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This work originated in an attempt to comprehend a striking likeness
between representations and cohomology theories of some algebras, such
as sl(2, C) and its non-degenerated quantizations, modular sl(2) and
degenerated quantizations of sl(2, C), Weyl algebra A,, and others. As a
result, the notion of generalized Weyl algebras (of which all those men-
tioned above turned out to be examples) and weight modules have arisen.

Fortunately, almost all the techniques necessary to elaborate the theory
are present in the literature. The most important tools can be found in [1,
3]. So we were able to give a nearly complete description of weight
modules over generalized Weyl algebras via reduction to a class of linear
categories (called chain and circle categories) resembling those arising in
[1]. We could emphasize that, though categories seem to be more compli-
cated than algebras, as one needs to deal with many objects, this multitude
itself provides a certain convenience, and sometimes a decisive one, at
least for calculation, but often for comprehension as well.

In Sections 1 and 2 the subjects of the paper—generalized Weyl
algebras, chain and circle categories, and weight modules—are introduced
and the main correlations established between them. In Sections 3 and 4, a
description of weight modules over chain and circle categories is given,
while in Section 5 it is translated back to the generalized Weyl algebras.
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492 DROZD, GUZNER, AND OVSIENKO
1. GW-ALGEBRAS AND WEIGHT MODULES

1.1. Let R be a ring. A category # is said to be an R-category if its
morphism sets (i, j) for the objects i, j are equipped with R-bimodule
structure, the multiplication of its morphisms is R-linear with respect to
both left and right R-module structure, and (ar)b = a(rb) for any possible
a, b € Mor @, r € R. Remark that, even if R is commutative, we do not
suppose that ar = ra for a € Mor @, r € R (in the latter case C is said to
be R-linear). If & contains only one object (i.e., is simply a ring), we call it
an R-ring.

1.2. From now on suppose the ring R is commutative. Let & be an
R-category and M be a #-module, i.e., an additive functor from # to the
category Ab of Abelian groups. Then, for each i € Ob &, the group M(i)
becomes an R-module if we put rv = (r1,)v. We write, as usual, av
instead of M(a)v for v € M(Q), a: i »j in &, and call elements of
L c op e M(0) the elements of the module M.

1.3. Denote by Max R the set of all maximal ideals m Cc R. For
m € Max R and an R-module M, put M, = {v € M |mv = 0}. A #-mod-
ule M is said to be a weight module if M = X cvax g M. Denote by
7(#) the category of all weight #-modules. Put Supp M = {m| M,, + 0}
and, for each subset w € Max R, denote by W, (%) the full subcategory of
#(%) consisting of all modules M with Supp M C w.

1.4. Suppose we are given an automorphism o of the ring R and an
element ¢ € R. Then define the generalized Weyl algebra (GW-algebra)
A = A(R, o, t) as the R-ring generated over R by two elements X, Y
subject to the following relations:

e Xr =0()X and rY = Yo () for any r € R;
e YX =tand XY = o(?).

One can easily check that both as a left and as a right R-module A is free
with a basis {1, X", Y" |n € N}.

Remark. In most cases (cf. below), R is an algebra over some field K
and o is an algebra automorphism; thus A is really a K-algebra. Neverthe-
less, we retain the term “GW-algebra” even if it contains no ground field
at all.

1.5. The cyclic group (o) generated by o acts on the set Max R.
Denote by () the corresponding orbit set. It follows from the definition of
A(R, o, t) that XM, c M, ,, and YM, C M, -+, for any A-module M
and m € Max R. Hence, the following statement is obvious.

ProrosITION. Z(A) = 11, . o 7, (A), i.e., any weight A-module M de-
composes into a direct sum: M = @ ., M, with Supp M, C w.
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1.6. ExampLEs. (i) Let R = K[T], the polynomial ring over some
field K, t =T, and o(T) =qT + 1 for some g € K\ {0}. Then A is a
quantization of the usual Weyl algebra A4, over K (if ¢ = 1, then A = A)).

(ii) Let R = K[H, T], the polynomial ring in two variables, t = T,
oc(H)=H -1, and o(T)=T + H. Then A = U(g), the universal en-
veloping algebra of the 3-dimensional simple split Lie algebra g over K
(sl(2, K), if char K # 2).

