Λ − mod −→ k〈x, y〉 − mod mapping
the module M to the k〈x, y〉–module of dimension m · n defined by the pair
of matrices

X =




λ1I 0 . . . 0
0 λ2I . . . 0
...

...
. . .

...
0 0 . . . λnI


 Y =




A1 I . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An


 ,

where λ1, . . . , λn are different elements of the field k. Thus a classification
of vector bundles over X would imply a classifications of all representations
of all finitely generated algebras, a goal that perhaps nobody considers as
achievable (whence the name “wild”).

2.3 Vector bundles on elliptic curves

In this subsection we shall discuss a classification of indecomposable coher-
ent sheaves over smooth elliptic curves. Modulo some facts about derived
categories we give a self-contained proof of Atiyah’s classification of indecom-
posable vector bundles which is probably simpler than the original proof.

Definition 1. An elliptic curve E over a field k is a smooth projective curve
of genus one having a k–rational point p0.

The category Coh(E) of coherent sheaves on an elliptic curve E has the
following properties, sometimes called “dimension one Calabi-Yau property”:

• It is abelian, k–linear, finite-dimensional, noetherian and of global dimen-
sion one.

• Serre Duality: for any two coherent sheaves E and F on E there is an
isomorphism

Hom(E ,F) ∼= Ext1(F ,G)∗,

functorial in both arguments.

It is interesting to note that these properties almost characterize the category
of coherent sheaves on an elliptic curve:

Theorem 8 (Reiten – van den Bergh [RV02]). Let k be an algebraically
closed field and A an indecomposable abelian Calabi-Yau category of dimension
one. Then A is equivalent either to the category of finite-dimensional k[[t]]–
modules or to the category of coherent sheaves on an elliptic curve E.

This theorem characterizes Calabi-Yau abelian categories of global dimen-
sion one. We shall need one more formula to proceed with a classification of
indecomposable coherent sheaves.
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Theorem 9 (Riemann–Roch formula). For any two coherent sheaves F
and G on an elliptic curve E there is an integral bilinear Euler form

〈F ,G〉 := dimk Hom(F ,G) − dimk Ext1(F ,G) =

∣∣∣∣
deg(G) deg(F)
rk(G) rk(F)

∣∣∣∣ .

In particular, 〈 , 〉 is anti-symmetric: 〈F ,G〉 = −〈G,F〉.

Now we are ready to start with the classification of indecomposable coherent
sheaves.

Theorem 10 (Atiyah). Let E be an elliptic curve over a field k. Then

1. Any indecomposable coherent sheaf F is semi-stable.
2. If F is semi-stable and indecomposable then all its Jordan-Hölder factors

are isomorphic.
3. A coherent sheaf F is stable if and only if End(F) = K, where k ⊂ K is

some finite field extension.

Proof. It is well-known that any coherent sheaf F ∈ Coh(E) has a Harder-
Narasimhan filtration

0 ⊂ Fn ⊂ . . . ⊂ F1 ⊂ F0 = F

whose factors Aν := Fν/Fν+1 are semi-stable with decreasing slopes µ(An) >
µ(An−1) > . . . > µ(A0). Using the definition of semi-stability, this implies
Hom(Aν+i,Aν) = 0 for all ν ≥ 0 and i > 0. Therefore, Ext1(A0,F1) ∼=
Hom(F1,A0)

∗ = 0, and the exact sequence 0 → F1 → F → A0 → 0 must
split. In particular, if F is indecomposable, we have F1 = 0 and F ∼= A0 and
F is semi-stable.

The full sub-category of Coh(E) whose objects are the semi-stable sheaves
of a fixed slope is an abelian category in which any object has a Jordan-Hölder
filtration with stable factors. If F and G are non-isomorphic stable sheaves
which have the same slope then Ext1(F ,G) = 0. Based on this fact we deduce
that an indecomposable semi-stable sheaf has all its Jordan-Hölder factors
isomorphic to each other.

It is well-known that any non-zero automorphism of a stable coherent
sheaf F is invertible, i.e. End(F) is a field K. Since E is projective, the field
extension k ⊂ K is finite. On a smooth elliptic curve, the converse is true as
well, which equips us with a useful homological characterization of stability.

To see this, suppose that all endomorphism of F are invertible but F is
not stable. This implies the existence of an epimorphism F → G with G stable
and µ(F) ≥ µ(G). Serre duality implies dimk Ext1(G,F) = dimk Hom(F ,G) >
0, hence, 〈G,F〉 = dimk Hom(G,F) − dimk Ext1(G,F) < dimk Hom(G,F).
By Riemann-Roch formula 〈G,F〉 = (µ(F) − µ(G))/ rk(F) rk(G) > 0, hence
Hom(G,F) 6= 0. But this produces a non-zero composition F → G → F which
is not an isomorphism, in contradiction to the assumption that End(F) is a
field.
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Remark 1. Usually one speaks about the stability of vector bundles on pro-
jective varieties in the case of an algebraically closed field of characteristics
zero. However, due to a result of Rudakov [Rud97] one can use the stability
notion for fairly general abelian categories.

The following classical fact was, probably first, proven by Dold [Dol60]:

Proposition 2. Let A be an abelian category of global dimension one and
F an object of the derived category Db(A). Then there is an isomorphism
F ∼=

⊕
i∈Z

Hi(F)[−i], i.e. any object of Db(A) splits into a direct sum of its

homologies.

This proposition in particular means that the derived category Db(A) of a
hereditary abelian category A and the abelian category A itself have the same
representation type. However, it turns out that the derived category has a
richer structure and more symmetry then the corresponding abelian category.

First of all note that the group Aut(Db(Coh(E))) acts on the K–group
K(E) of Coh(E) preserving the Euler form 〈 , 〉. Hence, it leaves invariant the
radical of the Euler form rad〈 , 〉 = {F ∈ K(E)|〈F , 〉 = 0} and induces an ac-

tion on K(E)/rad〈 , 〉. Since by Riemann-Roch theorem Z : K(E)/rad〈 , 〉 Z−→
Z2 is an isomorphism, where Z(F) := (rk(F),deg(F)) ∈ Z2, we get a group
homomorphism Aut(Db(Coh(E))) −→ SL(2,Z). We call the pair Z(F) ∈ Z2

the charge of F .

Theorem 11 (Mukai, [Muk81]). Let E be an elliptic curve. Then the group
homomorphism Aut(Db(Coh(E))) −→ SL(2,Z) is surjective.

Proof. By the definition of an elliptic curve there is a k–rational point p0 on E

inducing an exact equivalence O(p0)⊗−. Let P = OE×E

(
∆−(p0×E)−(E×p0)

)

then the Fourier-Mukai transform

ΦP : Db(Coh(E)) → Db(Coh(E)), ΦP(F) = Rπ2∗(P ⊗ π∗
1F)

is an exact auto-equivalence of the derived category, see [Muk81]. The actions
of O(p0)⊗− and ΦP on K(E)/rad〈 , 〉 in the basis {[O], [k(p0)]} are given by
the matrices ( 1 0

1 1 ) and
(

0 1
−1 0

)
which are known to generate SL(2,Z). This

shows the claim.

The technique of derived categories makes it easy to give a classification
of indecomposable coherent sheaves on an elliptic curve.

Theorem 12. Let F be an indecomposable coherent sheaf on an elliptic curve
E. Then there exits a torsion sheaf T and an exact auto-equivalence Φ ∈
Aut(Db(Coh(E))) such that F ∼= Φ(T ).

Proof. Let F be an indecomposable coherent sheaf on E with the charge
Z(F) = (r, d), r > 0. Let h = g.c.d.(r, d) be the greatest common divisor, then
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there exists a matrix F ∈ SL(2,Z) such that F ( r
d ) = ( 0

h ). We can lift the
matrix F to an auto-equivalence Φ ∈ Aut(Db(Coh(E)), then Z(Φ(F)) = ( 0

h ).
Since Aut(Db(Coh(E))) maps indecomposable objects of the derived category
into indecomposable ones and since the only indecomposable objects in the
derived category are shifts of indecomposable coherent sheaves, we can con-
clude that Φ(F) is isomorphic to a shift of some indecomposable sheaf of rank
zero, what proves the theorem.

Let ME(r, d) denote the set of indecomposable vector bundles on E of rank
r and degree d.

Theorem 13 (Atiyah). Let E be an elliptic curve. Then for any integer
h > 0 there exists a unique indecomposable vector bundle Fh ∈ME(h, 0) such
that H0(Fh) 6= 0. The vector bundles Fh are called unipotent. Moreover, the
following properties hold:

1. H0(Fh) = H1(Fh) = k for all h ≥ 1.
2. If char(k) = 0 then Fh

∼= Symh−1(F2). Moreover

Fe ⊗Ff
∼=

f−1⊕

i=0

Fe+f−2i−1

Sketch of the proof. Since Fh is indecomposable of degree zero, it has a unique
Jordan-Hölder factor L ∈ Pic0(E). From the assumption Hom(O,Fh) 6= 0
we conclude that L ∼= O, so each bundle Fh can be obtained by recursive
self-extensions of the structure sheaf. Since by Theorem 12 the category of
semi-stable vector bundles of degree zero is equivalent to the category of tor-
sion sheaves, we conclude that the category of semi-stable sheaves with the
Jordan-Hölder factor O is equivalent to the category of finite-dimensional
k[[t]]-modules. The exact sequence

0 −→ Fh−1 −→ Fh −→ O −→ 0.

corresponds via Fourier-Mukai transform ΦP to

0 −→ k[[t]]/th−1 −→ k[[t]]/th −→ k −→ 0.

In the same way we conclude that Hom(O,Fh) = Homk[[t]](k,k[[t]]/th) = k.

Moreover, one can show that ΦP(k[[t]]/te ⊗k k[[t]]/tf ) ∼= Fe ⊗ Ff , hence we
have the same rules for the decomposition of the tensor product of unipotent
vector bundles and of nilpotent Jordan cells, see [Ati57, Oda71, Muk81, PH05].

Remark 2. Atiyah’s original proof from 1957 was written at the time when
the formalism of derived and triangulated categories was not developed yet.
However, his construction of a bijection between ME(r, d) and ME(h, 0) corre-
sponds exactly to the action of the group of exact equivalences of the derived
category of coherent sheaves on the set of indecomposable objects. This was
probably for the first time observed by Lenzing and Meltzer in [LM93]. For
further elaborations, see [Pol03, PH05, BK3].
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Actually, Atiyah’s description of indecomposable vector bundles on an
elliptic curve E is more precise.

