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Abstract

We present recent results on derived categories of modules and coherent
sheaves, namely, tame–wild dichotomy and semi-continuity theorem for
derived categories over finite dimensional algebras, as well as explicit
calculations for derived categories of modules over nodal rings and of
coherent sheaves over projective configurations of types A and Ã.

This paper is a survey of some recent results on the structure of derived
categories obtained by the author in collaboration with Viktor Bekkert and
Igor Burban [6, 11, 12]. The origin of this research was the study of Cohen–
Macaulay modules and vector bundles by Gert-Martin Greuel and myself
[27, 28, 29, 30] and some ideas from the work of Huisgen-Zimmermann and
Saoŕın [42]. Namely, I understood that the technique of “matrix problems,”
briefly explained below in subsection 2.3, could be successfully applied to the
calculations in derived categories, almost in the same way as it was used in
the representation theory of finite-dimensional algebras, in study of Cohen–
Macaulay modules, etc. The first step in this direction was the semi-continuity
theorem for derived categories [26] presented in subsection 2.1. Then Bekkert
and I proved the tame–wild dichotomy for derived categories over finite di-
mensional algebras (see subsection 2.2). At the same time, Burban and I
described the indecomposable objects in the derived categories over nodal
rings (see Section 3) and projective configurations of types A and Ã (see Sec-
tion 4). Note that it follows from [23, 29] that these are the only cases, where
such a classification is possible; for all other pure noetherian rings (or projec-
tive curves) even the categories of modules (respectively, of vector bundles)
are wild. In both cases the description reduces to a special class of matrix
problems (“bunches of chains” or “clans”), which also arises in a wide range
of questions from various areas of mathematics.
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I tried to explain the backgrounds, but, certainly, only sketched proofs,
referring for the details to the original papers cited above.

1 Generalities

We first recall some definitions. Let S be a commutative ring. An S-category
is a category A such that all morphism sets A (A,B) are S-modules and the
multiplication of morphisms is S-bilinear. We call A

• local if every object A ∈ A decomposes into a finite direct sum of
objects with local endomorphism rings;

• ω-local if every object A ∈ A decomposes into a finite or countable
direct sum of objects with local endomorphism rings;

• fully additive if any idempotent morphism in A splits, that is defines
a decomposition into a direct sum;

• locally finite (over S) if all morphism spaces A (A,B) are finitely gen-
erated S-modules. If S is a field, a locally finite category is often called
locally finite dimensional. If, moreover, A has finitely many objects, we
call it finite (over S). Especially, if A is an S-algebra (i.e. a S-category
with one object), we call it a finite S-algebra.

• If A is fully additive and locally finite over S, we shall call it a falf (S-)
category.

Mostly the ring S will be local and complete noetherian ring. Then, evidently,
every falf S-category is local; moreover, an endomorphism algebra A (A,A)
in a falf category is a finite S-algebra. It is known that any local (or ω-local)
category is fully additive; moreover, a decomposition into a direct sum of
objects with local endomorphism rings is always unique; in other words, any
local (or ω-local) category is a Krull–Schmidt one, cf. [4, Theorem 3.6].

For a local category A we denote by radA its radical, that is the set
of all morphisms f : A → B , where A,B ∈ ObA , such that no com-
ponent of the matrix presentation of f with respect to some (hence any)
decomposition of A and B into a direct sum of indecomposable objects is
invertible. Note that if f /∈ radA , there is a morphism g : B → A such that
fgf = f and gfg = g . Hence both gf and fg are nonzero idempotents,
which define decompositions A ' A1 ⊕ A2 and B ' B1 ⊕ B2 such that the
matrix presentation of f with respect to these decompositions is diagonal:(
f1 0
0 f2

)
, and f1 is invertible. Obviously, if A is locally finite dimensional,

then rad A (A,B) coincide with the set of all morphisms f : A → B such
that gf (or fg ) is nilpotent for any morphism g : B → A .
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We denote by C (A ) the category of complexes over A , i.e. that of dia-
grams

(A•, d•) : . . . −−−→ An+1
dn+1

−−−→ An
dn−−−→ An−1

dn−1

−−−→ . . . ,

where An ∈ ObA , dn ∈ A (An, An−1), with relations dndn+1 = 0 for all n.
Sometimes we omit d• denoting this complex by A•. Morphisms between
two such complexes, (A•, d•) and (A′

•, d
′
•) are, by definition, commutative

diagrams of the form

φ• :

. . . −−−→ An+1
dn+1

−−−→ An
dn−−−→ An−1

dn−1

−−−→ . . .

. . . φn+1

y φn

y
yφn−1 . . .

. . . −−−→ A′
n+1

d′
n+1

−−−→ A′
n

d′n−−−→ A′
n−1

d′
n−1

−−−→ . . .

Note that we use “homological” notations (with down indices) instead of more
usual “cohomological” ones (with upper indices). Two morphisms, φ• and ψ•,
between (A•, d•) and (A′

•, d
′
•) are called homotopic if there are morphisms

σn : An → A′
n+1 (n ∈ N) such that φn − ψn = d′n+1σn + σn−1dn for all n. We

denote it by φ ∼ ψ. We also often omit evident indices and write, for instance,
φ− ψ = d′σ + σd. The homotopy category H (A ) is, by definition, the factor
category C (A )/C∼0, where C∼0 is the ideal of morphisms homotopic to zero.

Suppose now that A is an abelian category. Then, for every complex
(A•, d•), its homologies H• = H•(A•, d•) are defined, namely Hn(A•, d•) =
Ker dn/ Im dn+1. Every morphism φ• as above induces morphisms of homolo-
gies Hn(φ•) : Hn(A•, d•)→ Hn(A′

•, d
′
•). It is convenient to consider H•(A •, d•)

as a complex with zero differential and we shall usually do so. Then H• be-
comes an endofunctor inside C (A ). If φ• ∼ ψ•, then H•(φ•) = H•(ψ•), so
H• can be considered as a functor H (A ) → C (A ). We call φ• a quasi-
isomorphism if H•(φ•) is an isomorphism. Then we write φ• : (A•, d•) ≈
(A′

•, d
′
•) or sometimes (A•, d•) ≈ (A′

•, d
′
•) if φ• is not essential. The derived

category D (A ) is defined as the category of fractions (in the sense of [34])
H (A )[Q−1], where Q is the set of quasi-isomorphisms. In particular, the
functor of homologies H• becomes a functor D (A ) → C (A ). Note that a
morphism between two complexes with zero differential is homotopic to zero
if and only if it is zero, and is a quasi-isomorphism if and only if it is an iso-
morphism. Moreover, any morphism between such complexes in the derived
category is equal (in this category) to the image of a real morphism between
these complexes in C (A ). Thus we can consider the category C 0(A ) of com-
plexes with zero differential as a full subcategory of H (A ) or of D (A ). In
particular, we can (and shall) identify every object A ∈ A with the complex
A• such that A0 = A, An = 0 for n 6= 0. It gives a full embedding of A into
H (A ) or D (A ).
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We denote by C−(A ) (respectively, C+(A ), C b(A ) ) the categories of
right bonded (respectively, left bounded, (two-side) bounded) complexes, i.e.
such that An = 0 for n � 0 (respectively, n � 0 or both). Correspond-
ingly, we consider the right (left, two-side) bounded homotopy categories
H−(A ),H+(A ),H b(A ) and right (left, two-side) bounded derived cate-
gories D−(A ),D+(A ),D b(A ).

The categories C (A ),H(A ),D (A ), as well as their bounded subcate-
gories, are triangulated categories [38]. Namely, the shift maps a complex A•

to the complex A•[1], where An[1] = An−1.
1 A triangle is a sequence iso-

morphic (as a diagram in the corresponding category) to a sequence of the
form

A•

f•
−−−→ B•

g•
−−−→ Cf•

h•−−−→ A•[1],

where f• is a morphism of complexes, Cf• is the cone of this morphism, i.e.
Cfn = An−1 ⊕ Bn, the differential Cfn → Cfn−1 = An−2 ⊕ Bn−1 is given by

the matrix

(
−dn−1 0
fn−1 dn

)
; g(b) = (0, b) and h(a, b) = a.

If A = R -Mod, the category of modules over a pre-additive category
R (for instance, over a ring), the definition of the right (left) bounded de-
rived category can be modified. Namely, D−(R -Mod) is equivalent to the
homotopy category H−(R -Proj), where R -Proj is the category of projec-
tive R -modules. Recall that a module over a pre-additive category R is a
functor M : R → Ab, the category of abelian groups. Such a module is pro-
jective (as an object of the category R -Mod) if and only if it is isomorphic
to a direct summand of a direct sum of representable modules A A = A (A, )
(A ∈ ObA ). Just in the same way, the left bounded category D +(R -Mod) is
equivalent to the homotopy category H+(R -Inj), where R -Inj is the category
of injective R -modules. If the category R is noetherian, i.e. every submodule
of every representable module is finitely generated, the right bounded derived
category D−(R -mod), where R -mod denotes the category of finitely gener-
ated R -modules, is equivalent to H−(R -proj), where R -proj is the category
of finitely generated projective R -modules.