(iii) Now let R =K[T, Z, Z '] (polynomials in T and Laurent
polynomialsin Z),t =T, 0(Z)=¢q *Z,and o(T) =T + (¢ —qg 1) Y (Z
— Z™1) for some g € K\ {0, +1}. Then we obtain as A a quantization
U,(g) of the algebra of the preceding example.

2. CHAIN AND CIRCLE CATEGORIES

2.1. Let L be a local commutative ring, m its only maximal ideal, and
K = L/m its residue field. Suppose we are given a family {¢;|i € Z} of
elements of L. Then we define the chain category #(L, t;) as the
L-category with the object set Z, generated (over L) by the set of
morphisms {X;, Y; |i € Z}, where X;: i » i+ 1and Y: i+ 1 — i, subject
to the relations:

e X;r =rX; and Y;r = rY; for each r € L and each i € Z;
e VX, =11 and XY, =1¢1,, , foreach i € Z

2.2. PrRopPOSITION. Let A= A(R, o, t) be a GW-algebra, w € Q an
infinite orbit (cf. 1.5), and m € w. Then 7, (A) =7 (%) for the chain
category € = €(R,,, o '(1)).

Proof. Given a weight module M € 7(A), put N(i) = M. As o'
induces an isomorphism R, = R, ., we can consider N(i) as an R,-
module. For v € N(i), put X,v = Xv and Y,_,v = Yv. Then X,v € N(i +
1) and Y,_,v € NG — 1) (cf. 1.5). Moreover, if r € R, then X.rv =
Xo(r)v = o™ r)Xv = rX,v. Analogously, Y,rv = rY,v. Further, Y, X,v =
YXv = o7 '(t)v and X,Y,v = o '(1)v. Hence, N is a #-module and we
obtain a functor F: 7,(A) - 7(%).

Conversely, if N e€7(%), put M = ® ,N(i) and supply M with the
A-module structure putting rv = o~ '(r)v, Xv = X,v, and Yo = Y,_ v for
v e N() and r € R. It gives us a functor F': #7(%) — 7,(A) obviously
inverse to F.

2.3. Now suppose we are given a natural p € N (not necessarily prime,
perhaps even p = 1), an automorphism 7 of L, and a family {; |i € Z } of
elements of L. Then we define the circle category (L, t;, 7) as the
L-category with the object set Z, = Z/pZ, generated by the set of mor-
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phisms {X,, Y, |i € Z }, where X;:i — i+ 1and Y;: i+ 1 — i subject to
the relations:

e X;r=rX,, Yr=rY, and XY, =11, , for each r € L and each
i € Z, except for p — 1;
o X, yr=1(NX, 4, 1Y,
X, 1Y, =1, )l
e VX, =1l foreachie Z,
2.4. PROPOSITION. Let A= A(R, o, t) be a GW-algebra, o € Q an

orbit with p elements, and m € w. Then 7, (A) =#(%) for the circle
category € = %p(Rm, a (1), oP).

=Y, 7(r) for each r € L and

The proof is analogous to that of 2.2 and hence is omitted.

3. WEIGHT MODULES OVER CHAIN CATEGORIES

3.1. To describe weight modules, we need some simple and known
results. Recall that a full subcategory . c & is called a skeleton of @
provided the objects of . are pairwise non-isomorphic and any object of
% is isomorphic to some object of .. It is evident that in this case the
categories of &- and of .#*modules are equivalent.

3.2. LEMMA (cf., e.g., [2]D. (i) Let M be a simple &-module and M(i) +
0 for some i € Ob &. Then M(i) is a simple Z(i, i)-module.
(ii)  Conversely, for any simple €(i, i)-module N there exists a unique
(up to isomorphism) simple &-module M such that M(i) = N as #(i,
i)-modules.

3.3. From now on in this section & denotes a chain category (L, t;)
(cf. 2.1).

Call i € Z a break (for %) if t; € m. Denote by B the set of all breaks.
As B C Z, it inherits the natural order. The following statement is evident.

PROPOSITION. A skeleton . of the chain category & can be chosen as
follows:
1. If B =, then Ob. = {0}.
2. If B # & and has no maximal element, then Ob .%¥ = B.
3. If B+ and m is its maximal element, then Ob.¥ =B U {m +
1}.