Theorem 14 (Atiyah). Let E be an elliptic curve over an algebraically closed
field k. For any pair of coprime integers (r, d) with r > 0 pick up some
E(r, d) ∈ME(r, d). Then

1. ME(r, d) = {E(r, d) ⊗ L|L ∈ Pic0(E)}.
2. E(r, d) ⊗ L ∼= E(r, d) if and only if Lr ∼= O.
3. The map det : ME(r, d) −→ME(1, d) is a bijection.
4. If char(k) = 0, then Fh ⊗− : ME(r, d) −→ME(rh, dh) is a bijection.

Remark 3. If k is not algebraically closed and E is a smooth projective curve
of genus one over k, without k–rational points, then we miss the generator
O(p0) in the group of exact auto-equivalences Db(Coh(X)) and the method
used for elliptic curves can not be immediately applied. This problem was
solved in a paper of Pumplün [Pum04].

We may sum up the discussed properties of indecomposable coherent
sheaves on elliptic curves:

Proposition 3. Let E be an elliptic curve over a field k. Then

1. Any indecomposable coherent sheaf F on E is semi-stable with a unique
stable Jordan-Hölder factor.

2. An indecomposable vector bundle is determined by its charge (r, d) ∈ Z2

and a closed point x of the curve E.
3. Let Cohν(E) be the category of semi-stable sheaves of slope ν. Then for any
µ, ν ∈ Q∪{∞} the abelian categories Cohν(E) and Cohµ(E) are equivalent
and this equivalence is induced by an auto-equivalence of Db(Coh(E)).

4. In particular, each category Cohµ(E) is equivalent to the category of co-
herent torsion sheaves.

5. If F ∈ Cohν(E),G ∈ Cohµ(E) and ν < µ then Ext1(F ,G) = 0 and

dimk Hom(F ,G) = deg(F)rk(G) − deg(G)rk(F).

The case ν > µ is dual by Serre duality.

This gives a pretty complete description of the category of coherent sheaves
on an elliptic curve and of its derived category. However, in applications one
needs another description of indecomposable vector bundles, see [Pol02, PZ98].

The following form of Atiyah’s classification is due to Oda [Oda71]. It
was used by Polishchuk and Zaslow in their proof of the homological mirror
symmetry conjecture for elliptic curves, see [PZ98, Kre01].

Theorem 15 (Oda). Let k = C and E = Eτ = C/〈1, τ〉 be an elliptic curve,
E ∈ ME(rh, dh) an indecomposable vector bundle, where gcd(r, d) = 1. Then
there exists a unique line bundle L of degree d on Erτ such that
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E ∼= π∗(L) ⊗Fh
∼= π∗(L ⊗ Fh),

where π : Erτ −→ Eτ is an étale covering of degree r.

Proof. Let L be a line bundle on Erτ of degree d. Since the morphism π
is étale, π∗(L) is a vector bundle on Eτ of rank r. The Todd class of an
elliptic curve is trivial, hence by Grothendieck-Riemann-Roch theorem we
obtain deg(π∗(L)) = deg(L) = d.

Now let us show that π∗(L) is indecomposable. To do this it suffices to
prove that End(π∗L) = C. Consider the fiber product diagram

Ẽ
p1−−−−→ Erτ

p2

y
yπ1

Erτ
π2−−−−→ Eτ .

One can easily check that Ẽ is a union of r copies of the elliptic curve Erτ :

Ẽ =
r∐

i=1

Ei
rτ , where each p

(i)
1 : Ei

rτ −→ Erτ , i = 1, . . . , r can be chosen to be

the identity map and p
(i)
2 (z) = z + i

r
τ .

Since all morphisms πi, pi, i = 1, 2 are affine and flat, the functors
πi∗, π

∗
i , pi∗, p

∗
i are exact. Moreover, p!

i = p∗i since the canonical sheaf of an
elliptic curve is trivial. Using the base change isomorphism and Grothendieck
duality we have

HomEτ

(
π1∗L, π2∗L

) ∼= HomErτ

(
π∗

2π1∗L,L
)

∼= HomErτ

(
p2∗p

∗
1L,L

) ∼= Hom
Ẽ

(
p∗1L, p∗2L

)
.

It remains to note that Hom
Ẽ

(
p
(i)∗
1 L, p(i)∗

2 L
)

= 0 for i 6= 0.
If E is an indecomposable vector bundle on Eτ of rank rh and degree dh,

then by Theorem 14 there exists M ∈ Pic0(Eτ ) such that E ∼= π∗(L)⊗M⊗Fh.
By the projection formula E ∼= π∗(L ⊗ π∗M) ⊗ Fh. Moreover, passing to an
étale covering kills the ambiguity in the choice of M.

It remains to show that π∗(Fh) ∼= Fh. To do this it suffices see that
π∗(F2) ∼= F2, since Fh

∼= Symh−1(F2) and the inverse image commutes with
all tensor operations. The only property we have to check is that π∗(F2) does
not split. It is equivalent to say that the map π∗ : H1(OEτ

) −→ H1(OErτ
) is

non-zero.
This follows from the commutativity of the diagram:

Z2 H1(Eτ ,Z)
∼= // H1(Eτ ,Z)

�

� /

π∗

��

H1(Eτ , 0)

π∗

��
Z2

( 1 0
0 r )

OO

H1(Erτ ,Z)

π∗

KS

// H1(Erτ ,Z)
�

� / H1(Erτ , 0).
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3 Vector bundles and torsion free sheaves on singular

curves of arithmetic genus one

In this paper we discuss two approaches for the study of the category of
coherent sheaves on a singular projective curve of arithmetic genus one. The
first uses the technique of derived categories and Fourier-Mukai transforms. Its
key point is that any semi-stable torsion free sheaf on an irreducible Weierstraß
curve can be obtained from a torsion sheaf by applying an auto-equivalence of
the derived category. This technique can be generalized to the case of elliptic
fibrations: we can transform a family of torsion sheaves to a family of sheaves,
which are semi-stable on each fiber.

However, the approach via Fourier-Mukai transforms allows to describe
only semi-stable sheaves. In order to get a description of all indecomposable
torsion free sheaves, another technique turns out to be useful. Namely, we
relate vector bundles on a singular rational curve X and on its normaliza-

tion X̃
p−→ X. The inverse image functor p∗ : VB(X) −→ VB(X̃) can map

non-isomorphic bundles into isomorphic ones. The full information about the
fibers of this map is encoded in a certain matrix problem. In the case of an
algebraically closed field this approach leads to a very concrete description of
indecomposable vector bundles on cycles of projective lines via étale coverings
(no assumption on char(k) is needed).

Combining both methods, we get a quite complete description of the cat-
egory of torsion free sheaves on a nodal Weierstraß curve.

3.1 Vector bundles on singular curves via matrix problems

Let X be a reduced projective curve over a field k. Introduce the following
notation:

• p : X̃ −→ X the normalization of X;
• O = OX and Õ = p∗OX̃

;

• J = AnnO(Õ/O) the conductor of O in Õ;

• A = O/J and Ã = Õ/J .

Note that A and Ã are skyscraper sheaves supported at the singular locus
of X. Since the morphism p is affine, p∗ identifies the category of coherent
sheaves Coh(X̃) and the category Coh

Õ
of coherent modules on the ringed

space (X, Õ). Let S be the subscheme of X defined by the conductor J , S̃ its

scheme-theoretic pull-back on X̃ and I = I
S̃

its ideal sheaf on X̃. Then p∗
also induces an equivalence between the category of O

X̃
/I–modules and the

category of Ã–modules.
For a sheaf of algebras Λ ∈ {O, Õ,A, Ã} on the topological space X, denote

by TFΛ the category of torsion free coherent Λ–modules and by VBΛ its full
subcategory of locally free sheaves. The usual way to deal with vector bundles
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on a singular curve is to lift them to the normalization, and then work on
a smooth curve, see for example [Ses209]. Passing to the normalization we
loose information about the isomorphism classes of objects of VBO since non-
isomorphic vector bundles can have isomorphic inverse images. In order to
describe the fibers of the map VBO −→ VB

Õ
and to be able to deal with

arbitrary torsion free sheaves we introduce the following definition:

Definition 2. The category of triples TX is defined as follows:

1. Its objects are triples (F̃ ,M, ĩ), where F̃ is a locally free Õ–module, M
is a coherent A–module and ĩ : M⊗O Ã −→ F̃ ⊗

Õ
Ã is an epimorphism

of Ã–modules, which induces a monomorphism of A–modules i : M −→
M⊗O Ã ĩ−→ F̃ ⊗

Õ
Ã.

2. A morphism (F̃1,M1, ĩ1)
(F,f)−→ (F̃2,M1, ĩ2) is given by a pair (F, f), where

F̃1
F−→ F̃2 is a morphism of Õ-modules and M1

f−→ M2 is a morphism
of A-modules, such that the following diagram

M1 ⊗O Ã
ĩ1 //

f̄

��

F̃1 ⊗Õ
Ã

F̄

��

M2 ⊗O Ã
ĩ2 // F̃2 ⊗Õ

Ã
is commutative in Coh

Ã
, where F̄ = F ⊗ id and f̄ = ϕ⊗ id.

The main reason to introduce the formalism of triples is the following theorem:

Theorem 16. The functor TFO

Ψ−→ TX mapping a torsion free sheaf F to the
triple (F̃ ,M, ĩ), where F̃ = F⊗O Õ/tor(F⊗O Õ), M = F̃ ⊗OA and ĩ : F⊗O

Ã −→ F̃⊗
Õ
Ã, is an equivalence of categories. Moreover, the category of vector

bundles VBO is equivalent to the full subcategory of TX consisting of those
triples (F̃ ,M, ĩ), for which M is a free A–module and ĩ is an isomorphism.

Sketch of the proof. We construct the quasi-inverse functor TX

Ψ ′

−→ TFX as
follows. Let (F̃ ,M, ĩ) be some triple. Consider the pull-back diagram

0 // J F̃ //

id

��

F //

��

M //

i

��

0

0 // J F̃ // F̃ // F̃ ⊗
Õ
Ã // 0

in the category of O–modules. Since the pull-back is functorial, we get a

functor TX

Ψ ′

−→ Coh(X). Since the map i is injective, F −→ F̃ is injective as
well, so F is torsion free. It remains to show that the functors Ψ and Ψ ′ are
quasi-inverse to each other. We refer to [DG01] for the details of the proof.
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Remark 4. There is a geometric way to interpret the above construction of the

category of triples. Let X be a singular curve, X̃
p−→ X its normalization, s :

S −→ X the inclusion of the closed subscheme defined by the conductor ideal
and s̃ : S̃ −→ X̃ its pull-back on the normalization. Consider the Cartesian
diagram

S̃
s̃ //

p̃

��

X̃

p

��
S

s // X.