In general, it is not true that D b(R -Mod) is equivalent to H b(R -Proj)
(or to H b(R -Inj) ). For instance, a projective resolution of a module M ,
which is isomorphic to M in D (R -Mod), can be left unbounded. Never-
theless, there is a good approximation of the two-side derived category by
finite complexes of projective modules. Namely, consider the full subcat-
egory C (N) = C (N)(R ) ⊆ C b(R -proj) consisting of all bounded complexes
P• such that Pn = 0 for n > N (note that we do not fix the right bound).
We say that two morphisms, φ•, ψ• : P• → P ′

•, from C (N) are almost ho-

motopic and write φ
N
∼ ψ if there are morphisms σn : Pn → P ′

n+1 such that

1Note again the homological (down) indices here.



Derived Categories of Modules and Coherent Sheaves 83.

φn − ψn = d′n+1σn + σn−1dn for all n < N (not necessarily for n = N). We
denote by H (N) = H (N)(A ) the factor category C (N)/C N

∼0
, where C N

∼0
is

the ideal consisting of all morphisms almost homotopic to zero. There are
natural functors IN : H (N) →H (N+1). Namely, for a complex P• ∈H (N)

find a homomorphism dN+1 : PN+1 → PN , where PN+1 is projective and
Im dN+1 = Ker dN . Then the complex

INP• : PN+1
dN+1

−−−→ PN
dN−→ PN−1 → . . .

is uniquely defined up to isomorphism in H (N+1). Moreover, any mor-
phism φ• : P• → P ′

• from H (N) induces a morphism INφ• : INP• → INP
′
•,

which coincides with φ• for all places n ≤ N , and this morphism is also
uniquely defined as a morphism from H (N+1). It gives the functor IN . One
can easily verify that actually all these functors are full embeddings and
D b(R -Mod) ' lim

−→N
H (N)(R ). If R is noetherian, the same is true for the

category D b(R -mod) if we replace everywhere R -Proj by R -proj.
One can also consider the projection EN : H (N+1) →H (N), which

just erases the term PN+1 in a complex P• ∈H (N+1), and show that
D−(R -Mod) ' lim

←−N
H (N)(R ).

Suppose now that A is a falf category over a complete local noethe-
rian ring S. Then, evidently, the bounded categories C b(A ) and H b(A ) are
also falf categories, hence Krull-Schmidt categories. In [11, Appendix A] it
is proved that the same is true for unbounded categories C (A ) and H (A ).
The proof is based on the following analogue of the Hensel lemma (cf. [11,
Corollary A.5]).

Lemma 1.1. Let Λ be a finite algebra over a local noetherian ring S with
maximal ideal m and a ∈ Λ. For every n ∈ N there is a polynomial g(x) ∈ S[x]
such that

• g(a)2 ≡ g(a) mod mn+1;

• g(e) ≡ e mod mn for every element e of an arbitrary finite S-algebra
such that e2 ≡ e mod mn;

• g(a) ≡ 1 mod m if and only if a is invertible;

• g(a) ≡ 0 mod m if and only if a is nilpotent modulo m.

Theorem 1.2. Suppose that S is a complete local noetherian ring with max-
imal ideal m. If A is a falf category over S, the categories C (A ) and
H (A ) are ω-local (in particular, Krull–Schmidt). Moreover, a morphism
f• : A• → B• from one of these categories belongs to the radical if and only
if all components fngn (or gnfn ) are nilpotent modulo m for any morphism
g• : B• → A• .
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Proof. Let a• be an endomorphism of a complex A• from C (A ) . Consider
the sets In ⊂ Z defined as follows: I0 = { 0 }, I2k = { l ∈ Z | − k ≤ l ≤ k }
and I2k−1 = { l ∈ Z | − k < l ≤ k }. Obviously,

⋃
n In = Z , In ⊂ In+1 and

In+1\In consists of a unique element ln. Using corollary 1.1, we can construct

a sequence of endomorphisms a
(n)
• such that, for each i ∈ In,

• (a
(n)
i )2 ≡ a

(n)
i mod mn;

• a
(n+1)
i ≡ a

(n)
i mod mn;

• a
(n)
i is invertible or nilpotent modulo m if and only if so is ai.

Then one easily sees that setting ui = limn→∞ a
(n)
i , we get an idempotent

endomorphism u• of A•, such that ui ≡ 0 mod m (ui ≡ 1 mod m) if and
only if ai is nilpotent modulo m (respectively ai is invertible).

Especially, if either one of al is neither nilpotent nor invertible modulo
m, or one of al is nilpotent modulo m while another one is invertible, then
u• is neither zero nor identity. Hence the complex A• decomposes. Thus A•

is indecomposable if and only if, for any endomorphism a• of A• , either a•
is invertible or all components an are nilpotent modulo m. Since all algebras
EndAn/m EndAn are finite dimensional, neither product αβ, where α, β ∈
EndAn and one of them is nilpotent modulo m, can be invertible. Therefore,
the set of endomorphisms a• of an indecomposable complex A• such that
all components an are nilpotent modulo m form an ideal R of EndA• and
EndA•/R is a skew field. Hence R = rad(EndA•) and EndA• is local.

Now we want to show that any complex from C (A ) has an indecompos-
able direct summand. Consider an arbitrary complex A• and suppose that
A0 6= 0. For any idempotent endomorphism e• of A• at least one of the com-
plexes e(A•) or (1− e)(A•) has a non-zero component at the zero place. On
the set of all endomorphisms of A• we can introduce a partial ordering by
writing e• ≥ e′• if and only if e′• = e•e

′
•e• and both e0 and e′0 are non-zero.

Let e• ≥ e′• ≥ e′′• ≥ . . . be a chain of idempotent endomorphisms of A•.
As all endomorphism algebras EndAl are finitely generated S-modules, the
sequences el, e

′
l, e

′′
l , · · · ∈ EndAl stabilize for all l, so this chain has a lower

bound (formed by the limit values of components). By Zorn’s lemma, there
is a minimal non-zero idempotent of A•, which defines an indecomposable
direct summand.

Again, since all EndAl are finitely generated, for every n there is a de-
composition A• = B

(n)
• ⊕

⊕rn

i=1Bin• where all Bin• are indecomposable and

B
(n)
l = 0 for l ∈ In . Moreover, one may suppose that rn ≤ rm for m > n

and Bin• = Bim• for i ≤ rn. Evidently, it implies that A• =
⊕r

i=1Bi• where
r = supn rn and Bi• = Bin• for i ≤ rn, which accomplishes the proof of the
Theorem 1.2 for C (A ) .
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Note now that the endomorphism ring of each complex Bi• in the cate-
gory H (A ) is a factor ring of its endomorphism ring in C (A ) . Hence it is
either local or zero; in the latter case the image of Bi• in H (A ) is a zero
object. Therefore, the claim is also valid for H (A ) .

Since the derived category D−(R -mod) is equivalent to H−(R -proj), we get
the following corollary.

Corollary 1.3. Let S be R be a locally finite S-category (e.g. a finite S-
algebra). Then the derived category D−(R -mod) is ω-local, in particular,
Krull–Schmidt.

2 Finite Dimensional Algebras

2.1 Semi-Continuity

In this section we suppose that S = k is an algebraically closed field and A
is a finite dimensional k-algebra with radical J. In this case one can define,
following the pattern of [28], the number of parameters for objects of the
bounded derived category D b(A-mod). First of all, every object M in the
category A-mod has a projective cover, i.e. an epimorphism f : P →M , where
P is a projective module, such that Ker f ⊆ JP . Moreover, this projective
cover is unique up to an isomorphism. It implies that every right bounded
complex of A-modules is isomorphic in the homotopy category H−(A-mod)
to a minimal complex, i.e. such a complex of projective modules

P• : · · · → Pn+1
dn+1

−−−→ Pn
dn−→ Pn−1

dn−1

−−−→ . . . ,

that Im dn ⊆ JPn−1 for all n. Consider now the full subcategory H (N)
0 =

H (N)
0 (A) of H (N)(A) consisting of minimal complexes. Then again

D b(A-mod) ' lim
−→

H (N)
0 . Moreover, two complexes from H (N)

0 are isomor-

phic in D b(A-mod) if and only if they are isomorphic as complexes. Us-
ing this approximation, we can prescribe a vector rank to every object
M• ∈ D b(A-mod). Namely, let {A1, A2, . . . , As } be a set of representatives of
isomorphism classes of indecomposable projective A-modules. Every finitely
generated projective A-module P uniquely decomposes as P '

⊕s

i=1 riAi.
We call the vector r(P ) = (r1, r2, . . . , rs), the rank of the projective module
P and for every vector r = (r1, r2, . . . , rs) set rA =

⊕s

i=1 riAi. Given a finite
complex P• of projective modules, we define its vector rank as the function
rk(P•) : Z → Ns mapping n ∈ Z to r(Pi). It is a function with finite sup-
port. Let ∆ be the set of all functions Z→ Ns with finite support. For every
function r• ∈ ∆, let C(r•) = C(r•,A) be the set of all minimal complexes P•
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such that Pn = rnA (we write rn for r•(n) ). This set can be considered as an
affine algebraic variety over k, namely, C(r•) is isomorphic to the subvariety
of the affine space H =

∏
n HomA(Pn,JPn−1) consisting of all sequences (fn)

such that fnfn+1 = 0 for all n. Set also G(r•) =
∏

n AutPn. It is an affine
algebraic group acting on C(r•) and its orbits are just isomorphism classes
of minimal complexes of vector rank r•. It is convenient to replace affine
varieties by projective ones, using the obvious fact that the sequences (fn)
and (λfn), where λ ∈ k is a nonzero scalar, belong to the same orbit. So we
write H(r•) for the projective space P(H) and D(r•) for the image in H(r•) of
C(r•). Actually, we exclude the complexes with zero differential, but such a
complex is uniquely defined by its vector rank, so they play a negligible role
in classification problems.