3.4. Surely, the objects of .% can be numbered by integers belonging to
some interval I C Z (perhaps left or right or two-sided unbounded).
Denote by j the object of . corresponding to j € 1.
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It follows from the definition (2.1) that m# is a two-sided ideal in &.
Hence, we can form the factor . =.%/m.7 and, of course, weight .
modules are just .%*modules. But the same definition implies the following
description of .%.

3.5. PROPOSITION. If B = @, then 40, 0) = K for the only object 0 in
Z. Otherwise, % is the K-category generated by the set of morphisms

{)?j,l_/leEI, non-maximal}, whereA_’j:j—>j+l,Y-:j+l—>j,
commuting with the elements of K and subject to the relations
X, =0.

)? =0 and

\"<I
<l

In particular, (j, j) = K for any j € I.

3.6. COROLLARY. Isomorphism classes of simple weight &-modules are in
1-1 correspondence with the elements of I. Namely, for each j € I, the
corresponding simple @-module M; is defined as follows:

1. Ifjis a break, then M(i) = K for J = 1<i < j(weput j — I= —oo
ifj—1¢&I, ie., jis the mzmmal break), M(i) = 0 otherwise; M(Y;) = 1
and M(X,) = t; (the multiplication by t; in K ) for all j — 1< i <j (other-
wise these mappings are automatically zeros)

2. Ifj=m + 1 for the maximal break m, then M (i) = K for i > m,
M(i) = 0 otherwise; M(Y)—landM(X)—tforallt>m

3. Last, if B =, then My(i) = K, M(Y,) = 1, and M(X,) = t; for
alli € Z.

Here, as before, K = L/m.

3.7. In the case considered one can also determine all .#modules,
hence, all weight -modules. Namely, let J € I be a non-empty subinter-
val of I and J' cJ be any subset not containing the maximal element of J
(if the latter exists). Then define an .#module N = N(J, J') by the rules:

e N(j) =K if j €J and N(j) = 0 otherwise;
e N(X,) =1if j €J and N(X,) = 0 otherwise;
e N(Y)) = 1if j &J and N(Y,) = 0 otherwise.
Now an easy exercise in linear algebra leads to the following result.

_ 3.8. THEOREM. Al Fmodules N(J, J') are indecomposable and any
Fmodule decomposes uniquely into a direct sum of modules isomorphic to
some of the N(J, J').
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3.9. CoROLLARY. For each pair J' CJ as in 3.7, define a &-module
M = M(J, J') as follows. Denote by | the maximal break preceding J (or
[ = —oo if such breaks do not exist) and by m the maximal element of J
provided it is a break or m = « otherwise. Put:

e M(i) =K forl <i<mand M(i) = 0 otherwise;
e ifl <i<mandiis not a break, then M(Y;) = 1 and M(X,) = t;;

o ific J and is a break, then

M(X,) =1 ifieJ and M(X,) = 0 otherwise;
M(Y,) =1 ifi €J U {m} and M(Y;) = 0 otherwise.

(In other cases M(X;) = 0 and M(Y;) = 0 automatically).

Then all M(J, J') are indecomposable weight F-modules and any weight
%-module decomposes uniquely into a direct sum of modules isomorphic to
some of the M(J, J').

4. WEIGHT MODULES OVER CIRCLE CATEGORIES

4.1 In this section & denotes a circle category %,(L, t;, 7) (cf. 2.3).
Again call i € Z, a break (for %) if ¢, € m and denote by B the set of all
breaks.

PRoOPOSITION. A skeleton . of the circle category & can be chosen as
follows:

1. If B=(, then Ob.%” = {0}.
2. If B # , then Ob.¥ = B.

4.2. Of course, there is no natural order on Z,,. Instead we can define a
“circular order”: i <j <k meansthat 0 <j —i <k —i<p (in 2). If &
contains m objects, put them in 1-1 correspondence with Z, in such way
that i <j <k in Z,, implies i <j<kin zZ, (surely, it means nothing if
m = 1). Here, again, j denotes the element of Ob.%” corresponding to
JEZy

4.3. The definition 2.3 again implies that m# is an ideal in #, so we can
form the factor % =.%/m.% and give the following description.