Theorem 16 says that a torsion free sheaf F on a singular curve X can be
reconstructed from its “normalization” p∗(F)/tor(p∗F), its pull-back s∗F on
S, and the “gluing map” p̃∗s∗F −→ s̃∗p∗F −→ s̃∗

(
p∗F/tor(p∗F)

)
.

Now let us see how this construction can be used to classify torsion free
sheaves on degenerations of elliptic curves. Let char(k) 6= 2 and E be a nodal
Weierstraß curve, given by the equation zy2 − x3 − zx2 = 0, s = (0 : 0 : 1) its

singular point, P1 = Ẽ
p−→ E the normalization map. Choose coordinates on

P1 in such a way that the preimages of s are 0 = (0 : 1) and ∞ = (1 : 0).
The previous theorem says that a torsion free sheaf F on the curve E is

uniquely determined by the corresponding triple Ψ(F) = (F̃ ,M, ĩ). Here F̃
is a locally free Õ–module, or as we have seen, a locally free OP1-module.
Using the notation Õ(n) = p∗(OP1(n)), due to the theorem of Birkhoff-

Grothendieck, F̃ ∼=
⊕
n∈Z

Õ(n)rn .

Since A = O/J = k(s) and Ã = Õ/J = (k × k)(s), the sheaf M can be

identified with its stalk at s and the map ĩ : M⊗AÃ −→ F̃⊗
Õ
Ã can be viewed

as a pair (i(0), i(∞)) of linear maps of k–vector spaces. In order to write ĩ

in terms of matrices we identify Õ(n) ⊗
Õ

Ã with p∗(OP1(n) ⊗O
P1

OP1/I).
The choice of coordinates on P1 fixes two canonical sections z0 and z1 of
H0(OP1(1)) and we use the trivializations

OP1(n) ⊗ I −→ k(0) × k(∞)

given by ζ ⊗ 1 7→ (ζ/zn
1 (0), ζ/zn

0 (∞)). Note, that this isomorphism only
depends on the choice of coordinates of P1. In such a way we supply the
Ã–module F̃ ⊗ Ã = F̃(0) ⊕ F̃(∞) with a basis and get isomorphisms

F̃(0) ∼=
⊕
n∈Z

k(0)rn and F̃(∞) ∼=
⊕
n∈Z

k(∞)rn . With respect to all choices the

morphism ĩ is given by two matrices i(0) and i(∞), divided into horizontal
blocks:

From the definition of the category of triples it follows that the matri-
ces i(0) and i(∞) have to be of full row rank and the transposed matrix
(i(0)|i(∞))t has to be monomorphic. Vector bundles on E correspond to in-
vertible square matrices i(0) and i(∞).
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...
n−1

n }rn

n+1

...

i(0)

...
n−1

n }rn

n+1

...

i(∞)

Of course, for a fixed F̃ =
⊕
n∈Z

Õ(n)rn and M = kN (s), two different pairs

of matrices (i(0)|i(∞)) and (i′(0)|i′(∞)) can define isomorphic torsion free
sheaves on E. However, since the functor Ψ : TFO −→ TX preserves isomor-
phism classes of indecomposable objects, two triples (F̃ ,M, ĩ) and (F̃ ,M, ĩ′)
define isomorphic torsion free sheaves if and only if there are automorphisms
F : F̃ −→ F̃ and f : M −→ M such that F̄ ĩ = ĩ′f̄ .

An endomorphism F of F̃ =
⊕
n∈Z

Õ(n)rn can be written in a matrix form:

F = (Fkl), where Fkl is a rl × rk–matrix with coefficients in the vector space

Hom(Õ(k), Õ(l)) ∼= k[z0, z1]k−l. In particular, the matrix F is lower triangular
and the diagonal rn × rn blocks Fnn are just matrices over k. The morphism
F is an isomorphism if and only if all Fnn are invertible. Let r = rank(F̃).
With respect to the chosen trivialization of OP1(n) at 0 and ∞ the map F̄ :
kr(0)⊕kr(∞) −→ kr(0)⊕kr(∞) is given by the pair of matrices (F (0), F (∞))
and we have the following transformation rules for the pair (i(0), i(∞)):

(
i(0), i(∞)

)
7→

(
F (0)−1i(0)S, F (∞)−1i(∞)S

)

where F is an automorphism of
⊕
n∈Z

Õ(n)rn and S an automorphism of kN .

Note, that the matrices Fkl(0) and Fkl(∞), k, l ∈ Z, k > l can be arbitrary
and Fnn(0) = Fnn(∞) can be arbitrary invertible for n ∈ Z. As a result we
get the following matrix problem.

Matrix problem for a nodal Weierstraß curve. We have two matrices
i(0) and i(∞) of the same size and both of full row rank. Each of them is
divided into horizontal blocks labeled by integers (they are called sometimes
weights). Blocks of i(0) and i(∞), labeled by the same integer, have the same
size. We are allowed to perform only the following transformations:

1. We can simultaneously do any elementary transformations of columns of
i(0) and i(∞).

2. We can simultaneously do any invertible elementary transformations of
rows inside of any two conjugated horizontal blocks.

3. We can in each of the matrices i(0) and i(∞), independently add a scalar
multiple of any row with lower weight to any row with higher weight.
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The main idea is that we can transform the matrix i into a canonical form
which is quite analogous to the Jordan normal form.

These types of matrix problems are well-known in representation theory.
First they appeared in a work of Nazarova and Roiter [NR69] about the classi-
fication of k[[x, y]]/(xy)–modules. They are called, sometimes, “Gelfand prob-
lems” or “representations of bunches of chains”.

Example 1. Let E be a nodal Weierstraß curve.

• The following triple (F̃ ,M, ĩ) defines an indecomposable vector bundle of

rank 2 on E: the normalization F̃ = Õ ⊕ Õ(n), n 6= 0, M = k2(s) and
matrices:

i(0) =
1 0 0

0 1 n

and i(∞) =
0 1 0

λ 0 n

λ ∈ k∗.

• The triple
(
Õ(−1),k2, ĩ = 1 0 0 1

)
describes the unique torsion free

sheaf that is not locally free of degree zero, which compactifies the Jacobian
Pic0(E).

A Gelfand matrix problem is determined by a certain partially ordered set
together with an equivalence relation on it. Such a poset with an equivalence
relation is called a bunch of chains. Before giving a general definition, we
give an example describing the matrix problem which corresponds to a nodal
Weierstraß curve.

There are two infinite sets E0 = {E0(k)|k ∈ Z} and E∞ = {E∞(k)|k ∈ Z}
with the ordering · · · < E∗(−1) < E∗(0) < E∗(1) < . . . , ∗ ∈ {0,∞} and two
one-point sets {F0} and {F∞}. On the union

E
⋃

F = (E0 ∪ E∞)
⋃

(F0 ∪ F∞)

we introduce an equivalence relation: E0(k) ∼ E∞(k), where k ∈ Z and
F0 ∼ F∞.

F0 ⋄ p p p p p ⋄ F∞

◦
��

p p p p p ◦
��E0(k) ◦

��

p p p p p ◦ E∞(k)

��E0(k+1) ◦
��

p p p p p ◦E∞(k+1)

��

This picture contains complete information about the corresponding ma-
trix problem. The circles denote elements of E, the diamonds denote elements
F0 and F∞, dotted lines connect equivalent elements and vertical arrows de-
scribe the partial order in E0 and E∞. The sets E0 ∪ F0 and E∞ ∪ F∞ cor-
respond to matrices i(0) and i(∞) respectively, elements E0(k) and E∞(k)
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label their horizontal stripes, k ∈ Z. We also say that a row from the
horizontal block E∗(k) has weight k, ∗ ∈ {0,∞}. The equivalence relation
E0(k) ∼ E∞(k) means that horizontal blocks of weight k have the same num-
ber of rows and F0 ∼ F∞ tells that i(0) and i(∞) have the same number
of columns. Moreover, elementary transformations inside of two conjugated
blocks have to be done simultaneously. The total order on E0 and E∞ means
that we can add any scalar multiple of any row of smaller weight to any row
with a bigger weight. Such transformations can be performed in the matrices
E0 and E∞ independently.

Definition 3. Let k be an arbitrary field. A cycle of n projective lines is
a projective curve En over k with n irreducible components, each of them
is isomorphic to P1. We additionally assume that all components intersect
transversally with intersection matrix of type Ãn and the completion of the
local rings of any singular point of En is isomorphic to k[[u, v]]/uv. In a
similar way, a chain of k projective lines Ik is a configuration of projective k
lines with intersection matrix of type Ak−1.

Remark 5. Let k = R and E be the cubic curve zy2 = x3 − zx2. Then s = (0 :

0 : 1) is the singular point of E and ÔE,s = R[[u, v]]/(u2 + v2). Then E is not
a cycle of projective lines in the sense of Definition 3 and the combinatorics
of the indecomposable vector bundles on E will be considered elsewhere.

Let E be either a chain or a cycle of projective lines and Ẽ its normalization.
The matrix problem we get is given by the following partially ordered set.

Consider the set of pairs {(L, a)}, where L is an irreducible component

of Ẽ and a ∈ L a preimage of a singular point. To each such pair we attach
a totally ordered set E(L,a) = {E(L,a)(i)|i ∈ Z}, where · · · < E(L,a)(−1) <
E(L,a)(0) < E(L,a)(1) < . . . and a one-point set F(L,a). On the union

E
⋃

F =
⋃

(L,a)

(E(L,a) ∪ F(L,a)),

we introduce an equivalence relation:

1. F(L′,a′) ∼ F(L′′,a′′), where a′ and a′′ are preimages of the same singular
point a ∈ E

2. E(L,a′)(k) ∼ F(L,a′′)(k) for k ∈ Z and a′, a′′ ∈ L.

Such a partially ordered set with an equivalence relation is called a bunch
of chains [Bon92]. A representation of such a bunch of chains is given by a set
of matrices M(L, a), for each element (L, a). Every matrix M(L, a) is divided
into horizontal blocks labelled by the elements of E(L,a). Of course, all but
finitely many labels corresponds to empty blocks. The principle of conjugation
of blocks is the same as for a rational curve with one node.

The category of representations of a bunch of chains is additive and has two
types of indecomposable representations: bands and strings [Bon92]. Hence,
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the technique of representations of bunches of chains allows to describe inde-
composable torsion free sheaves on chains and cycles of projective lines.

Let E = En be a cycle of n projective lines, {a1, a2, . . . , an} the set of

singular points of E, Ẽ
p−→ E the normalization of E, Ẽ =

n∐
i=1

Li, where each

Li is isomorphic to a projective line and {a′i, a′′i } = p−1(ai). Assume that
a′i, a

′′
i+1 ∈ Li, where a′′n+1 = a′′1 . Fix coordinates on each projective line Li in

such a way, that a′i = (0 : 1) and a′′i+1 = (1 : 0).