We consider now algebraic families of A-complexes, i.e. flat families over
an algebraic variety X. Such a family is a complex F• = (Fn, dn) of flat
coherent A ⊗ OX -modules. We always assume this complex bounded and
minimal ; the latter means that Im dn ⊆ JFn−1 for all n. We also assume that
X is connected; it implies that the vector rank rk(F•(x)) is constant, so we
can call it the vector rank of the family F and denote it by rk(F•) Here,
as usually, F(x) = Fx/mxFx, where mx is the maximal ideal of the ring
OX,x. We call a family F• non-degenerate if, for every x ∈ X, at least one
of dn(x) : Fn(x) → Fn−1(x) is non-zero. Having a family F• over X and a
regular map φ : Y → X, one gets the inverse image φ∗(F), which is a family of
A-complexes over the variety Y such that φ∗(F)(y) ' F(φ(y)). If F• is non-
degenerate, so is φ∗(F). Given an ideal I ⊆ J, we call a family F• an I-family
if Im dn ⊆ IFn−1 for all n. Then any inverse image φ∗(F) is an I-family as well.
Just as in [29], we construct some “almost versal” non-degenerate I-families.

For each vector r = (r1, r2, . . . , rs) denote I(r, r′) = HomA(rA, I · r′A),
where I is an ideal contained in J. Fix a vector rank of bounded complexes
r• = (rk) ∈ ∆ and set H(r•, I) =

⊕
k I(rk, rk−1). Consider the projective

space P(r•, I) = P(H(r•, I)) and its closed subset D(r•, I) ⊆ P consisting of
all sequences (hk) such that hk+1hk = 0 for all k. Because of the universal
property of projective spaces [40, Theorem II.7.1], the embedding D(r•, I)→
P(r•, I) gives rise to a non-degenerate I-family V• = V•(r•, I):

V• : Vn
dn−−−→ Vn−1

dn−1

−−−→ . . . −→ Vm, (1)

where Vk = OD(r•,I)(n − k) ⊗ rkA for all m ≤ k ≤ n. We call V•(r•, I)
the canonical I-family of A-complexes over D(r•, I). Moreover, regular maps
φ : X → D(r•, I) correspond to non-degenerate I-families F• with Fk = 0 for
k > n or k < m and Fk = L⊗(n−k) ⊗ rkA for some invertible sheaf L over
X. Namely, such a family can be obtained as φ∗(V•) for a uniquely defined
regular map φ. Moreover, the following result holds, which shows the “almost
versality” of the families V•(r•, I).
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Proposition 2.1. For every non-degenerate family of I-complexes F• of
vector rank r• over an algebraic variety X, there is a finite open covering
X =

⋃
j Uj such that the restriction of F• onto each Uj is isomorphic to

φ∗
jV•(r•, I) for a regular map φj : Uj → D(r•, I).

Proof. For each x ∈ X there is an open neighbourhood U 3 x such that
all restrictions Fk|U are isomorphic to OU ⊗ rkA; so the restriction F•|U is
obtained from a regular map U → D(r•, I). Evidently it implies the assertion.

Note that the maps φj are not canonical, so we cannot glue them into a
“global” map X → D(r•, I).

The group G = G(r•) =
∏

k Aut(rkA) acts on H(r•, I): (gk) · (hk) =
(gk−1hkg

−1
k ). It induces the action of G(r•) on P(R•, I) and on D(r•, I). The

definitions immediately imply that V•(r•, I)(x) ' V•(r•, I)(x
′) (x, x′ ∈ D) if

and only if x and x′ belong to the same orbit of G. Consider the sets

Di = Di(r•, I) = {x ∈ D | dimGx ≤ i } .

It is known that they are closed (it follows from the theorem on dimensions
of fibres, cf. [40, Exercise II.3.22] or [48, Ch. I, § 6,Theorem 7]). We set

par(r•, I,A) = max
i
{dim Di(r•, I)− i }

and call this integer the parameter number of I-complexes of vector rank r•.
Obviously, if I ⊆ I′, then par(r•, I,A) ≤ par(r•, I

′,A). Especially, the number
par(r•,A) = par(r•,J,A) is the biggest one.

Proposition 2.1, together with the theorem on the dimensions of fibres
and the Chevalley theorem on the image of a regular map (cf. [40, Exercise
II.3.19] or [48, Ch. I, § 5,Theorem 6]), implies the following result.

Corollary 2.2. Let F• be an I-family of vector rank r• over a variety X. For
each x ∈ X set Xx = {x′ ∈ X | F•(x

′) ' F•(x) } and denote

Xi = { x ∈ X | dimXx ≤ i } ,

par(F•) = max
i
{dimXi − i } .

Then all subsets Xx and Xi are constructible (i.e. finite unions of locally
closed sets) and par(F•) ≤ par(r•, I,A).

Note that the bases D(r•, I) of our almost versal families are projec-
tive, especially complete varieties. We shall exploit this property while study-
ing the behaviour of parameter numbers in families of algebras. Since de-
compositions of algebras in families into direct sums of projective modules
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can differ, we restrict our considerations to the complexes of free modules.
Namely, let a = r(A). For every sequence b = (bn, . . . , bm) of integers we set
ba = (bna, . . . , bma) and write par(b, I,A) instead of par(ba, I,A).

A (flat) family of algebras over an algebraic variety X is a sheaf A of
OX -algebras, which is coherent and flat (thus locally free) as a sheaf of OX-
modules. For such a family and every sequence b = (bm, bm+1, . . . , bn) one can
define the function par(b,A, x) = par(b,A(x)). Our main result is the upper
semi-continuity of these functions.

Theorem 2.3. Let A be a flat family of finite dimensional algebras over
an algebraic variety X. For every vector b = (bm, bm+1, . . . , bn) the function
par(b,A, x) is upper semi-continuous, i.e. all sets

Xj = {x ∈ X | par(b,A, x) ≥ j }

are closed.

Proof. We may assume that X is irreducible. Let K be the field of rational
functions on X. We consider it as a constant sheaf on X. Set J = rad(A⊗OX

K) and J = J ∩ A. It is a sheaf of nilpotent ideals. Moreover, if ξ is the
generic point of X, the factor algebra A(ξ)/J (ξ) is semisimple. Hence there is
an open set U ⊆ X such thatA(x)/J (x) is semisimple, thus J (x) = radA(x)
for every x ∈ U . Therefore, par(b,A, x) = par(b,J (x),A(x)) for x ∈ U ; so
Xj = Xj(J ) ∪X ′

j, where

Xj(J ) = { x ∈ X | par(b,J (x),A(x)) ≥ j }

and X ′ = X \U is a closed subset in X. Using noetherian induction, we may
suppose that X ′

j is closed, so we only have to prove that Xj(J ) is closed too.
Consider the locally free sheaf H =

⊕n

k=m+1Hom(bkA, bk−1J ) and the
projective space bundle P(H) [40, Section II.7]. Every point h ∈ P(H) defines
a set of homomorphisms hk : bkA(x)→ bk−1J (x) (up to a homothety), where
x is the image of h in X, and the points h such that hkhk+1 = 0 form a closed
subset D(b,A) ⊆ P(H). We denote by π the restriction onto D(b,A) of the
projection P(H)→ X; it is a projective, hence closed map. Moreover, for every
point x ∈ X the fibre π−1(x) is isomorphic to D(b,A(x),J (x)). Consider also
the group variety G over X: G =

∏n

k=m GLbk
(A). There is a natural action

of G on D(b,A) over X, and the sets Di = { z ∈ D(b,A) | dimGz ≤ i } are
closed in D(b,A). Therefore, the sets Zi = π(Di) are closed in X, as well as
Zij = {x ∈ Zi | dim π−1(x) ≥ i + j }. But Xj(J ) =

⋃
i Zij, thus it is also a

closed set.

2.2 Derived Tame and Wild Algebras

We are going to define derived tame and derived wild algebras. To do it, we
consider families of complexes with non-commutative bases.
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Definition 2.4. 1. Let R be a k-algebra. A family of A-complexes based
on R is a complex of finitely generated projective A⊗Rop-modules P•. We
denote by C (N)(A,R) the category of all bounded families with Pn = 0 for
n > N (again we do not prescribe the right bound). For such a family P• and
an R-module L we denote by P•(L) the complex (Pn ⊗R L, dn ⊗ 1). If L is
finite dimensional, P•(L) ∈ C (N)(A) = C (N)(A, k).

Obviously, if the algebra R is affine, i.e. commutative, finitely generated
over k and without nilpotents, such families coincide in fact with families of
complexes over the algebraic variety Spec R. Especially, if R is also connected
(i.e. contains no nontrivial idempotents), the vector rank of such a family
rk(P•) is defined as rk(P• ⊗R S), where S is a simple R-module (no matter
which one).