ProposiTION. (i) If B =, then A0, 0) =P =K[x, x~%, 7], the
skew Laurent polynomial ring over K with the automorphism 7 induced by 7.
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(i) If B+, then 7 is the K-category generated by the set of
morphisms {X;: j—>j+1and Y;: j+1->jlj € Z,} subject to the rela-
tions:

. )_(J and 1_/] commute with the elements of Kif j +# m — 1,
e X, ,a=7(a)andaY, , =Y, 7(a) foralla € K;
. )_(ji_/j:Oandl_/jA_’j:OforalljeZm.

In particular,

5_”(] f):A =K{x,ylxy=yx=0,xa =7(a)x and
ay = y7(a) foralla € K).

4.4. ProposITION. (i) Al simple P-modules are of the form P /fP for
irreducible elements f € P.

(i) Al simple A-modules are the following:

e N, =A/(x, y);

* Ny ;= A/(f(x), y), where f # x is an irreducible element of the
skew polynomial ring P, = K[ x, 71

o N, ;=A/(x, f(y), where f +#y is an irreducible element of the
skew polynomial ring Py = K[y, 711

Proof. The assertion (i) is well known, as P is a principal ideal ring [4].
To prove (ii), we need to remark that both xN and yN are submodules in
any A-module N. Hence, if N is simple, each of them coincides either with
N or with 0. But xN = N implies yN = 0 and vice versa. Thus, either
xN =yN =0 (i.e, N=N,), or xN=N, yN=0, or xN =0, yN = N.
Obviously, A/yA = Py, A/xA = Pg, and both of them are principal ideal
rings, which implies the assertion (ii).

4.5. Remark that the rings P, and Py are anti-isomorphic; hence, there
is a natural 1-1 correspondence between their irreducible elements.
Namely, to a polynomial f=a, +a,x + -+ +a,x"* + x? of P, there
corresponds a polynomial f° = a, +ya, + -+ +y? la, + y¢ € P;. Using
Lemma 3.2, we are able to reconstruct all simple weight &-modules.

If B = &, take an irreducible element f=a;, + a,x + --- +a,x** + x*
(a, # 0) in P. The corresponding simple module can be defined as follows:

e M(i) =K’ forall i € Z,;
e M(Y) =1and M{(X)) =t foralli+p—1,
e M{(X, v =7(F, v), where
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0 0 0 0 —a
100 0 —a,
F=[0 10 0 —a,
0 0 0 1 —a,

e MY, v =F 7 )
If [B] =m > 0, define first the simple modules M, for j € Z,:
e M(i) =K if = 1<i<jand M) = 0 otherwise;
e M(Y)=1and M(X)=rifj—1<i<jandi#p-—1,
e M(Y,_ ) =7"and M(X, ) =71, ,ifj—1<p—1<].
Now let f=a, +a,x + -+ +a,x" '+ x? #x be an irreducible ele-
ment of P,. Define the modules M, , and M, , in the following way:
o M, (i) =M, ;(i) = K* for all i;
e M, (Y)=0and M, ,(X;) =0 forall
e M, (X)) =t;and M, (Y) =1fori+p—1;
e M, (X,_,) is the semi-linear mapping with automorphism 7 de-
fined by the matrix F; (cf. above);
=1

e M, (Y,l) is the semi-linear mapping with automorphism 7
defined by the matrix Ff

4.6. Recall that two elements f, g of a ring A are said to be similar if
A/JfA = A/gA.

CoroLLARY. () If B = &, then, for each irreducible polynomial f € P,
the module M is a simple weight &-module, each simple weight Z-module is
isomorphic to one of them, and M, = M, if and only if f and g are similar
in P.

(i) If B # O, then all modules M;, M, ;, and M, £ for irreducible
fe Py (f#x), are simple weight &- modules each szmple &-module is
isomorphic to one of them, and the only isomorphisms between these modules
are My ; =M, , and M, , =M, , if fand g are similar in Py,

4.7. To classify non-simple #-modules, we need to suppose them to be
finite-dimensional (i.e., all M(i) to be finite-dimensional vector spaces over
K): otherwise we must at least classify all linear (or semi-linear) mappings
in infinite-dimensional vector spaces—the problem, which seems hopeless.
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The case B = (J is rather simple: we must determine finite-dimensional
P-modules. But P is a principal ideal domain; thus the answer is well
known [4]: the only indecomposable modules are N, = P/fP with f
indecomposable in P (it means, by definition, that P /fP is indecompos-
able) and N; = N, if and only if f and g are similar in P.