Definition 4. A band B(d,m, p(t)) is an indecomposable vector bundle of
rank rmd. It is determined by the following parameters:

1. d = (d1, d2, . . . , dn, dn+1, dn+2, . . . , d2n, . . . , drn−n+1, drn−n+2, . . . , drn) ∈
Zrn is a sequence of degrees on the normalized curve Ẽ. This sequence
should be non-periodic, i.e. not of the form es = ee . . . e︸ ︷︷ ︸

s times

, where e =

e1, e2, . . . , eqn is another sequence and q = r
s
.

2. p(t) = tk + a1t
d−1 + · · · + ak ∈ k[t] is an irreducible polynomial of degree

k, p(t) 6= 0.
3. m ∈ Z+ is a positive integer.

In particular, one can recover from the sequence d the pull-back of B(d,m, p(t))

on the l-th irreducible component of Ẽ: it is

p∗l (B(d,m, p(t))) ∼=
r⊕

i=1

OLl
(dl+in)mk.

A string S(d, f) depends only on two discrete parameters f ∈ {1, 2, . . . , n}
and d = (d1, d2, . . . , dt), t > 1.

Now we are going to explain the way of construction of gluing matrices of
triples corresponding to bands B(d,m, p(t)) and strings S(e, f).

Algorithm 1. Bands. Let d = (d1, d2, . . . , drn) ∈ Zrn be a non-periodic
sequence, m ∈ Z+ and p(t) ∈ k[t] an irreducible polynomial of degree k.
We have 2n matrices M(Li, a

′
i) and M(Li, a

′′
i+1), i = 1, . . . , n occurring in

the triple, corresponding to B(d,m, p(t)). Each of them has size mrk ×mrk.
Divide these matrices into mk × mk square blocks. Consider the sequences
d(i) = didi+n . . . di+(r−1)n and label the horizontal strips of M(Li, a

′
i) and

M(Li, a
′′
i+1) by integers occurring in each d(i). If some integer d appears l

times in d(i) then the horizontal strip corresponding to the label d consists
of l substrips having mk rows each. Recall now an algorithm of writing the
components of the matrix ĩ in a normal form [Bon92]:
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1. Start with the sequence (L1, a
′
1)

1−→ (L1, a
′′
2)

1−→ (L2, a
′
2)

1−→ (L2, a
′′
3)

1−→
· · · 1−→ (Ln, a

′
1)

2−→ (L1, a
′′
1)

2−→ · · · r−→ (Ln, a
′
n)

r−→ (Ln, a
′′
1)

1−→ . It is
convenient to imagine this sequence as a cyclic word broken at the place
(L1, a

′
1).

2. Unroll the sequence d. This means that we write over each (Li, a) the
corresponding term of the subsequence d(i) together with the number of
its previous occurrences in d(i) including the current one:

(L1, a
′
1)

(d1,1) 1−→ (L2, a
′
2)

(d2,1) 1−→ (L2, a
′′
3)(d2,1) 1−→

· · · r−→ (Ln, a
′′
1)drn,∗ r−→ (Ln, a

′
1)

(drn,1) 1−→ .

3. Now we can fill the entries of the matrices M(L, a). Consider each arrow

(L, a)(d,i) l−→ . Then insert the matrix Imk in the block ((d, i), l) of the
matrix M(L, a), which is defined as the intersection of the i-th substrip
of the horizontal strip labeled by d and the l-th vertical strip.

4. Put at the ((drn, 1), r)-th place ofM(Ln, a
′′
1) the Frobenius block Jm(p(t)).

Strings. Let e = (e1, e2, . . . , es) ∈ Zs and f ∈ {1, 2, . . . , n}. The algorithm
to write the matrices for the torsion free sheaf S(d, f) is essentially the same
as for bands. The parameter f denotes the number of the component Lf of

Ẽ which the sequence (Lf , a
′
f ) −→ (Lf , a

′′
f+1) −→ . . . −→ (Lf+s, a

′
f+s) −→

(Lf+s, a
′′
f+s+1) starts with. Then we unroll e using the same algorithm as for

bands. The only difference is that we insert instead of Imk the unit (1 × 1)–
matrix. Note, that some of the matrices M(Li, a

′
i) and M(Li, a

′′
i ) can be non-

square, but they are automatically of full row rank

Example 2. Let E = E2 be a cycle of two projective lines, d = (0, 1, 1, 3, 1,−2)
and p(t) ∈ k[[t]] an irreducible polynomial of degree k. Then B(d,m, p(t)) is
a vector bundle of degree 3m with the normalization

(
Omk

L1
⊕OL1

(1)2mk
)
⊕

(
OL2

(−2)mk ⊕OL2
(1)mk ⊕OL2

(3)mk
)

and gluing matrices

M(L1, a
′
1) =

Imk

Imk

Imk

0

1

Imk

Imk

Imk

= M(L1, a
′′
2)

M(L2, a
′′
1) =

Jm

Imk

Imk

−2

1

3

Imk

Imk

Imk

= M(L2, a
′
2),
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The corresponding unrolled sequence looks as follows:

(L1, a
′
1)

(0,1) 1−→ (L1, a
′′
2)(0,1) 1−→ (L2, a

′
2)

(1,1) 1−→ (L2, a
′′
1)(1,1) 2−→

(L1, a
′
1)

(1,1) 2−→ (L1, a
′′
2)(1,1) 2−→ (L2, a

′
2)

(3,1) 2−→ (L2, a
′′
1)(3,1) 3−→

(L1, a
′
1)

(1,2) 3−→ (L1, a
′′
2)(1,2) 3−→ (L2, a

′
2)

(−2,1) 3−→ (L2, a
′′
1)(−2,1) 1−→ .

Let f = 2 and d = (−1, 0, 1,−1, 1). Then the corresponding torsion free sheaf
S(d, f) has normalization

F̃ =
(
OL1

(−1) ⊕OL1

)
⊕

(
OL2

(−1) ⊕OL2
(1)2

)

and gluing matrices

M(L1, a
′
1) =

1

1

−1

0

1

1
= M(L1, a

′′
2)

M(L2, a
′′
1) =

1

1

1

−1

1

1

1

1

= M(L2, a
′
2)

where Jm is the Frobenius block corresponding to the k[t]-module k[t]/p(t)m.
The corresponding unrolled sequence is

(L2, a
′
2)

(−1,1) 1−→ (L2, a
′′
1)(−1,1) 1−→ (L1, a

′
1)

(0,1) 1−→ (L1, a
′′
2)(0,1) 1−→

(L2, a
′
2)

(1,1) 2−→ (L2, a
′′
1)(1,1) 2−→ (L1, a

′
1)

(−1,1) 2−→ (L1, a
′′
2)(−1,1) 2−→

(L2, a
′
2)

(1,2) 3−→ (L2, a
′′
1)(1,2) 3−→ .

Summing everything up, we get the following theorem.

Theorem 17 ([DG01]). Let E = En be a cycle of n projective lines over a
filed k. Then

• any indecomposable vector bundle on E is isomorphic to some B(d,m, p(t)),
where d = (d1, d2, . . . , drn) ∈ Zrn is a non-periodic sequence, m ∈ Z+ and
p(t) = tk + a1t

k−1 + · · · + ak ∈ k[t] is an irreducible polynomial, p(t) 6= 0.
• Any torsion free and not locally free coherent sheaf is isomorphic to some

S(d, t), where t ∈ {1, 2, . . . , n} and d ∈ Zrn.

The only isomorphisms between indecomposable vector bundles are generated
by

• B(d,m, p(t)) ∼= B(d◦,m, q(t)), d◦ = drn, drn−1, . . . , d1 and q(t) = tk

ak
p(1/t)

• B(d,m, p(t)) ∼= B(d′,m, p(t)), with

d′ = dn+1, dn+2, . . . , d2n, d2n+1, . . . , d1, d2, . . . , dn.
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The only isomorphisms between strings are S(e, f) ∼= S(e◦, f◦), where e◦ is
the opposite sequence e◦ = es, es−1, . . . , e1. If s = nk + s′ with 0 ≤ s′ < n,
then f◦ = s′ + f taken modulo n.

Remark 6. If E = E1 is a Weierstraß nodal curve, then there is no choice
for the parameter f in the definition of a string and one simply uses the
notation S(d). If the field k is algebraically closed, we write B(d,m, λ) instead
of B(d,m, t− λ).

As a direct corollary of the combinatorics of strings and bands we obtain
the following theorem

Theorem 18 ([DG01]). Let X = In be a chain of n projective lines, then
any vector bundle E on X splits into a direct sum of lines bundles. Moreover,
Pic(In) ∼= Zn and a line bundle is determined by its restrictions on each
irreducible component. A description of torsion free sheaves is similar: any
indecomposable torsion free sheaf is isomorphic to the direct image of a line
bundle on a subchain of projective lines.

3.2 Properties of torsion free sheaves on cycles of projective lines

Throughout this subsection, let k be an algebraically closed field and E = En

a cycle of n projective lines over k. As we have seen in the previous subsection,
indecomposable vector bundles on E are bands B(d,m, λ) and indecompos-
able torsion free but not locally free sheaves are strings S(d, f). They were
described in terms of a certain problem of linear algebra. However, in the
case of an algebraically closed field there is a geometric way to present the
classification of indecomposable torsion free sheaves on E without appealing
to the formalism of bunches of chains. This description, which we give here
for the first time, is completely parallel to Oda’s description of vector bundles
on elliptic curves [Oda71].

We start with a lemma describing unipotent vector bundles on E.

Lemma 2. For any integer m ≥ 1 there exists a unique indecomposable vector
bundle Fm on En appearing in the exact sequence

0 −→ Fm−1 −→ Fm −→ O −→ 0, F1 = O.

In our notation we have Fm
∼= B(0,m, 1), where 0 = (0, 0, . . . , 0)︸ ︷︷ ︸

n times

.

Sketch of the proof. Since the dualizsing sheaf ωE
∼= O is trivial, we have

Ext1(O,O) = k and there is a unique non-split extension

0 −→ O −→ F2 −→ O −→ 0.
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Then using the same arguments as in [Ati57], we can inductively construct
indecomposable vector bundles Fm, m ≥ 1 such that H0(Fm) ∼= H1(Fm) = k
together with exact sequences

0 −→ Fm−1 −→ Fm −→ O −→ 0, F1 = O.

On the other hand, B(0,m, 1) is the unique indecomposable vector bundle
on E of rank m and normalization Om

Ẽ
with a non-zero section. Hence Fm

∼=
B(0,m, 1).