2. We call a family P• strict if for every finite dimensional R-modules L, L′

(a) P•(L) ' P•(L
′) if and only if L ' L′;

(b) P•(L) is indecomposable if and only if so is L.

3. We call A derived wild if it has a strict family of complexes over every
finitely generated k-algebra R.

The following useful fact is well known.

Proposition 2.5. An algebra A is derived wild if and only if it has a strict
family over one of the following algebras:

• free algebra k〈x, y〉 in two variables;

• polynomial algebra k[x, y] in two variables;

• power series algebra k[[x, y]] in two variables.

Definition 2.6. 1. A rational algebra is a k-algebra k[t, f(t)−1] for a non-
zero polynomial f(t). A rational family of A-complexes is a family over a
rational algebra R. Equivalently, a rational family is a family over an open
subvariety of the affine line.

2. An algebra A is called derived tame if there is a set of rational families of
bounded A-complexes P such that:

(a) for each r• ∈ ∆, the set P(r•) = {P• ∈ P | rk(P•) = r• } is finite.

(b) for every r• all indecomposable complexes from C(r•,A), except finitely
many of them (up to isomorphism), are isomorphic to a complex P•(L)
for some P• ∈ P and some finite dimensional L.

We call P a parameterizing set of A-complexes.



90. Y.A. Drozd

These definitions do not formally coincide with other definitions of derived
tame and derived wild algebras, for instance, those proposed in [36, 37], but
all of them are evidently equivalent. It is obvious (and easy to prove, like in
[20]) that neither algebra can be both derived tame and derived wild. The
following result (“tame–wild dichotomy for derived categories”) has recently
been proved by V.Bekkert and the author [6].

Theorem 2.7. Every finite dimensional algebra over an algebraically closed
field is either derived tame or derived wild.

2.3 Sliced Boxes

The proof of Theorem 2.7 rests on the technique of representations of boxes
(“matrix problems”). We recall now the main related notions. A box is a
pair A = (A ,V ), where A is a category and V is an A -coalgebra, i.e. an
A -bimodule supplied with comultiplication µ : V → V ⊗A V and counit
ι : V → A , which are homomorphisms of A -bimodules and satisfy the usual
coalgebra conditions

(µ⊗ 1)µ = (1⊗ µ)µ, il(ι⊗ 1)µ = ir(1⊗ ι)µ = Id,

where il : A ⊗A V ' V and ir : V ⊗A A ' V are the natural isomorphisms.
The kernel V = Ker ι is called the kernel of the box. A representation of such
a box in a category C is a functor M : A → C . Given another representation
N : A → C , a morphism f : M → N is defined as a homomorphism of A -
modules V ⊗A M → N , The composition gf of f : M → N and g : N → L
is defined as the composition

V ⊗A M
µ⊗1
−−−→ V ⊗A V ⊗A M

1⊗f
−−−→ V ⊗A N

g
−−−→ L,

while the identity morphism IdM of M is the composition

V ⊗A M
ι⊗1
−−−→ A ⊗A M

il−−−→ M.

Thus we obtain the category of representations Rep(A,C ). If C = vec, the
category of finite dimensional vector spaces, we just write Rep(A). If f is a
morphism and γ ∈ V (a, b), we denote by f(γ) the morphism f(b)(γ ⊗ ) :
M(a) → N(a). A box A is called normal (or group-like) if there is a set of
elements ω = {ωa ∈ V (a, a) | a ∈ Ob A } such that ι(ωa) = 1a and µ(ωa) =
ωa⊗ωa for every a ∈ ObA . In this case, if f is an isomorphism, all morphisms
f(ωa) are isomorphisms M(a) ' N(a). This set is called a section of A. For
a normal box, one defines the differentials ∂0 : A → V and ∂1 : V → V ⊗A V
setting

∂0(α) = αωa − ωbα for α ∈ A (a, b);

∂1(γ) = µ(γ)− γ ⊗ ωa − ωb ⊗ γ for γ ∈ V (a, b).
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Usually we omit indices, writing ∂α and ∂γ.
Recall that a free category kΓ, where Γ is an oriented graph, has the

vertices of Γ as its objects and the paths from a to b (a, b being two vertices) as
a basis of the vector space kΓ(a, b).If Γ has no oriented cycles, such a category
is locally finite dimensional. A semi-free category is a category of fractions
kΓ[S−1], where S = { gα(α) |α ∈ L } and L is a subset of the set of loops in Γ
(called marked loops). The arrows of Γ are called the free (respectively, semi-
free) generators of the free (semi-free) category. A normal box A = (A ,V )
is called free (semi-free) if such is the category A , moreover, the kernel V =
Ker ι of the box is a free A -bimodule and ∂α = 0 for each marked loop α.
A set of free (respectively, semi-free) generators of such a box is a union
S = S0 ∪ S1, where S0 is a set of free (semi-free) generators of the category
A and S1 is a set of free generators of the A -bimodule V .

We call a category A trivial if it is a free category generated by a trivial
graph (i.e. one with no arrows); thus A (a, b) = 0 if a 6= b and A (a, a) = k. We
call A minimal, if it is a semi-free category with a set of semi-free generators
consisting of loops only, at most one loop at each vertex. Thus A (a, b) = 0
again if a 6= b, while A (a, a) is either k or a rational algebra. We call a normal
box A = (A ,V ) so-trivial if A is trivial, and so-minimal if A is minimal and
all its loops α are minimal too (i.e. with ∂α = 0).

A layered box [15] is a semi-free box A = (A ,V ) with a section ω, a set
of semi-free generators S = S0 ∪ S1 and a function ρ : S0 → N satisfying the
following conditions:

• A morphism φ from Rep(A) is an isomorphism if all maps φ(ωa) (a ∈
Ob A )) are isomorphisms.

• There is at most one marked loops at each vertex.

• For each α ∈ S0 the differential ∂α belongs to the Aα-sub-bimodule of
V generated by S1, where Aα is the semi-free subcategory of A with
the set of semi-free generators {β ∈ S0 | ρ(β) < ρ(α) }.

Obviously, we may suppose, without loss of generality, that ρ(α) = 0 for every
marked loop α. The set {ω,S, ρ } is called a layer of the box A.

In [21] (cf. also [15, 25]) the classification of representations of an ar-
bitrary finite dimensional algebra was reduced to representations of a free
layered box. To deal with derived categories we have to consider a wider class
of boxes. First, a factor-box of a box A = (A ,V ) modulo an ideal I ⊆ A is
defined as the box A/I = (A/I ,V/(IV + VI )) (with obvious comultipli-
cation and counit). Note that if A is normal, so is A/I .

Definition 2.8. A sliced box is a factor-box A/I , where A = (A ,V ) is a
free layered box such that the set of its objects V = Ob A is a disjoint union
V =

⋃
i∈Z

Vi so that the following conditions hold:
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• A (a, a) = k for each object a ∈ A ;

• A (a, b) = 0 if a 6= b, a ∈ Vi, b ∈ Vj with j ≥ i;

• V (a, b) = 0 if a ∈ Vi, b ∈ Vj with i 6= j.

The partition V =
⋃

i Vi is called a slicing.

Certainly, in this definition we may assume that the elements of the ideal I
are linear combinations of paths of length at least 2. Otherwise we can just
eliminate one of the arrows from the underlying graph without changing the
factor A/I .

Note that for every representation M ∈ Rep(A), where A is a free (semi-
free, sliced) box with the set of objects V, one can consider its dimension
dim(M), which is a function V → N, namely dim(M)(a) = dimM(a).
We call such a representation finite dimensional if its support suppM =
{ a ∈ V |M(a) 6= 0 } is finite and denote by rep(A) the category of finite di-
mensional representations. Having these notions, one can easily reproduce the
definitions of families of representations, especially strict families, wild and
tame boxes; see [21, 25] for details. The following procedure, mostly copying
that of [21], allows to model derived categories by representations of sliced
boxes.

Let A be a finite dimensional algebra, J be its radical. As far as we
are interested in A-modules and complexes, we can replace A by a Morita
equivalent reduced algebra, thus suppose that A/J ' ks [31]. Let 1 =

∑s
i=1 ei,

where ei are primitive orthogonal idempotents; set Aji = ejAei and Jji =
ejJei; note that Jji = Aji if i 6= j. We denote by S the trivial category
with the set of objects { (i, n) |n ∈ N, i = 1, 2, . . . , s } and consider the S -
bimodule J such that

J
(
(i, n), (j,m)

)
=

{
0 if m 6= n− 1,

J∗
ji if m = n− 1.

Let B = S [J ] be the tensor category of this bimodule; equivalently, it is the
free category having the same set of objects as S and the union of bases of
all J

(
(i, n), (j,m)

)
as a set of free generators. Denote by U the S -bimodule

such that

U
(
(i, n), (j,m)

)
=

{
0 if n 6= m,

A∗
ji if n = m

and set W̃ = B ⊗S U ⊗S B . Dualizing the multiplication Akj ⊗Aji → Aki,
we get homomorphisms

λr : B → B ⊗S W̃ , λl : B → W̃ ⊗S B , µ̃ : W̃ → W̃ ⊗S W̃ .
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In particular, µ̃ defines on W̃ a structure of B -coalgebra. Moreover, the sub-
bimodule W 0 generated by Im(λr−λl) is a coideal in W̃ , i.e. µ̃(W 0) ⊆ W 0⊗B

W̃ ⊕ W̃ ⊗B W 0. Therefore, W = W̃/W 0 is also a B -coalgebra, so we get a box
B = (B ,W ). One easily checks that it is free and triangular.