48. If B # &, the morphisms X Y satisfy the relations XY =0and
YX = 0. Thus the problem almost commdes with that of classmcatlon of
palrs of mutually annihilating linear mappings solved in [3]. We need only
take into account the graduation, different from that in [3], and the fact
that our mappings are not linear but semi-linear. However, we encounter
no significant trouble and, accurately following the quoted work, we arrive
at a description of finite-dimensional .%*modules.

Denote by D the free monoid generated by two letters x, y. Let |w| be
the length of the word w € D. For any such word w = z,z, -*- z,, where
z, € {x, y},and any j € Z,,, define the ~module N = N, , (module of the
first kind in the terminology of [3]) as follows.

Consider n + 1 symbols e, e,, ..., e,. As a K-basis of N(I) take the set
of all ¢, with j+ k=1 (in Z,). If there are no such indices, then

N(I) = 0. Define the action of X, and Y, on this basis by the rules

— e if z =x
X[ek — k+1 k+l-
otherwise;

— e if z, =y
0 otherwise.

In particular, X,,,e, =0 and Y;_,e, = 0. For instance, if w =& (the
empty word, |e| = 0), then N, _ is the simple .#:module corresponding to j.

Of course, defining X, _, and Y, _, on other elements, we must take
into account the fact that they are not linear but semi-linear mappings
with automorphisms 7 and 7, respectively (the next paragraph, as well as
5.5 and 5.6, is concerned with the same remark).

4.9. Now call a word w an m-word if its length n is a multiple of m
and non-periodic if it is not a power of another m-word. Let P, = K[ x, 7]
be the skew polynomial ring with automorphism 7 and f=a, + a,x
+ - +a,x?t + x4 % x? be an indecomposable polynomial in P,. Put
@ =71"%a,) (r=1,...,d). For any non-periodic m-word w and any
j € Z,, define an ymodule N =N, ; (of the second kind [3]) as follows.

Consider dn elements e, (k= 1 ,n, s =1,...,d). Take as a basis of
N(D) the set of all e, with k =1 (mod m). Define the action of X, and
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Y,_, on this basis by the rules

Crit1s ifk#nand z, ,=x
X, = ey oi1 ffk=n,zl=x,ands¢d

-Y¢ . ae, ifk=n,z,=x,and s =d
0 otherwise;
e 1 ifk+1and z, =y

Ve - €, 511 !fk=l,zl=y,ands¢d
-Y . de,, ifk=12z =y,ands=d
0 otherwise.

4.10. THEOREM. (i) If B # J, then the modules N; ,, and N,,  built in
4.8 and 4.9 are indecomposable F-modules and any mdecomposable finite-
dimensional .#module is isomorphic to one of them.

(i)  The only isomorphisms between these modules are N,, ; = N, ¢,
where k = 0 (mod m), f and g are similar in Py, and w(k) =z, ., = 2,2,

+ 24, 1.e., is a cyclic permutation of w.

4.11. We can reconstruct weight #-modules M,, M, ,,, and M, , corre-
sponding to the .%2modules N;, N;,,, and N, ¢, respectively. Namely,
is defined asin 4.5. If N =N, , or N , as deflned in 4.8 and 4.9, then the

corresponding M is defined by the rules
e M) =N ifT=1I<i<l
e X;and Y; acts as X, and Y;;
e if ;i is not a break and i # p — 1, then M(X,) = ¢, and M(Y)) = 1;
e last, if p — 1 is not a break, then M(X,_,) = 7¢,_; and M(Y,_,)
=7t
In particular, the simple modules M;, M, ,, and M, ; (cf. 4.5) coincide,
respectively, with M; ., M,» ,, and M ;

4.12. CoroLLARY. (i) If B = &, any indecomposable weight -module
is isomorphic to My for some indecomposable element f € P and M, = M, if
and only if f and g are similar in P.

(i) If |B| =m > 0, any indecomposable weight Z-module is isomor-

phic either to M;,, for some j € Z, and w €D or to M,  for some
non-periodic m-word w € D and an mdecomposable element f € PO, f#+ x4
The only isomorphisms between these modules are M,, ; = M, . with f and

g similar in Py, and k = 0 (mod m).
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4.13. Remark. Corollaries 4.6 and 4.12 “almost” solve the problem of
describing weight #-modules. We still have the problem of classifying
indecomposable elements in P and P, up to similarity, which may be highly
non-trivial. However, even the *“usual” problem of describing irreducible
polynomials over an arbitrary field is far from being solved, though no one
doubts that the Frobenius normal form is a ““good classification” of linear
mappings in finite-dimensional vector spaces.