The proof of the following proposition is straightforward:

Proposition 4. Let Ψ : VB(E) −→ TE be the functor establishing an equiv-
alence between the category of vector bundles on E and the category of
triples. Then Ψ preserves tensor products: Ψ(E ⊗ F) ∼= Ψ(E) ⊗ Ψ(F), where

(Ẽ ,M, ĩ) ⊗ (F̃ ,N , j̃) = (Ẽ ⊗
Õ
F̃ ,M⊗A N , ĩ⊗ j̃). In particular,

• We have an isomorphism B((d),m, λ) ∼= B((d), 1, λ) ⊗Fm.
• There is the following rule for a decomposition of the tensor product of two

unipotent vector bundles:

Ff ⊗Fg
∼=

⊕

i

Fhi
,

where integers hi are the same as in the decomposition k[t]/tf ⊗kk[t]/tg ∼=⊕
i∈Z

k[t]/thi in the category of k[t]–modules.

• In particular, if k is of characteristics zero, we have

Ff ⊗Fg
∼=

g⊕

j=1

Ff−g−1+2j .

Now we formulate a geometric description of indecomposable torsion free
sheaves on a cycle of projective lines in the case of an algebraically closed
field.

Theorem 19. Let E = En be a cycle of n projective lines and Ik be a chain
of k projective lines, E an indecomposable torsion free sheaf on En.

1. If E is locally free of rank r, then there is an étale covering πr : Enr −→ En,
a line bundle L ∈ Pic(Enr) and a natural number m ∈ N such that

E ∼= πr∗(L ⊗ Fm).

E4

E2

π2
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2. If E is not locally free then there exists a map pk : Ik −→ En and a line
bundle L ∈ Pic(Ik) such that E ∼= pk∗(L).

I4 E1

p4

Proof. Let E be a cycle of projective lines and πE : E′ −→ E an étale covering
of degree r, F a torsion free sheaf on E′. In the notation of Remark 4 we have
the commutative diagram

S′
πS //

i′

S

i

��

S̃′

π
S̃ //

ĩ′

��

p̃′

??
~

~
~

~
~

~
~

~

��

S̃

��

ĩ

p̃

@@
�

�
�

�
�

�
�

�

E′
πE

// E

Ẽ′
π

Ẽ

//
p′

??
~

~
~

~
~

~
~

Ẽ

p

@@
�

�
�

�
�

�
�

�

in which all squares are pull-back diagrams. In order to prove the theorem we
have to compute the triple describing the torsion free sheaf π∗(F). Note that
each map I −→ E from a chain of projective lines to a cycle of projective lines
factors through an étale covering E′ −→ E. So, in order to prove the second
part of the theorem about the characterization of strings we may consider an
étale covering of E as well.

Note the following simple fact about pull-back diagrams:

Lemma 3. Let

Y′
g′

//

f ′

��

Y

f

��
X′

g // X

be a pull-back diagram where all maps f, g, f ′, g′ are affine. Then for any
coherent sheaf F on Y it holds g∗f∗F ∼= f ′∗g

′∗F .

The morphism p∗πE∗(F)/tor(p∗π
Ẽ∗

(F)) −→ π
Ẽ∗

(
p′∗(F)/tor(p′∗(F))

)
is an

isomorphism. Indeed, we have a surjection
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p∗πE∗(F)
∼=−→ π

Ẽ∗
p′∗F −→ π

Ẽ∗
(p′∗(F)/tor(p′∗(F)))

which induces a surjective map

p∗πE∗(F)/tor(p∗π
Ẽ∗

(F)) −→ π
Ẽ∗

(
p′∗(F)/tor(p′∗(F))

)

of torsion free sheaves. Since both sheaves have the same rank on each ir-
reducible component of Ẽ, we conclude that this map is also injective and
therefore an isomorphism.

We need one more simple statement about étale coverings.

Lemma 4. Let π : Y −→ X be an étale map of reduced schemes and F a
coherent sheaf on Y. Then there is a canonical isomorphism π∗(F/tor(F)) −→
π∗(F)/tor(π∗(F)).

Proof. The canonical map F −→ F/tor(F) induces the morphism π∗(F) −→
π∗(F/tor(F)). Since π is étale, the sheaf π∗(F/tor(F)) is torsion free and the
induced morphism π∗(F/tor(F)) −→ π∗(F)/tor(π∗(F)) is an isomorphism
since it is an isomorphism on the stalks.

Let ε̃ : p̃′∗i′∗(F) −→ ĩ′
∗

(p′∗(F)/tor(p′∗(F))) be the gluing map describing the
torsion free sheaf F in the corresponding triple. From the commutativity of
the diagram

p̃∗i∗πE∗(F) //

��

ĩ∗
(
p∗πE∗(F)/tor(p∗πE∗(F))

)

��
ĩ∗

(
π

Ẽ∗
p′∗(F)/tor(π

Ẽ∗
p′∗(F))

)

��
p̃∗π

S̃∗
i∗n(F)

��

ĩ∗
(
π

Ẽ∗
(p′∗(F)/tor(p′∗(F))

)

��

π
S̃∗
p̃′

∗

i′∗(F)
π

S̃∗
(ε̃)

// π
S̃∗
ĩ′
∗(
p′∗(F)/tor(p′∗(F))

)

we conclude that the direct image sheaf πE∗F is described by the gluing ma-
trices π

S̃∗
(ε̃), which are exactly the matrices constructed in the Algorithm 1.

This completes the proof.

Remark 7. For a given cycle of projective lines E over an arbitrary field k there
is always an étale covering π : E′ −→ E of a given degree r. For example,
let E = E1 be a rational curve with one node, Xi = P1 (i = 1, 2), fi :
Spec(k × k) −→ Xi be two closed embeddings with the image 0 and ∞ and
gi : Xi −→ E two normalization maps mapping the points 0 and ∞ on Xi to
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the singular point of E. Then the push-out of X1 and X2 over Spec(k × k)
(in the category of all schemes and affine maps) is a cycle of two projective
lines E2 and the induced map g : E2 −→ E1 is an étale covering of degree two.
The general case can be considered in a similar way. Note that this is quite
different to the case of elliptic curves, where the existence of an étale covering
of a given degree strongly depends on the arithmetics of the curve.

Similarly to the proof of Theorem 19 we have the following proposition.

Proposition 5. Let πr : Enr −→ En be an étale covering of degree r,

Ẽn =
n∐

i=1

Li and Ẽnr =
nr∐

j=1

L′
j be the normalizations of En and Enr. Let

{a1, a2, . . . , an} be the set of singular points of En and {b1, b2, . . . , bn, bn+1,
. . . , bnr} the singular points of Enr and π−1

r (ai) = {bi, bi+n, . . . , bi+(r−1)}.
Assume E is a vector bundle of rank l, given by the triple (Ẽ ,Al, ĩ), where

Ẽ ∼= Ẽ1 ⊕ Ẽ2 ⊕ · · · ⊕ Ẽn and ĩ is given by matrices M(L1, a
′
1), M(L1, a

′′
2), . . . ,

M(Ln, a
′
1). Then the pull-back π∗

r (E) corresponds to the triple (Ẽ ′,A′l, ĩ′)

where Ẽ ′|L′

i+nj

∼= Ẽi, 0 ≤ j ≤ r − 1 and ĩ′ is given by matrices M(L′, b′) =

M(L, a′) and M(L′, b′′) = M(L, a′′) if πr(L
′) = L and πr(b) = a.

From this proposition follows the following corollary:

Corollary 1. Let Let E = En be a cycle of n projective lines and πr : Erd −→
En an étale covering of degree r. Then

1. π∗
rB(d, 1, λ) ∼= B(dr, 1, λr).

2. If char(k) = 0, then π∗
r (Fm) ∼= Fm. In particular, we have an isomor-

phism
B(d,m, λ) ∼= B(d, 1, λ) ⊗Fm.

Proof. The proof of the first part is straightforward. To prove the second,
note that π∗

r (Fm) is given by a triple, isomorphic to (Õm,Am, ĩ), where ĩ
is given by matrices M(L1, a

′
1) = Im, M(L1, a

′′
2) = Im, . . . ,M(Ln, a

′
n) =

Im, M(Ln, a
′
1) = Jm(1)r, where Jm(1) is the Jordan (m×m)–block with the

eigenvalue 1. If char(k) = 0 then Jm(1)r ∼ Jm(1) and we get the claim. Note,
that in the case char(k) = p we have Jp(1)p = Ip that implies π∗

p(Fp) ∼= Op.
To complete the proof of the second claim note, that

B(d,m, λ) ∼= πr∗(L(d, λ) ⊗Fm) ∼= πr∗(L(d, λ) ⊗ π∗
rFm) ∼=

πr∗(L(d, λ)) ⊗Fm
∼= B(d, 1, λ) ⊗Fm.

Remark 8. As we have already seen, the technique of étale coverings requires
special care in the case of positive characteristics. For example, let E = E1 be
a Weierstraß nodal curve and π2 : E2 −→ E1 an étale covering of degree 2.
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Then the vector bundle π2∗(O) corresponds to the triple (Õ2,k2(s), ĩ), where
ĩ is given by matrices

i(0) =
1 0

0 1
and i(∞) =

0 1

1 0

Then for char(k) 6= 2 we have

0 1

1 0
∼ 1 0

0 −1

and π2∗O ∼= O ⊕ B(0, 1,−1). However, for char(k) = 2

0 1

1 0
∼ 1 1

0 1

and π2∗O ∼= F2.

From Theorem 19 one can derive formulas for the cohomology groups of
indecomposable torsion free sheaves, a formula for the dual of an indecom-
posable torsion free sheaf and rules for the computation of the direct sum
decomposition of two indecomposable vector bundles. This is what we are
going to describe now.

Lemma 5 ([BDG01, BK1]). If d = (d1, . . . , drn) ∈ Zrn,e = (e1, e2, . . . , ek),
λ ∈ k∗,m ≥ 1, 1 ≤ f ≤ n, we have:

(i) B(d,m, λ)∨ ∼= B(−d,m, λ−1)

(ii)S(e, f)∨ ∼= S(κ − e, f) with κ =

{
(−1, 0, . . . , 0,−1) if k ≥ 2

−2 if k = 1.

Proof. If f : X → E is a finite morphism, F a coherent sheaf on X and G a
coherent sheaf on E, there is a natural isomorphism of f∗OX–modules

f∗HomX(F , f !G) ∼= HomE(f∗F ,G).

Recall that f !ωE is a dualizing sheaf on X if ωE is one on E. In our situation
ωE

∼= OE and we obtain an isomorphism

f∗HomX(F , ωX) ∼= HomE(f∗F ,OE) ∼= (f∗F)∨.