Dualizing multiplication also gives a map

ν : J∗
ji →

s⊕

k=1

J∗
jk ⊗ J∗

ki. (2)

Namely, if we choose bases {α } , { β } { γ } in the spaces, respectively, Jji,
Jjk, Jki, and dual bases {α∗ } , {β∗ } , { γ∗ } in their duals, then β∗⊗γ∗ occurs
in ν(α∗) with the same coefficient as α occurs in βγ. Note that the right-
hand space in (2) coincide with each B

(
(i, n), (j, n− 2)

)
. Let I be the ideal

in B generated by the images of ν in all these spaces and D = B/I =
(A ,V ), where A = B/I , V = W/(IW + WI ). If necessary, we write D(A)
to emphasize that this box has been constructed from a given algebra A.
Certainly, D is a sliced box, and the following result holds.

Theorem 2.9. The category of finite dimensional representations rep(D(A))
is equivalent to the category C b

min(A) of bounded minimal projective A-
complexes.

Proof. Let Ai = Aei; they form a complete list of non-isomorphic in-
decomposable projective A-modules; set also Ji = radAi = Jei. Then
HomA(Ai, Jj) ' Jji. A representation M ∈ rep(D) is given by vector spaces
M(i, n) and linear maps

Mji(n) : J∗
ji = A

(
(i, n), (j, n− 1)

)
→ Hom

(
M(i, n),M(j, n − 1)

)

subject to the relations

s∑

k=1

m
(
Mjk(n)⊗Mki(n+ 1)

)
ν(α) = 0 (3)

for all i, j, k, n and all α ∈ Jji, where m denotes the multiplication of maps

Hom
(
M(k, n),M(j, n − 1)

)
⊗ Hom

(
M(i, n + 1),M(k, n)

)

→ Hom
(
M(i, n + 1),M(j, n− 1)

)
.

For such a representation, set Pn =
⊕s

i=1Ai ⊗M(i, n). Then

radPn =

n⊕

i=1

Ji ⊗M(i, n)
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and

HomA(Pn, radPn−1) '
⊕

i,j

HomA

(
Ai ⊗M(i, n), Jj ⊗M(j, n − 1)

)

'
⊕

ij

Hom
(
M(i, n),HomA

(
Ai, Jj ⊗M(j, n− 1)

))

'
⊕

ij

M(i, n)∗ ⊗ Jji ⊗M(j, n− 1)

'
⊕

ij

Hom
(
J∗

ji,Hom
(
M(i, n),M(j, n − 1)

))
.

Thus the set {Mji(n) | i, j = 1, 2, . . . , s } defines a homomorphism dn : Pn →
Pn−1 and vice versa. Moreover, one easily verifies that the condition (3) is
equivalent to the relation dndn+1 = 0. Since every projective A-module can be
given in the form

⊕s

i=1Ai⊗Vi for some uniquely defined vector spaces Vi, we
get a one-to-one correspondence between finite dimensional representations
of D and bounded minimal complexes of projective A-modules. In the same
way one also establishes one-to-one correspondence between morphisms of
representations and of the corresponding complexes, compatible with their
multiplication, which accomplishes the proof.

Corollary 2.10. An algebra A is derived tame (derived wild) if and only if
so is the box D(A).

2.4 Proof of Dichotomy

Now we are able to prove Theorem 2.7. Namely, according to Corollary 2.10,
it follows from the analogous result for sliced boxes.

Theorem 2.11. Every sliced box is either tame or wild.

Actually, just as in [21] (see also [15, 25]), we shall prove this theorem in the
following form.

Theorem 2.11a. Suppose that a sliced box A = (A ,V ) is not wild. For every
dimension d of its representations there is a functor Fd : A →M , where M
is a minimal category, such that every representation M : A → vec of A of
dimension dim(M) ≤ d is isomorphic to the inverse image F ∗N = N ◦F for
some functor N : M → vec. Moreover, F can be chosen strict, which means
that F ∗N ' F ∗N ′ implies N ' N ′ and F ∗N is indecomposable if so is N .

Remark. We can consider the induced box AF = (M ,M⊗A V⊗A M ). It is a
so-minimal box, and F ∗ defines a full and faithful functor rep(AF )→ rep(A).
Its image consists of all representations M : A → vec that factorize through
F .
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Proof. As we fix the dimension d, we may assume that the set of objects is
finite (namely, supp d). Hence the slicing V =

⋃
i Vi (see Definition 2.8) is

finite too: V =
⋃m

i=1 Vi and we use induction by m. If m = 1, A is free, and
our claim follows from [21, 15]. So we may suppose that the theorem is true
for smaller values of m, especially, it is true for the restriction A′ = (A ′,V ′)
of the box A onto the subset V′ =

⋃m

i=2 Vi. Thus there is a strict functor
F ′ : A ′ →M , where M is a minimal category, such that every representa-
tion of A′ of dimension smaller than d is of the form F ′∗N for N : M → vec.
Consider now the amalgamation B = A

⊔A ′

M and the box B = (B ,W ),
where W = B ⊗A V ⊗A B . The functor F ′ extends to a functor F : A → B
and induces a homomorphism of A-bimodules V → W ; so it defines a functor
F ∗ : rep(B)→ rep(A), which is full and faithful. Moreover, every representa-
tion of A of dimension smaller than d is isomorphic to F ∗N for some N , and
all possible dimensions of such N are restricted by some vector b. Therefore,
it is enough to prove the claim of the theorem for the box B.

Note that the category B is generated by the loops from M and the
images of arrows from A (a, b) with b ∈ V1 (we call them new arrows). It
implies that all possible relations between these morphisms are of the form∑

β βgβ(α) = 0, where α ∈ B (a, a) is a loop (necessarily minimal, i.e. with
∂α = 0), gβ are some polynomials, and β runs through the set of new arrows
from a to b for some b ∈ V1. Consider all of these relations for a fixed b;
let them be

∑
β βgβ,k(α) = 0 (k = 1, . . . , r). Their coefficients form a ma-

trix
(
gβ,k(α)

)
. Using linear transformations of the set {β } and of the set

of relations, we can make this matrix diagonal, i.e. make all relations being
βfβ(α) = 0 for some polynomials fβ. If one of fβ is zero, the box B has a
sub-box

aα
β

b ,

with ∂α = ∂β = 0, which is wild; hence B and A are also wild. Otherwise,
let f(α) 6= 0 be a common multiple of all fβ(α), Λ = {λ1, λ2, . . . , λr } be the
set of roots of f(α). If N ∈ rep(B) is such that N(α) has no eigenvalues from
Λ, then f(N(α)) is invertible; thus N(β) = 0 for all β : a → b. So we can
apply the reduction of the loop α with respect to the set Λ and the dimension
d = b(a), as in [21, Propositions 3,4] or [25, Theorem 6.4]. It gives a new box
that has the same number of loops as B, but the loop corresponding to α is
“isolated,” i.e. there are no more arrows starting or ending at the same vertex.
In the same way we are able to isolate all loops, obtaining a semi-free layered
box C and a morphism G : B → C such that G∗ is full and faithful and all
representations of B of dimensions smaller than b are of the form G∗L. As
the theorem is true for semi-free boxes, it accomplishes the proof.

Remark. Applying reduction functors, like in the proof above, we can also
extend to sliced boxes (thus to derived categories) other results obtained
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before for free boxes. For instance, we mention the following theorem, quite
analogous to that of Crawley-Boevey [17].

Theorem 2.12. If an algebra A is derived tame, then, for any vector rank
r• ∈ ∆ = (rn |n ∈ Z), there is at most finite set of generic A-complexes of en-
dolength r•, i.e. such indecomposable minimal bounded complexes P• of projec-
tive A-modules, not all of which are finitely generated, that lengthE(Pn) = rn

for all n, where E = EndA(P•).

Its proof reproduces again that of [17], with obvious changes necessary to
include sliced boxes into consideration.

2.5 Deformations of Derived Tame Algebras

Combining the semi-continuity properties with tame–wild dichotomy, we can
prove the results on deformations of derived tame algebras, analogous to those
of [28, 35]. Note first the following easy observation.

Proposition 2.13. Let A be a finite dimensional algebra. For every vector
r = (r1, r2, . . . , rs) set |r| =

∑s

i=1 ri. For every vector rank r• ∈ ∆(A) set
|r•| =

∑
n rn.

1. A is derived tame if and only if par(r•,A) ≤ |r•| for every r• ∈ ∆.

2. A is derived wild if and only if there is a vector rank r• such that
par(kr•,A) ≥ k2 for every k ∈ N.

Proof. The necessity of these conditions follows from the definitions of derived
tameness and wildness. Certainly, they exclude each other. Since every algebra
is either derived tame or derived wild, the sufficiency follows.

This proposition together with Theorem 2.3 immediately implies the following
result.