5. BACK TO GW-ALGEBRAS

5.1. Now return to the definitions and notations of 1.4 and 1.5. So A
denotes a GW-algebra A(R, o, t). We are able to restore the weight
A-modules according to Propositions 2.2 and 2.4 and the description of the
weight modules over chain and circle categories.

Form € Max R, put K, = K/mand ¢, =t + m € K. Call m a break
(for A) if ¢, = 0. Let B be the set of all breaks. If w € Q) = Max R/{o ),
denote B, = B N w.

For each finite orbit w of p elements, fix a maximal ideal M(w) € w
supposing that it is a break (provided B,, # ). Put K, = K, ), P, = K, [x,
x! 7 ]and P,, = K [x, 7,1, where 7, denotes the automorphism of K
induced by o? (note that o”(m) = m for m € w).

The maximal ideals m c R belonging to finite { o )-orbits will be called
periodic. Really, it means that o”(m) = m for some p > 0.

5.2. Now construct the full set of representatives of isomorphism classes
of indecomposable weight &-modules M with Supp M C w.

Suppose first that |w| = «© and B, = &. Let V(w) = &, , K., Supply
V() with A-module structure putting Xv = o(¢,0) and Yo = o *(v) for
v EK,.

5.3. Suppose |w| = p < @ and B, = &. For any indecomposable polyno-
mial f=a;, + a,x + - +a,x" 1 + x4 € P, (with a, # 0), let (o, f) =
®,, .., K2 Supply it with A-module structure putting, for v € K¢:

e Xv
e Xv
e Yu =0 Hv)if oY m) # (M) w);

e Yv = Ff’lcf Yv) if o~ (m) = m(w),

where the matrix F, was defined in 4.5.

5.4. Suppose that |w| = « and B # . Consider the natural order on
w:m < o(m). If B, possesses a maximal element m, put B, = B U {o(m)},
otherwise B/ = B,. Let J c B, be an interval (i.,e, M <m <m” in B,
and m', m" € J implies m € J) and J' € J be any subset not containing

o(t,v) if m = m(w);

o (Ftv) it m = m(w);
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the maximal element of J if the latter exists. Denote by m, the maximal
break in o preceding all elements of J or — if it does not exist; by m,
the maximal element of J if it exists and is a break or + o otherwise. For
eachm € w, put V,, = K, it my <m < m, and V,, = 0 otherwise. Supply
Mo, J,J') = &, V., with A-module structure putting, for v € /,,

o(ty) if m is not a break
Xv=(o(v) ifmeJ’

0 otherwise;

0 if o7*(m) €J' U {m,}
Yu = ]

o t(v) otherwise.

5.5. Suppose |w| = p < » and |B,| = m > 0. Consider the natural “cir-
cular order” on w: m < m < m” means that m" = ¢’(m) and m” = o *(m)
for some 0 <i < k < p. Define the 1-1 correspondence Z,, — B,,, j = m;
in such a way that i <j <k in Z, implies m; <m; <m, in o and
m, = m(w) (cf. 5.1). Denote by j(m) the only j € Z,, such that m;_, <m
<m.

For each j€Z, and each word w = z,z, -+ z, € D (cf. 4.8), consider
n + 1symbols e, e,,...,¢,. If m € w, denote by I, the vector space over
K., with a basis consisting of all pairs (m, ¢,) such that j + k = j(m) (in
Z,).Put "(w, j,w) = &, ., V., and supply it with A-module structure by
the rules

tm(o (M), e;) if m is not a break
X(m,e) = {(a(m), er,1) ifmeBand z, , =x

0 otherwise;

(o7 (m), e;) if m is not a break
Y(m,e) =\ (o7} (m), e,_,) ifmeBand z, =y

0 otherwise

(taking into account, of course, that X and Y are semi-linear).