To show (i), we consider X = En and f = πn. The claim follows now from
ωEn

∼= OEn
, F∨

m
∼= Fm and L(d, λ)∨ ∼= L(−d, λ−1) on En.

For the proof of (ii) we let X = Ik and f = pk. Now ωIk
∼= L(κ) and the

result follows from L(d)∨ ∼= L(−d) on Ik.

Using the description of indecomposable vector bundles via étale coverings
it is not difficult to compute their cohomology.
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Lemma 6 ([DGK03]). There is the following formula for the cohomology of
indecomposable vector bundles

dimkH
0(B(d,m, λ)) = m

( rn∑

i=1

(di + 1)+ − θ(d)
)

+ δ(d, λ)

and
dimkH

1(B(d,m, λ)) = rm− dimkH
0(B(d,m, λ),

where δ(d, λ) = 1 if d = (0, . . . , 0), λ = 1 and 0 otherwise; k+ = k if k > 0
and zero otherwise. The number θ(d) is defined as follows: call a subsequence
p = (dk+1, . . . , dk+l), where 0 ≤ k < rn and 1 ≤ l ≤ rn a positive part of d

if all dk+j ≥ 0 and either l = rn or both dk < 0 and dk+l+1 < 0. For such a
positive part put θ(p) = l if either l = rs or p = (0, . . . , 0) and θ(p) = l + 1
otherwise. Then θ(d) =

∑
θ(p), where we take a sum over all positive subparts

of d.

In order to compute the tensor product of two indecomposable vector
bundles we shall need the following lemma.

Lemma 7. Let E be a cycle of projective lines, πi : Ei −→ E two étale cover-
ings i = 1, 2 and Ei a vector bundle on Ei. Let E′ be the fiber product of E1

and E2 over E:

E′ p1−−−−→ E1yp2

yπ1

E2
π2−−−−→ E.

Denote bys π̃ : E′ −→ E the composition π1p1, then

π1∗(E1) ⊗ π2∗(E2) ∼= π̃∗
(
p∗1(E1) ⊗ p∗2(E2)

)
.

Proof. By the base change and projection formula π̃∗
(
p∗1(E1) ⊗ p∗2(E2)

) ∼=
π2∗p2∗

(
p∗1(E1) ⊗ p∗2(E2)

) ∼= π2∗

(
p2∗p

∗
1(E1) ⊗ E2

) ∼= π2∗

(
π∗

2π1∗(E1) ⊗ E2

) ∼=
π1∗(E1) ⊗ π2∗(E2).

The following proposition describes the fiber product of two étale coverings
of a given cycle of projective lines.

Proposition 6 ([Bur03]). Let En be a cycle of n projective lines and πi :
Edin −→ En two étale covering of degree di, i = 1, 2. Choose a labeling of
the irreducible components of each cycle Ed1n and Ed2n by consecutive non-
negative integers 0, 1, 2, . . . , such that πi maps the zero component into a zero
component, i = 1, 2. Let d = gcd(d1, d2) be the greatest common divisor and
D = [d1, d2] the smallest common multiple of d1 and d2. Then the fiber product

is Ẽ =
d∐

i=1

E
(i)
Dn and p1 : E

(i)
Dn −→ Ed1n is the étale covering determined by the
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assumption that it maps the i-th component of E
(i)
Dn to the 0-th component of

Ed1n
. The second morphism p2 : E

(i)
Dn −→ Ed2n

is the étale covering, mapping
the zero component to the zero component.

These properties allow to describe a decomposition of the tensor product
of any two indecomposable vector bundles into a direct sum of indecomposable
ones. In particular, in the case of a nodal Weierstraß curve we get the following
concrete algorithm, obtained for the first time in [Yud01].

Theorem 20 ([Yud01, Bur03]). Let E be a Weierstraß nodal curve over
an algebraically closed field k of characteristics zero, B(d, 1, λ) and B(e, 1, µ)
two vector bundles on E of rank k and l respectively, d = d1d2 . . . dk and
e = e1e2 . . . el. Let D be the smallest common multiple and d the greatest
common divisor of k and l. Consider d sequences

f1 = d1 + e1, d2 + e2, . . . , dk + el,
f2 = d1 + e2, d2 + e3, . . . , dk + e1,
...
fd = d1 + ed, d2 + ed+1, . . . , dk + ed−1,

of length D. Then the following decomposition holds:

B(d, 1, λ) ⊗ B(e, 1, µ) ∼=
d⊕

i=1

B(fi, 1, λ
l
dµ

k
d ).

If some fi is periodic, then we use the isomorphism

B(gl, 1, λ) =
l⊕

i=1

B(g, 1, ξi l
√
λ),

where gl = gg . . . g︸ ︷︷ ︸
l

and ξ a primitive l–th root of 1.

Even possessing a complete classification of indecomposable torsion free
sheaves on a Weierstraß nodal curve, an exact description of stable vector
bundles is a non-trivial problem. It can be shown by many methods that for
a pair of coprime integers (r, d) ∈ Z2, r > 0 the moduli space of stable vector
bundles of rank r and degree d is k∗, see for example [BK3]. However, for
applications it is important to have a description of stable vector bundles via
étale coverings. In order to get such a classification note the following useful
fact.

Lemma 8 ([Bur03]). Let E be an irreducible Weierstraß curve. Then a co-
herent sheaf F on E is stable if and only if it is simple i.e. End(F) = k.
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In general, for irreducible curves stability implies simplicity, but in the case
of irreducible curves of arithmetic genus one both conditions are equivalent.
Then one can prove the following theorem:

Theorem 21 ([Bur03]). Let E be a nodal Weierstraß curve and E a stable
vector bundle on E of rank r and degree d, 0 < d < r. Then gcd(r, d) = 1,
E ∼= B(d, 1, λ) and d can be obtained by the following algorithm.

1. Let y = min(d, r−d), x = max(d, r−d). If x = y, then d = (0, 1). Assume
now x > y. Consider the triple (x, y, x+y) and write x+y = (k+1)y+s,
where 0 < s < y and k ≥ 1. If s > y − s then replace (x, y, x + y) by
(s, y − s, y) and say say that (x, y, x + y) is obtained from (s, y − s, y)
by the blow-up of type (A, k). If s < y − s then replace (x, y, x + y) by
(y − s, s, y) and say that (x, y, x + y) is obtained from (y − s, s, y) by the
blow-up of type (B, k).

2. Repeat this algorithm until we get the triple (p, 1, p + 1). Consider the

sequence of reductions (x, y, x+ y) = (x0, y0, x0 + y0)
(C1,k1)−→ (x1, y1, x1 +

y1) −→ · · · (Cn,kn)−→ (xn, yn, xn + yn) = (p, 1, p+ 1), where Ci ∈ {A,B} and
ki ≥ 1 for 1 ≤ i ≤ n.

Now we can recover the vector d :

1. Start with sequence α, α, . . . , α︸ ︷︷ ︸
p times

, β, which corresponds to the triple (xn, yn,

xn + yn) = (p, 1, p + 1). If Cn = A then replace each letter α by the
block α, α, . . . , α︸ ︷︷ ︸

kn + 1

and each β by the block α, α, . . . , α︸ ︷︷ ︸
kn

. Between these new

blocks insert the letter β. If Cn = B then replace each letter α by the block
α, α, . . . , α︸ ︷︷ ︸

kn

and each letter β by the block α, α, . . . , α︸ ︷︷ ︸
kn + 1

. Between these new

blocks insert the letter β again. We have got a new sequence of letters α
and β of total length xn−1 + yn−1 with xn−1 letters α and yn−1 letters β.

2. Proceed inductively until we get a sequence of length r with max(d, r− d)
letters α and min(d, r − d) letters β.

3. If d > r− d then replace each letter α by 1 and each letter β by 0. In case
d ≤ r− d replace α by 0 and β by 1. The resulted sequence is the vector d

we are looking for.

Example 3. Let rank r = 19 and degree 11. The sequence of reductions is

(11, 8, 19)
(B,1)−→ (5, 3, 8)

(A,1)−→ (2, 1, 3).

Using the algorithm we get the sequence of blowing-ups

α, α, β
(A,1)−→ α, α, β, α, α, β, α, β

α, α, β, α, α, β, α, β
(B,1)−→ α, β, α, β, α, α, β, α, β, α, β, α, α, β, α, β, α, α, β
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and hence
d = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0).

This result was generalized by Mozgovoy [Moz] to get a recursive descrip-
tion of semi-stable torsion free sheaves of arbitrary slope.

Note the following important difference between smooth and singular
curves of arithmetic genus one. In the smooth case any indecomposable coher-
ent sheaf is either locally free or torsion free and is automatically semi-stable.
This is no longer true for singular curves, in particular, in that case there are
indecomposable coherent sheaves which are neither torsion nor torsion free.

Example 4. Let E be a nodal Weierstraß curve, s its singular point, n : P1 −→
E the normalization map. Then

Ext1(n∗(OP1),k(s)) = H0(Ext1(n∗(OP1),k(s))) = k2.

Let w ∈ Ext1(n∗(OP1),k(s)) be a non-zero element and

0 −→ k(s)
i−→ F p−→ n∗(OP1) −→ 0

the corresponding extension. Then F is an indecomposable coherent sheaf
which is neither torsion nor torsion free. To see that F is indecomposable
assume F ∼= F ′ ⊕ F ′′. Then one of its direct summands, say F ′ is a torsion
sheaf. Since Hom(F ′, n∗(OP1)) = 0, F ′ belongs to the kernel ker(p) and hence
is isomorphic to k(s). Therefore the map i has a left inverse and hence w = 0,
a contradiction.

Proposition 7 ([BK3]). Let E be a singular Weierstraß curve and F ∈
Coh(E) an indecomposable coherent sheaf which is not semi-stable. Then, all
Harder-Narasimhan factors of F are direct sums of semi-stable sheaves of
infinite homological dimension.

Proof. Let 0 ⊂ Fn ⊂ . . . ⊂ F1 ⊂ F0 = F be the Harder-Narasimhan filtration
of F with semi-stable factors Aν := Fν/Fν+1 of decreasing slopes µ(An) >
µ(An−1) > . . . > µ(A0).