Corollary 2.14. For a family of algebras A over X denote

Xtame = { x ∈ X | A(x) is derived tame } ,

Xwild = { x ∈ X | A(x) is derived wild } .

Then Xtame is a countable intersection of open subsets and Xwild is a countable
union of closed subsets.

Proof. By Theorem 2.3 the set Z(r•) = {x ∈ X | par(r•,A) ≤ |r•| } is open.
But Xtame =

⋂
r
Z(r) and hence Xwild =

⋃
r
(X \ Z(r)).
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The following conjecture seems very plausible, though even its analogue for
usual tame algebras has not yet been proved. (Only for representation finite
algebras the corresponding result was proved in [33].)

Conjecture 2.15. For any (flat) family of algebras over an algebraic variety
X the set Xtame is open.

Recall that an algebra A is said to be a (flat) degeneration of an algebra B,
and B is said to be a (flat) deformation of A, if there is a (flat) family of
algebras A over an algebraic variety X and a point p ∈ X such thatA(x) ' B
for all x 6= p, while A(p) ' A. One easily verifies that we can always assume
X to be a non-singular curve. Corollary 2.14 obviously implies

Corollary 2.16. Suppose that an algebra A is a (flat) degeneration of an
algebra B. If B is derived wild, so is A. If A is derived tame, so is B.

If we consider non-flat families, the situation can completely change. The
reason is that the dimension is no more constant in these families. That is
why it can happen that such a “degeneration” of a derived wild algebra may
become derived tame, as the following example due to Brüstle [10] shows.

Example 2.17. There is a (non-flat) family of algebras A over an affine
line A1 such that all of them except A(0) are isomorphic to the derived wild
algebra B given by the quiver with relations

•

• α •
β1

•
γ1

γ2

•
β2

β1α = 0,

•

while A(0) is isomorphic to the derived tame algebra A given by the quiver
with relations

•

• α •

ξ1

β1

•
γ1

γ2

•
β2

ξ2

β1α = γ1β1 = γ2β2 = 0.

•

(4)

Namely, one has to define A(λ) as the factor algebra of the path algebra of
the quiver as in (4), but with the relations β1α = 0, γ1β1 = λξ1, γ2β2 = λξ2.
Note that dimA = 16 and dimB = 15, which shows that this family is not
flat.

Actually, in such a situation the following result always holds.
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Proposition 2.18. Let A be a family (not necessarily flat) of algebras over
a non-singular curve X such that A(x) ' B for all x 6= p, where p is a
fixed point, while A(p) ' A. Then there is a flat family B over X such that
B(x) ' B for all x 6= p and B(p) ' A/I for some ideal I.

Proof. Note that the restriction ofA onto U = X \ { p } is flat, since dimA(x)
is constant there. Let n = dimB, Γ be the quiver of the algebra B and G = kΓ
be the path algebra of Γ. Consider the Grassmannian Gr(n,G), i.e. the va-
riety of subspaces of codimension n of G. The ideals form a closed subset
Alg = Alg(n,G) ⊂ Gr(n,G). The restriction of the canonical vector bundle
V over the Grassmannian onto Alg is a sheaf of ideals in G = G⊗OAlg, and
the factor F = G/V is a universal family of factor algebras of G of dimen-
sion n. Therefore, there is a morphism φ : U → Alg such that the restriction
of A onto U is isomorphic to φ∗(F). Since Alg is projective and X is non-
singular, φ can be continued to a morphism ψ : X → Alg. Let B = ψ∗(F);
it is a flat family of algebras over X. Moreover, B coincides with A outside
p. Since both of them are coherent sheaves on a non-singular curve and B is
locally free, it means that B ' A/T , where T is the torsion part of A, and
B(p) ' A(p)/T (p).

Corollary 2.19. If a degeneration of a derived wild algebra is derived tame,
the latter has a derived wild factor algebra.

In Brüstle’s example 2.17, to obtain a derived wild factor algebra of A, one
has to add the relation ξ1α = 0, which obviously holds in B.

By the way, as a factor algebra of a tame algebra is obviously tame (which
is no more true for derived tame algebras!), we get the following corollary (cf.
also [18, 29]).

Corollary 2.20. Any deformation (not necessarily flat) of a tame algebra is
tame. Any degeneration of a wild algebra is wild.

3 Nodal Rings

3.1 Backström Rings

We consider a class of rings, which generalizes in a certain way local rings of
ordinary multiple points of algebraic curves. Following the terminology used
in the representations theory of orders, we call them Backström rings. In this
section we suppose all rings being noetherian and semi-perfect in the sense
of [3]; the latter means that all idempotents can be lifted modulo radical, or,
equivalently, that every finitely generated module M has a projective cover,
i.e. such an epimorphism f : P → M , where P is projective and Ker f ⊆
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radP . Hence, just as for finite dimensional algebras, the derived category
D−(A-mod) is equivalent to the homotopy category of right bounded minimal
complexes, i.e. such complexes of finitely generated projective modules

· · · → Pn+1
dn+1

−−−→ Pn
dn−−−→ Pn−1 → . . .

that Im dn ⊆ radPn−1 for all n.

Definition 3.1. A ring A (noetherian and semi-perfect) is called a Backström
ring if there is a hereditary ring H ⊇ A (also semi-perfect and noetherian)
and a (two-sided, proper) H-ideal JA such that both R = H/J and S = A/J
are semi-simple.

For Backström rings there is a convenient way to the calculations in de-
rived categories. Recall that for a hereditary ring H every object C• from
D−(H-mod) is isomorphic to the direct sum of its homologies. Especially,
any indecomposable object from D−(H-mod) is isomorphic to a shift N [n]
for some H-module N , or, the same, to a “short” complex 0→ P ′ α

−→ P → 0,
where P and P ′ are projective modules and α is a monomorphism with
Imα ⊆ radP (maybe P ′ = 0). Thus it is natural to study the cate-
gory D−(A-mod) using this information about D−(H-mod) and the functor
T : D−(A-mod) → D−(H-mod) mapping C• to H ⊗A C•. (Of course, we
mean here the left derived functor of ⊗, but when we consider complexes of
projective modules, it restricts indeed to the usual tensor product.)

Consider a new category T = T (A) (the category of triples) defined as
follows:

• Objects of T are triples (A•, B•, ι), where

– A• ∈ D−(H-mod);

– B• ∈ D−(S-mod);

– ι is a morphism B• → R ⊗H A• from D−(S-mod) such that the
induced morphism ιR : R⊗S B• → R⊗H A• is an isomorphism in
D−(R-mod).

• A morphism from a triple (A•, B•, ι) to a triple (A′
•, B

′
•, ι

′) is a pair
(Φ, φ), where

– Φ : A• → A′
• is a morphism from D−(H-mod);

– φ : B• → B′
• is a morphism from D−(S-mod);

– the diagram

B•
ι

φ

R⊗H A•

1⊗Φ

B′
•

ι′ R⊗H A′
•

(5)

commutes in D−(S-mod).
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One can define a functor F : D−(A-mod)→ T (A) setting

F(C•) = (H⊗A C•,S⊗A C•, ι) ,

where ι : S⊗A C• → R⊗H (H⊗A C•) ' R⊗A C• is induced by the embed-
ding S→ R. The values of F on morphisms are defined in an obvious way.

Theorem 3.2. The functor F is a full representation equivalence, i.e. it is

• dense, i.e. every object from T is isomorphic to an object of the form
F(C•);

• full, i.e. each morphism F(C•) → F(C ′
•) is of the form F(γ) for some

γ : C• → C ′
•;

• conservative, i.e. F(γ) is an isomorphism if and only if so is γ;

As a consequence, F maps non-isomorphic objects to non-isomorphic and
indecomposable to indecomposable.

Note that in general F is not faithful : it is possible that F(γ) = 0 though
γ 6= 0 (cf. Example 3.10.3 below).

Proof (sketched). Consider any triple T = (A•, B•, ι). We may suppose that
A• is a minimal complex from C−(A-proj), while B• is a complex with zero
differential (since S is semi-simple), and the morphism ι is a usual morphism
of complexes. Note that R⊗H A• is also a complex with zero differential. We
have an exact sequence of complexes:

0 −→ JA• −→ A• −→ R⊗H A• −→ 0.

Together with the morphism ι : B• → R⊗HA• it gives rise to a commutative
diagram in the category of complexes C−(A-mod)

0 −−−→ JA• −−−→ C• −−−→ B• −−−→ 0∥∥∥ α

y
yι

0 −−−→ JA• −−−→ A• −−−→ R⊗H A• −−−→ 0,

where C• is the preimage in A• of Im ι. The lower row is also an exact sequence
of complexes and α is an embedding. Moreover, since ιR is an isomorphism,
JA• = JC•. It implies that C• consists of projective A-modules and H ⊗A

C• ' A•, wherefrom T ' FC•.
Let now (Φ, φ) : FC• → FC ′

•. We suppose again that both C• and C ′
•

are minimal, while Φ : H⊗A C• → H⊗A C
′
• and φ : S⊗A C• → S⊗A C

′
• are

morphisms of complexes. Then the diagram (5) is commutative in the category
of complexes, so Φ(C•) ⊆ C ′

• and Φ induces a morphism γ : C• → C ′
•. It is
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evident from the construction that F(γ) = (Φ, φ). Moreover, if (Φ, φ) is an
isomorphism, so are Φ and φ (since our complexes are minimal). Therefore,
Φ(C•) = C ′

•, i.e. Im γ = C ′
•. But ker γ = ker Φ ∩ C• = 0, thus γ is an

isomorphism too.