5.6. Now let w € D be a non-periodic m-word (cf. 4.9) and f=a, +
a,x + -+ +ay,x?"t + x? # x be an indecomposable polynomial from P,,,.
Consider dn symbols e, (k =1,...,n, s =1,...,d). If m € w, denote by
V., the vector space over K,, with a basis consisting of all pairs (m, e,,)
such that k =j (mod m). Put V(w, w, f) = @, ., V., and supply it with
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A-module structure by the rules

t,(o(m), e) if m is not a break
(o(m), exy1y) ifmeB,k#nand z,,, =x
X(m, e,) = (a(m),elysﬂ) ifmeB,k=n,z,=x,s+d
-Xita,(o(m), ey,) ifmeB, k=n,z,=x,5s=d
0 otherwise;
Y(m, e,)
(o7 (m), e,) if o~ 'mis not a break
(o1 (m), e,y ) if o7'(m) €B,k+1land z, =y
= (o-fl(m),envﬁl) if o7'(m) € B,k=1,z,=y,s#d
—Z‘f;lla‘;(afl(m),en,) if o(m) €B,k=1,z,=y,s=d
0 otherwise

(cf. 4.9 for the definition of a;).

5.7. THEOREM. (i) The A-modules V(w), V(w, ), V(w, J, J), V(w, |,
w), and V(w, w, f) defined, respectively, in 5.2-5.6 are indecomposable
weight A-modules.

(i)  Every weight A-module M such that all M(m) with periodic m are
finite-dimensional decomposes uniquely into a direct sum of modules isomor-
phic to those listed in (i).

(iii)  The only isomorphisms between the listed modules are:

e Nw, f) =Ww, g if fand g are similar in P,
e Mo, w, ) =WV(w,w(k), g) if fand g are similarin P,,, andk = 0
(mod[B,,D.

5.8. THEOREM. The weight A-modules V(w), V(w, f) for irreducible
feP,, Vo, j 0, o, j, &), and V(w, w, f) for f irreducible in P, and
w = x? ory?, where p = |w|, are simple and each simple weight A-module is
isomorphic to one from this list.

5.9. The construction of indecomposable weight modules implies di-
rectly the description of their supports. Here is their list:

o If V=T1(w), V(w, f), or V(w, w, ), then Supp VV = w.

e Let m, be the maximal element of J provided it exists and is a
break or +« otherwise; m, be the maximal break preceding J provided it
exists or —o otherwise. Then Supp V(J, J') ={m € w|my; < m < m,}.

e Supp Mo, j,w) = w if I =|w| > B,| — 1, otherwise Supp M(w, j,
w) = {oc*(Mm(;) 10 > k > I}.
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5.10. Call a weight A-module M R-finite if it has finite length as an
R-module. It means that M(m) = 0 for all but a finite number of maximal
ideals m and dim,_M(m) < = for each m. Remark that if R is a finitely
generated algebra ‘over some field K, it means that the module M is
finite-dimensional over K.

CoROLLARY. (i) A has R-finite weight modules if and only if there exists
such orbit w that either |w| < © or B,| > 2.

(i) Al indecomposable R-finite weight A-modules are isomorphic to
either V(w, f), V(w, j, w), V(w, w, f) for some finite orbit  or to V(w, J,
J"), where J has both a minimal and a maximal element and the latter is a
break.

(iii) All R-finite weight A-modules are semi-simple if and only if all
orbits are infinite and have at most two breaks.

5.11. Remark. For the algebras A = U(g) or U,(g) from Example 1.6(ii)
or (iii) our notion of “weight modules” seems rather unusual. As a rule, in
these cases an A-module M is said to be a weight module if it possesses an
eigenbasis for the only operator H or, respectively, Z. We demand also the
same for T = XY, which one can replace by the central element C = H?
+ H + 2T (if char K # 2) or, respectively, C = (g — 1)(g —q™ 1) + qZ +
Z~ ! (the “Casimir operator”).

This, of course, does not imply the description of simple modules but
has a great influence on indecomposable ones. Namely, under this weaker
condition, the classification of indecomposable modules with finite-
dimensional eigenspaces for H or Z can be given if orbits are infinite, i.e.,
if char K =0 or, respectively, g is not a root of unity. This is due
essentially to the fact that there can be no more than two breaks in an
orbit. But whenever orbits become finite, there is no chance, in some
sense, to give a good classification. For details in the case of U(g), cf. [1];
for U,(g) the calculations are similar.
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