Assume Aν
∼= A′

ν ⊕A′′
ν and A′

ν has finite global dimension. Since Fν+1 is
filtered by semi-stable sheaves Fµ for µ > ν and Hom(Aµ,A′

ν) = 0, we get
Ext1(A′

ν ,Fν+1) ∼= Hom(Fν+1,A′
ν)∗ = 0. Therefore Fν contains A′

ν as a direct
summand: Fν

∼= F ′
ν ⊕Aν . From the exact sequence

0 −→ F ′
ν ⊕A′

ν −→ Fν−1 −→ Aν−1 −→ 0

and the isomorphism Ext1(Aν−1,A′
ν) ∼= Hom(A′

ν ,Aν−1)
∗ = 0 we conclude

that Fν−1 contains A′
ν as a direct summand as well. Proceeding inductively

we obtain that F itself contains A′
ν as a direct summand, a contradiction.
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We see that a difference between the combinatorics of indecomposable
coherent sheaves on smooth and singular Weierstraß curves is due to the ex-
istence of semi-stable sheaves of infinite global dimension together with the
failure of the Serre duality on singular curves. In order to classify indecompos-
able coherent sheaves it is convenient to consider a more general problem: the
description of indecomposable objects of the derived category D−(Coh(E)).
It turns out that the last problem is again tame and can be solved using the
technique of representations of bunches of chains, see [BD04] for the details.

3.3 Vector bundles on a cuspidal cubic curve

As we have mentioned in the introduction, the category of vector bundles on
a curve of arithmetic genus one, different from a cycle of projective lines, is
vector bundle wild, see also Corollary 2. Nevertheless, if we restrict ourselves
to the subcategory of simple vector bundles VBs, or even to the subcategory of
simple torsion free sheaves TFs, then the classification problem becomes tame
again and, moreover, the combinatorics of the answer resembles the case of
smooth and nodal Weierstraß curves (see Theorem 3 and Theorem 21.)

Theorem 22. Let E be a cuspidal cubic curve over an algebraically closed
field k. Then

1. the rank r and the degree d of a stable torsion free sheaf F over E are
coprime;

2. for every pair (r, d) of coprime integers with positive r, the isomorphism
classes of simple vector bundles E ∈ VBs(r, d) can be parametrized by A1;

3. there is a unique torsion free and not locally free sheaf F of rank r and
degree d.

Note that A1 ∼= Ereg, is isomorphic to the Picard group Pic◦(E).
It can be shown that for a pair of coprime integers r > 0 and d the moduli

space of TFs(r, d) is isomorph to E, moreover, vector bundles E correspond to
nonsingular points of E and the unique torsion free but not locally free sheaf
F corresponds to the singular point s.

Sketch of proof. Let E be a cuspidal cubic curve given by the equation x3 −
y2z = 0. Choose coordinates (z0 : z1) on the normalization Ẽ ∼= P1 p−→ E

such that the preimage of the singular point s = (0 : 0 : 1) of E is (0 : 1). Let
U = {(z0 : z1)|z1 6= 0} be an affine neighborhood of (0 : 1) and z = z0/z1. In

the notations of Section 3.1 we have: A = k(s) and Ã =
(
k[ε]/ε2

)
(s).

Let F be a torsion free sheaf of rank r on E and (F̃ ,M, ĩ) be the corre-
sponding triple. Then, as in the case of a nodal rational curve, we have

• a splitting F̃ ∼=
⊕
n∈Z

O(n)rn , with
∑

n∈Z
rn = r;

• an isomorphism M ∼= At, for some t ≥ r, and t = r if and only if F is a
vector bundle;
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• an epimorphism of Ã–modules ĩ : M̃ ⊗A Ã −→ F̃ ⊗
Õ

Ã, which is an
isomorphism if and only if F is a vector bundle.

In order to write ĩ in matrix form remember that we identify F̃ ⊗
Õ
Ã with

p∗
(
p∗(F) ⊗O

P1
OP1/I

)
, where I = I2

(0:1) is the ideal sheaf of the scheme-

theoretic preimage of s. We choose a basis of M ∼= k(s)r and fix the trivial-
izations

OP1(n) ⊗OP1/I −→
(
k[ε]/ε2

)
(s)

given by the map ζ ⊗ 1 7→ pr( ζ
zn
1

) for a local section ζ of O(n) on an open

set V containing 0. Let pr : k[V ] −→ k[ε]/ε2 be the map induced by the map
k[z] −→ k[ε]/ε2, z 7→ ε. Using these choices we may write ĩ = i(0) + εiε(0),
where both i(0) and iε(0) are square r × r matrices. Since by Theorem 16
the isomorphism classes of triples are in bijection with isomorphism classes of
vector bundles, we have to study the action of automorphisms of (F̃ ,M, ĩ) on
the matrices i(0) and iε(0). The condition for ĩ to be surjective is equivalent to
the surjectivity of i(0). Similarly, for vector bundles we have that ĩ is invertible
if and only if i(0) is invertible.

If we have a morphism O(n) −→ O(m) given by a homogeneous form
Q(z0, z1) of degree m−n then the induced map O(n)⊗O/I −→ O(m)⊗O/I
is given by the map pr(Q(z0, z1)/z

m−n
1 ) = Q(0 : 1) + ε dQ

dz0
(0 : 1).

Moreover, for any endomorphism (F, f) of the triple (F̃ ,M, ĩ) the induced

map F̄ : F̃⊗O/I −→ F̃⊗O/I has the form F̄ = F (0)+εFz0
(0). If (F, f) is an

automorphism then F̄ ∈ GLr(k[ε]/ε2) and the transformation rule F̄ ĩ = ĩ′f̄
in matrix form reads

i′0 = F (0)i(0)f−1

i′ε = Fz0
(0)iε(0)f−1 + F (0)i(0)f−1.

As a result, the matrix problem is as follows: we have two matrices i(0) and
iε(0) with r rows and t columns, and rank(i(0)) = r. In the case of a vector
bundle i(0) and iε(0) are square matrices and i(0) is invertible. The matrices
i(0) and iε(0) are divided into horizontal blocks labelled by integers called
weights. Any two blocks of i(0) and iε(0) marked by the same label are called
conjugated and have the same number of rows.

...
n−1

n }rn

n+1

...

i(0)

...
n−1

n }rn

n+1

...

iε(0)
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The permitted transformations are listed below:

1. We can simultaneously do any elementary transformations of columns of
i(0) and of iε(0).

2. We can simultaneously perform any invertible elementary transformations
of rows of i(0) and iε(0) inside of any two conjugated h blocks.

3. We can add a scalar multiple of any row with lower weight to any row
with higher weight simultaneously in i(0) and iε(0).

4. We can add a row of i(0) with a lower weight to any row of iε(0) with a
higher weight.

This matrix problem turns to be wild, see corollary 2. However, the simplicity
condition of a triple (F̃ ,M, ĩ) implies additional restrictions, which make the

problem tame. First note that if F̃ contains Õ(c) ⊕ Õ(d) with d > c + 1
as a direct summand, then the pair (F, f) := (zd−c

0 , 0) defines a non-scalar

endomorphism of the triple (F̃ ,M, ĩ), which, therefore, can not be simple.

Thus, for a simple torsion free sheaf F we may assume F̃ ∼= Õ(c)r1⊕Õ(c+1)r2

for some c ∈ Z and the matrix ĩ consists of two horizontal blocks.
We consider the case of vector bundles only, since in the case of torsion

free and not locally free sheaves, the problem is similar, but it should be
considered separately.

As was mentioned above, if F is a vector bundle then ĩ is an isomorphism
and by transformations 1 and 2 the matrix i(0) can be reduced to the identity
matrix. Moreover, by applying transformation 4 we can make the left lower
block of iε(0) zero, as indicated below:

i(0) =
Ir1

Ir2

and iε(0) =
B1 B12

B2

. (1)

Here In denotes the identity matrix of size n, an empty space denotes a zero
block and B1, B12, B2 denote nonreduced blocks.

Thus we can assume that i(0) is the identity matrix and concentrate on
the matrix iε(0), taking into account only those transformations, which leave
i(0) unchanged. Then we obtain the category of block matrices

BM =
⋃

(r1,r2)

BM(r1, r2).

Objects of BM(r1, r2) are matrices of the form iε(0) in (1), i.e. upper triangular
block matrices B consisting of the blocks (B1, B12, B2) with (B1, B2) square
matrices with sizes (r1, r2). Morphisms C : B → B′ are lower triangular block
matrices:

C =
C1

C21 C2
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with block sizes (r1, r2) and satisfying equations CB = B′C. In term of blocks
this equation can be written as:

C1B1 = B′
1C1 +B′

12C21,

C1B12 = B′
12C2,

C2B2 + C21B12 = B′
2C2.

(2)

Two matrices B and B′ are called equivalent (i.e. correspond to isomorphic
vector bundles) if there is a non-degenerate morphism C : B → B′, i.e. if
B′ = CBC−1. In terms of transformations this means: we can add a row
k with lower weight to a row j with higher weight and simultaneously add
the column j to the column k. A matrix B ∈ BM(r1, r2) is called simple if
any endomorphism C : B → B is scalar. Obviously, simplicity is a property
defined on equivalence classes. The subcategory of simple B is denoted by
BMs(r1, r2).

Note that, if a block B12 has a zero-row k and a zero-column j, then by
adding column j to column k and row k to row j we construct a nonscalar
endomorphism. Moreover, if r1 = r2 then B12 is a square matrix and can
be reduced to the identity matrix I. Then using B12, we can reduce one of
matrices B1 and B2, let us say B1, to zero and the other one B2 to its Jordan

normal form. If r2 = 1 then B2 = λ , λ ∈ k, is simple but for r2 > 1
the Jordan normal form has an endomorphism, which can be extended to an
endomorphism of B. Therefore, if B is simple then B12 can be reduced to one
of the following forms

B12 =





0
Ir2

if r1 > r2,

Ir1
0 if r2 > r1,

1 if r1 = r2 = 1,

From the system of equations (2) we get that in case r1 > r2 block B2 can
be reduced to the zero matrix and block B1 to the upper triangular block-
matrix formed by three nonzero subblocks (B1.1, B1.12, B1.2). The long but
straightforward calculations shows that the transformations of B which pre-
serve already reduced blocks are uniquely determined by the automorphisms
of B1 in the category BMs . Moreover, EndBMs

(B1) = EndBMs
(B).

In the same way the matrix B can be reduced in case r2 > r1. Thus the
problem BMs(r1, r2) is self-reproducing, which means that, we get a bijection
between BMs(r1, r2) and BMs(r1 − r2, r2) if r1 > r2, between BMs(r1, r2) and
BMs(r1, r2 − r1) if r2 > r1, and if r1 = r2 > 1 then BMs(r1, r1) is empty. In
this reduction one can easily recognize the Euclidian algorithm. Moreover, the
reduction terminates after finitely many steps with the condition r1 = r2 = 1.
Without loss of generality the matrix B ∈ BMs(1, 1) has the form
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B =
0 1

λ
. (3)

(Note that this form is equivalent to the form
λ 1

0
.)