Evident examples of Backström rings are completions of local rings of ordinary
multiple points of algebraic curves. If A is such a ring, H is its normalization
(i.e. integral closure in the full ring of fractions) and J is the radical of A (or,
the same, of H). If the field k is algebraically closed, A is actually isomorphic
to a bouquet of power series rings k[[t]], i.e. to the subring in k[[t]]m, where m
is the multiplicity of the singularity, consisting of all sequences (f1, f2, . . . , fm)
such that all fi(t) have the same constant term. Backström rings also include
important classes of finite dimensional algebras, such as gentle, skew-gentle
and others (cf. [13]). Certainly, most of Backström rings are actually wild
(hence derived wild). Nevertheless, some of them are derived tame and their
derived categories behave very well. An important class of such rings, called
nodal rings, will be considered in the next subsection.

3.2 Nodal Rings: Strings and Bands

Definition 3.3. A Backström ring A is called a nodal ring if it is pure
noetherian, i.e. has no minimal ideals, while the hereditary ring H and the
ideal J from Definition 3.1 satisfy the following conditions:

1. J = radA = radH.

2. length
A

(H⊗A U) ≤ 2 for every simple left A-module U and
lengthA(V ⊗A H) ≤ 2 for every simple right A-module V .

Note that condition 2 must be imposed both on left and on right modules.

In this situation the hereditary ring H is also pure noetherian. It is known (cf.
e.g. [9]) that such a hereditary ring is Morita equivalent to a direct product of
rings H(D, n), where D is a discrete valuation ring (maybe non-commutative)
and H(D, n) is the subring of Mat(n,D) consisting of all matrices (aij) with
non-invertible entries aij for i < j. Especially, H and A are semi-prime (i.e.
without nilpotent ideals). For the sake of simplicity we shall only consider the
split case, when the factor H/J is a finite dimensional algebra over a field k

and A/J is its subalgebra.

Remark. In [23] the author showed that if A is pure noetherian, but not a
nodal ring, then the category of A-modules of finite length is wild. All the
more so are the categories A-mod and D b(A-mod).
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Example 3.4. 1. The first example of a nodal ring is the completion of the
local ring of a simple node (or a simple double point) of an algebraic curve
over a field k. It is isomorphic to A = k[[x, y]]/(xy) and can be embedded
into H = k[[x1]]×k[[x2]] as the subring of pairs (f, g) such that f(0) = g(0): x
maps to (x1, 0) and y to (0, x2). Evidently this embedding satisfies conditions
of Definition 3.3.

2. The dihedral algebra A = k〈〈 x, y 〉〉/(x2, y2) is another example of a nodal
ring. In this case H = H(k[[t]], 2) and the embedding A→ H is given by the
rule

x 7→

(
0 t
0 0

)
, y 7→

(
0 0
1 0

)
.

3. The “Gelfand problem,” arising from the study of Harish-Chandra mod-
ules over the Lie group SL (2,R), is that of classification of diagrams with
relations

2
x+

1
x− y−

3
y+

x+x− = y+y−.

If we consider the case when x+x− is nilpotent (the nontrivial part of the
problem), such diagrams are just modules over the ring A, which is the sub-
ring of Mat(3, k[[t]]) consisting of all matrices (aij) with a12(0) = a13(0) =
a23(0) = a32(0) = 0. The arrows of the diagram correspond to the following
matrices:

x+ 7→ te12, x− 7→ e21, y+ 7→ te13, y− 7→ e31,

where eij are the matrix units. It is also a nodal ring with H being the sub-
ring of Mat(3, k[[t]]) consisting of all matrices (aij) with a12(0) = a13(0) = 0
(it is Morita equivalent to H(k[[t]], 2) ). More general cases, arising in repre-
sentation theory of Lie groups SO (1, n), were considered in [41] (cf. also [11,
Section 7], where the corresponding diagrams are treated as nodal rings).

4. The classification of quadratic functors, which play an important role in
algebraic topology (cf. [5]), reduces to the study of modules over the ring A,
which is the subring of Z

2
2 ×Mat(2,Z2) consisting of all triples

(
a, b,

(
c1 2c2
c3 c4

))
with a ≡ c1 mod 2 and b ≡ c4 mod 2,

where Z2 is the ring of 2-adic integers [24]. It is again a (split) nodal ring:
one can take for H the ring of all triples as above, but without congruence
conditions; then H = Z2

2 ×H(Z2, 2).

Certainly, we shall apply Theorem 3.2 to study the derived categories of
modules over nodal rings. Moreover, in this case the resulting problem belongs
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to a well-known type, considered in [7, 8, 16] (for its generalization to the
non-split case, see [19]). We denote by U1, U2, . . . , Us indecomposable non-
isomorphic projective (left) modules over A, by V1, V2, . . . , Vr those over H
and consider the decompositions of H⊗AUi into direct sums of Vj. Condition
2 from Definition 3.3 implies that there are three possibilities:

1. H ⊗A Ui ' Vj for some j and Vj does not occur as a direct summand
in H⊗A Uk for k 6= i;

2. H ⊗A Ui ' Vj ⊕ Vj′ (j 6= j ′) and neither Vj nor Vj′ occur in H ⊗A Uk

for k 6= i;

3. There are exactly two indices i 6= i′ such that H⊗AUi ' H⊗AUi′ ' Vj

and Vj does not occur in H⊗A Uk for k /∈ { i, i′ }.

We denote by Hj the indecomposable projective H-module such that
Hj/JHj ' Vj. Since H is a semi-perfect hereditary order, any indecomposable

complex from D−(H-mod) is isomorphic either to 0→ Hk
φ
−→ Hj → 0 or to

0 → Hj → 0 (it follows, for instance, from [22]). Moreover, the former com-
plex is completely defined by either j or k and the length l = length

H
(Cokφ).

We shall denote it both by C(j,−l, n) and by C(k, l, n+ 1), while the latter
complex will be denoted by C(j,∞, n), where n is the number of the place of
Hj in the complex (so the number of the place of Hk is n+ 1). We denote by

Z̃ the set (Z \ { 0 }) ∪ {∞} and consider the ordering ≤ on Z̃, which coin-
cides with the usual ordering separately on positive integers and on negative
integers, but l <∞ < −l for any positive l. Note that for each j the submod-
ules of Hj form a chain with respect to inclusion. It immediately implies the
following result.

Lemma 3.5. There is a homomorphism C(j, l, n) → C(j, l′, n), which is an

isomorphism on the n-th components, if and only if l ≤ l′ in Z̃. Otherwise the
n-th component of any homomorphism C(j, l, n) → C(j, l′, n) is zero modulo
J.

We transfer the ordering from Z̃ to the set Ej,n =
{
C(j, l, n)

∣∣ l ∈ Z̃
}
, so the

latter becomes a chain with respect to this ordering. We also consider one
element sets Fj,n = { (j, n) } and denote

F∗
j,n = { (i, j, n) |Vj is a direct summand of H⊗A Ui } .

If j is fixed, there can be at most two such values of i. It happens when case
3 from page 103 occurs: H⊗A Ui ' H⊗A Ui′ ' Vj . Then we write (j, n) ∼
(j, n). We also write C(j,−l, n) ∼ C(k, l, n + 1) if these symbols denote the

same complex 0 → Hk
φ
−→ Hj → 0, and (j, n) ∼ (j ′, n) (j 6= j ′) if case 2

from page 103 occurs: H ⊗A Ui ' Vj ⊕ Vj′ (if j is fixed, there can be only
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one j ′ with this property). Thus a triple (A•, B•, ι) from the category T (A) is
given by homomorphisms φijn

jln : di,j,nUi → rj,l,nVj, where C(j, l, n) ∈ Ej,n and
(i, j, n) ∈ F∗

j,n. Here the left Ui comes from Bn and the right Vj comes from
the direct summands rj,l,nC(j, l, n) of A• after tensoring by R. Note that if
C(j,−l, n) ∼ C(k, l, n+1), we have rj,−l,n = rk,l,n+1, and if (j, n) ' (j ′, n), we
have di,j,n = di,j′,n for the unique possible value of i. We present φijn

jln by its

matrix M ijn
jln ∈ Mat(rj,l,n × di,j,n, k). Then Lemma 3.5 implies the following

Proposition 3.6. Two sets of matrices
{
M ijn

jln

}
and

{
N ijn

jln

}
describe iso-

morphic triples if and only if one of them can be transformed to the other one
by a sequence of the following “elementary transformations”:

1. For any given values of i, n, simultaneously M ijn
jln 7→ M ijn

jlnS for all j, l
such that (i, j, n) ∈ F∗

j,n, where S is an invertible matrix of appropriate
size.