Objects of BMs(1, 1) are parametrized by λ ∈ k, thus the same holds for
BMs(r1, r2) with coprime r1 and r2.

Let E be a vector bundle of rank r and degree d with normalization Ẽ =
Õ(c)r1 ⊕ Õ(c + 1)r2 . Taking into account that by Riemann-Roch theorem
(Theorem 9) r2 = d mod r and r1 + r2 = r, we obtain statements 1,2 of the
theorem. Moreover, if coprime integers r > 0 and d are given then for λ ∈ k
the matrix B(λ) ∈ BMs(r1, r2), and hence, the unique vector bundle E(r, d, λ),
can be constructed by reversing the reduction procedure described above:

Algorithm 2. Let (r, d) ∈ Z2 be coprime with positive r, and λ ∈ k.

• First, by the Euclidean algorithm we find integers c, r1 and r2, 0 < r1 ≤
r, 0 ≤ r2 < r such that cr + r2 = d and r1 + r2 = r. Thus we recover the
normalization sheaf F̃ = Õ(c)r1 ⊕ Õ(c+ 1)r2 .

• If r1 = r2 = 1 the matrix B(λ) has form 3.

Using this input data we construct the matrix B(λ) ∈ BMs(r1, r2) inductively:

• Let r1 + r2 > 2 and r1 > r2. Assume we have the matrix
B1(λ) ∈ BMs(r1 − r2, r2), then B(λ) ∈ BMs(r1, r2) has form

B(λ) =
B1(λ)

0
Ir2

0

.

• Let r1 + r2 > 2 and r1 < r2. Assume that we have the matrix B2(λ) ∈
BMs(r1, r2 − r1), then B(λ) ∈ BMs(r1, r2) has form

B(λ) =

0 Ir1
0

B2(λ)
.

• Finally, we get the matrix ĩ = i(0) + εiε(0) = Ir + εB(λ).

Let us illustrate this with a small example:

Example 5. Let E ∈ VBs(7, 12). To obtain the matrix i we calculate the nor-

malization sheaf Ẽ first: Ẽ = Õ(1)2 ⊕ Õ(2)5. Thus, in our notations r1 = 2
and r2 = 5. The Euclidian algorithm of the pair (2, 5) gives:

(2, 5) → (2, 3) → (2, 1) → (1, 1).



40 Lesya Bodnarchuk, Igor Burban, Yuriy Drozd and Gert-Martin Greuel

Reversing this sequence, by the above reducing procedure, we obtain a se-
quence of equivalent matrix problems:

BMs(1, 1)
∼−→ BMs(2, 1)

∼−→ BMs(2, 3)
∼−→ BMs(2, 5),

and finally for the matrices we get:

0 1

λ
→

0 1 0

0 λ 1

1

→

0 0 1 0 0

0 0 0 1 0

0 1 0

0 λ 1

0 0 1

→

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 λ 1

0 0 0 0 1

.

The reduction for torsion free but not locally free sheaves can be done by
a similar way. The only difference is that i(0) and iε(0) are no longer square:

i(0) =
Ir1

Ir2

and iε(0) =
B1 B12 B13

B2 B23

.

The matrix iε(0) has two additional blocks B13 and B23 with a new column
size r3 > 0. Investigating such matrices inductively, we get r3 = 1. Moreover,
if r1+1 and r2+1 are coprime then there is a unique simple matrix ĩ, and there
is no simple matrices otherwise. This unique simple matrix ĩ correspond to
the unique torsion free but not locally free sheaf F , which can be considered
as a compactifying object of the family VBs(r, d). Let us illustrate this for
small ranks:

Example 6. Vector bundles E of VBs(1, 0) have Ẽ = Õ as the normalization

sheaf and the corresponding matrices ĩ are 1 + ε λ , λ ∈ k. For the unique
torsion free but not locally free sheaf F of rank 1 and degree 0, one computes
that deg(F̃) = deg(F) − 1 = −1, thus F̃ = Õ(−1) and the corresponding

matrix ĩ is 1 0 + ε · 0 1 .

Example 7. Vector bundles E from VBs(2, 1) have as normalization sheaf Ẽ =

Õ ⊕ Õ(1) thus the corresponding matrices are

ĩ =
1 0

0 1

0

1

+ ε · 0 1

0 λ

0

1 ,

where λ ∈ k. The normalization sheaf F̃ of the torsion free but not locally
free sheaf F ∈ TFs(2, 1) has degree deg(F̃) = deg(F) − 1 = 0 thus F̃ = Õ2

and the corresponding matrix is
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ĩ =
1 0 0

0 1 0
0 + ε · 0 1 0

0 0 1
0 .

3.4 Coherent sheaves on degenerations of elliptic curves and
Fourier-Mukai transforms

The technique of Fourier-Mukai transforms on elliptic curves led to a classi-
fication of indecomposable coherent sheaves. This can be generalized to the
case of singular Weierstraß cubic curves.

Theorem 23 ([BK1]). Let E be an irreducible projective curve of arithmetic
genus one over an algebraically closed field k, p0 ∈ E a smooth point and
P = I∆ ⊗ π∗

1(O(p0))⊗ π∗
2(O(p0)), where I∆ is the ideal sheaf of the diagonal

∆ ⊂ E×E. We have the following properties of the Fourier-Mukai transform
Φ = ΦP :

1. Φ is an exact equivalence and Φ ◦ Φ ∼= i∗[−1], where i : E −→ E is an
involution of E.

2. Φ transforms semi-stable sheaves to semi-stable ones and stable sheaves
to stable ones.

3. In particular, Φ induces an equivalence between the abelian categories

Cohν(E) and Coh−
1
ν (E), where ν ∈ Q ∪ {∞}.

4. Let F be a semi-stable sheaf of degree zero. Then the sequence

0 −→ H0(E(p0)) ⊗O ev−→ E(p0) −→ coker(ev) −→ 0

is exact. Moreover, the functor Φ(E) ∼= coker(ev) establishes an equiva-
lence between the category Coh0(E) of semi-stable torsion-free sheaves of
degree zero and the category of torsion sheaves Coh∞(E).

From this theorem follows that for any pair of coprime integers (r, d) ∈
Z2, r > 0 the moduli space ME(r, d) of stable sheaves of rank r and degree d
is isomorphic to E. The unique singular point of ME(r, d) corresponds to the
stable sheaf which is not locally free.

Let T be an indecomposable torsion sheaf on E. If T has support at a
smooth point p ∈ E than T ∼= OE,p/m

n
p for some n > 0.

The structure of torsion sheaves supported at the singular point s ∈ E

is much more complicated. First of all note that the categories of finite-
dimensional modules over OE,s and ÔE,s are equivalent. So, in order to un-
derstand semi-stable sheaves on singular Weierstraß curves we have to ana-
lyze the structure of finite-dimensional representations of k[[x, y]]/(xy) and
k[[x, y]]/(y2 − x3) first.

Let R = k[[x, y]]/(xy), then it is easy to show that all indecomposable
finite length R-modules generated by one element are M((n,m), 1, λ) =
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R/(xn +λym) for n,m ≥ 1, λ ∈ k∗ and N (0, (n,m), 0) = R/(xn+1, ym+1) for
n,m ≥ 0. A classification of all indecomposable R–modules was obtained by
Gelfand and Ponomarev [GP68] and independently by Nazarova and Roiter
[NR69], see also [BD04] for a description via derived categories. We identify
an indecomposable torsion module T supported at s with the corresponding
k[[x, y]]/(xy)–module.

Theorem 24 ([BK1]). The Fourier-Mukai transform ΦP maps the torsion
module M((n,m), 1, λ) to the degree zero semi-stable vector bundle

B((

m︷ ︸︸ ︷
1, 0, . . . , 0,

n︷ ︸︸ ︷
−1, 0, . . . , 0), 1, (−1)λ(n+m))

and N (0, (n,m), 0) to the semi-stable torsion free sheaf

S(

m︷ ︸︸ ︷
0, . . . , 0,−1,

n︷ ︸︸ ︷
0, . . . , 0).

In [BK1] a complete correspondence between torsion sheaves and semi-
stable sheaves of degree zero was described. Using the technique of relative
Fourier-Mukai transforms one gets a powerful tool to construct interesting
examples of relatively stable and semi-stable sheaves on elliptically fibered
varieties, see [FMW99, BK2].

In a similar way, if R = k[[x, y]]/(y2 − x3) = k[[t2, t3]], then a finite
length R–module is given by a finite dimensional vector space V over k and
two endomorphisms X,Y : V → V which satisfy Y 2 − X3 = 0. It is again
very easy to classify all R–modules of the form R/I, where I is an ideal in
R: there are one-parameter families of modules of projective dimension one,
R/(tn + λtn+1), n ≥ 2 and λ ∈ k and discrete series of modules of infinite
projective dimension, R/(tn, tn+1), where n ≥ 2.

However, there is an essential difference between the rings k[[x, y]]/(xy)
and R = k[[x, y]]/(y2 − x3): the first has tame representation type [GP68,
NR69] whereas the second is wild.

Proposition 8 ([Dro72]). The category of finite length modules over the ring
k[[x, y]]/(y2 − x3) is wild.

Proof. We have a fully-faithful exact functor k〈z1, z2〉 −→ RepΓ , where Γ is

the quiver •a ::
b // • . This functor maps a k〈z1, z2〉–module (Z1, Z2,k

n)
to the representation of Γ given by

A =

(
Z1 Z2

In 0

)
, B =

(
0 In

)
.

Moreover, we have another fully-faithful exact functor

RepΓ −→ k[[x, y]]/(y2 − x3),
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mapping a representation (A,B,kn,km) to the k[[x, y]]/(y2 − x3)–module
given by the matrices

Y =




03n 0 I
0 0m 0
0 0 03n


 , X =



X1 0 X2

0 0 X3

0 0 X1


 ,

where

X1 =




0n 0 I
0 0n 0
0 0 0n


 , X2 =




0n 0 0
I 0n 0
0 A 0n


 , X3 =

(
0m×n Bm×n 0m×n

)
.

Taking the composition of these two functors we see that the category of finite
dimensional k[[x, y]]/(y2 − x3)–modules is wild.

Since via an appropriate Fourier-Mukai transform the category of torsion
modules over the ring ÔE,s is equivalent to the category of semi-stable torsion
free sheaves of a given slope ν with non-locally free Jordan-Hölder quotient,
we obtain the following corollary.

Corollary 2. Let E be a cuspidal Weierstraß curve and ν ∈ Q ∪ {∞}, then
the category Cohν(E) of semi-stable torsion free sheaves of slope ν on E has
wild representation type.
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