2. For any given values of j, l, n, simultaneously M ijn
jln 7→ S ′M ijn

jln for all

(i, j, n) ∈ F∗
j,n and M i,k,n−sgn l

k,−l,n−sgn l 7→ S ′M i,k,n−sgn l
k,−l,n−sgn l for all (i, k, n− sgn l) ∈

F∗
k,n−sgn l, where S ′ is an invertible matrix of appropriate size and

C(j, l, n) ∼ C(k,−l, n−sgn l). If l =∞, it just meansM ijn
j∞n 7→ S ′M ijn

j∞n.

3. For any given values of j, l′ < l, n, simultaneously M ijn
jln 7→ M ijn

jln +

RM ijn
jl′n for all (i, j, n) ∈ F∗

j,n, where R is an arbitrary matrix of ap-
propriate size. (Note that, unlike the preceding transformation, this
one does not touch the matrices M i,k,n−sgn l

k,−l,n−sgn l such that C(j, l, n) ∼
C(k,−l, n− sgn l).)

This sequence can be infinite, but must contain finitely many transformations
for every fixed values of j and n.

Therefore, we obtain representations of the bunch of chains {Ej,n,Fj,n } con-
sidered in [7, 8],2 so we can deduce from these papers a description of inde-
composables in D−(A-mod) (for infinite words, which correspond to infinite
strings, see [12]). We arrange it in terms of strings and bands often used in
representation theory.

Definition 3.7. 1. We define the alphabet X as the set
⋃

j,n(Ej,n∪Fj,n). We
define symmetric relations ∼ and − on X by the following exhaustive rules:

(a) C(j, l, n)− (j, n) for all l ∈ Z;

(b) C(j,−l, n) ∼ C(k, l, n+1) if these both symbols correspond to the same

complex 0→ Hk
φ
−→ Hj → 0;

2Note that in [7, 8] they are called “bunches of semichained sets,” but we prefer to say
“bunches of chains,” as in [29, 11].
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(c) (j, n) ∼ (j ′, n) (j ′ 6= j) if Vj ⊕ Vj′ ' H⊗A Ui for some i;

(d) (j, n) ∼ (j, n) if Vj ' H⊗A Ui ' H⊗A Ui′ for some i′ 6= i.

2. We define an X-word as a sequence w = x1r1x2r2x3 . . . rm−1xm, where
xk ∈ X, rk ∈ {−,∼} such that

(a) xkrkxk+1 in X for 1 ≤ k < m;

(b) rk 6= rk+1 for 1 ≤ k < m− 1.

We call x1 and xm the ends of the word w.

3. We call an X-word w full if

(a) r1 = rm−1 = −

(b) x1 6∼ y for each y 6= x1;

(c) xm 6∼ z for each z 6= xm.

Condition (a) reflects the fact that ιR must be an isomorphism, while condi-
tions (b,c) come from generalities on bunches of chains [8, 11].

4. A word w is called symmetric if w = w∗, where w∗ = xmrm−1xm−1 . . . r1x1

(the inverse word), and quasi-symmetric if there is a shorter word v such that
w = v ∼ v∗ ∼ · · · ∼ v∗ ∼ v.

5. We call the end x1 (xm) of a word w special if x1 ∼ x1 and r1 = −
(respectively, xm ∼ xm and rm−1 = −). We call a word w

(a) usual if it has no special ends;

(b) special if it has exactly one special end;

(c) bispecial if it has two special ends.

Note that a special word is never symmetric, a quasi-symmetric word is always
bispecial, and a bispecial word is always full.

6. We define a cycle as a word w such that r1 = rm−1 =∼ and xm−x1. Such a
cycle is called non-periodic if it cannot be presented in the form v−v−· · ·−v
for a shorter cycle v. For a cycle w we set rm = −, xqm+k = xk and rqm+k = rk

for any q, k ∈ Z.

7. A k-th shift of a cycle w, where k is an even integer, is the cycle w[k] =
xk+1rk+1xk+2 . . . rk−1xk. A cycle w is called symmetric if w[k] = w∗ for some
k.

8. We also consider infinite words of the sorts w = x1r1x2r2 . . . (with one
end) and w = . . . x0r0x1r1x2r2 . . . (with no ends) with the following restric-
tions:
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(a) every pair (j, n) occurs in this sequence only finitely many times;

(b) there is an n0 such that no pair (j, n) with n < n0 occurs.

We extend to such infinite words all above notions in the obvious manner.

Definition 3.8 (String and band data). 1. String data are defined as
follows:

(a) a usual string datum is a full usual non-symmetric X-word w;

(b) a special string datum is a pair (w, δ), where w is a full special word and
δ ∈ { 0, 1 };

(c) a bispecial string datum is a quadruple (w,m, δ1, δ2), where w is a bis-
pecial word that is neither symmetric nor quasi-symmetric, m ∈ N and
δ1, δ2 ∈ { 0, 1 }.

2. A band datum is a triple (w,m, λ), where w is a non-periodic cycle, m ∈ N

and λ ∈ k
∗; if w is symmetric, we also suppose that λ 6= 1.

The results of [7, 8] (and [11] for infinite words) imply

Theorem 3.9. Every string or band datum d defines an indecomposable ob-
ject C•(d) from D−(A-mod), so that

1. Every indecomposable object from D−(A-mod) is isomorphic to C•(d)
for some d.

2. The only isomorphisms between these complexes are the following:

(a) C(w) ' C(w∗) and C(w, δ) ' C(w∗, δ);

(b) C(w,m, δ1, δ2) ' C(w∗, m, δ2, δ1);

(c) C(w,m, λ) ' C(w[k], m, λ) ' C(w∗[k], m, 1/λ) if k ≡ 0 mod 4;

(d) C(w∗, m, λ) ' C(w[k], m, 1/λ) ' C(w∗[k], m, λ) if k ≡ 2 mod 4.

3. Every object from D−(A-mod) uniquely decomposes into a direct sum
of indecomposable objects.

The construction of complexes C•(d) is rather complicated, especially in the
case, when there are pairs (j, n) with (j, n) ∼ (j, n) (e.g. special ends are in-
volved). So we only show several examples arising from simple node, dihedral
algebra and Gelfand problem.
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3.3 Examples

3.3.1 Simple Node

In this case there is only one indecomposable projective A-module (A
itself) and two indecomposable projective H-modules H1, H2 correspond-
ing to the first and the second direct factors of the ring H. We have
H⊗A A ' H ' H1 ⊕H2. So the ∼-relation is given by:

1. (1, n) ∼ (2, n);

2. C(j, l, n) ∼ C(j,−l, n− sgn l) for any l ∈ Z \ { 0 }.

Therefore, there are no special ends at all. Moreover, any end of a full string
must be of the form C(j,∞, n). Note that the homomorphism in the complex
corresponding to C(j,−l, n) and C(j, l, n + 1) (l ∈ N) is just multiplication
by xl

j. Consider several examples of strings and bands.

Example 3.10. 1. Let w be the cycle

C(2, 1, 1) ∼ C(2,−1, 0)− (2, 0) ∼ (1, 0)− C(1,−2, 0) ∼ C(1, 2, 1)− (1, 1)

∼ (2, 1)− C(2, 4, 1) ∼ C(2,−4, 0)− (2, 0) ∼ (1, 0)− C(1,−1, 0)

∼ C(1, 1, 1)− (1, 1) ∼ (2, 1)− C(2,−3, 1) ∼ C(2, 3, 2)− (2, 2)

∼ (1, 2)− C(1, 2, 2) ∼ C(1,−2, 1)− (1, 1) ∼ (2, 1)

Then the band complex C•(w, 1, λ) is obtained from the complex of H-
modules

H2
x2

H2

H1

x2
1

H1

H2

x4
2

H2

H1
x1

H1

H2

x3
2

H2

H1

x2
1

H1

λ

by gluing along the dashed lines (they present the ∼ relations (1, n) ∼ (2, n)).
All gluings are trivial, except the last one marked with ‘λ’; the latter must
be twisted by λ. It gives the A-complex

A
y

A

A

λx2

y3

A

x2

y4

A

A
x

(6)
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Here each column presents direct summands of a non-zero component Cn (in
our case n = 2, 1, 0) and the arrows show the non-zero components of the
differential. According to the embedding A→ H, we have to replace x1 by x
and x2 by y. Gathering all data, we can rewrite this complex as

A

 

λx2

0
y3

!

−−−−→ A⊕A⊕A

 

y 0
x2 y4

0 x

!

−−−−−→ A⊕A ,

though the form (6) seems more expressive, so we use it further. If m > 1,
one only has to replace A by mA, each element a ∈ A by aE, where E is
the identity matrix, and λa by aJm(λ), where Jm(λ) is the Jordan m×m cell
with eigenvalue λ. So we obtain the complex

mA
yE

mA

mA

x2Jm(λ)

y3E

mA

x2E

y4E
mA

mA
xE

or, the same,

mA

 

x2Jm(λ)
0

y3E

!

−−−−−−−→ mA⊕mA⊕mA

 

yE 0
x2E y4E

0 xE

!

−−−−−−−→ mA⊕mA .

2. Let w be the word

C(1,∞, 1)− (1, 1) ∼ (2, 1)− C(2, 2, 1) ∼ C(2,−2, 0)− (2, 0)

∼ (1, 0)− C(1,−3, 0) ∼ C(1, 3, 1)− (1, 1) ∼ (2, 1)− C(2,−1, 1)

∼ C(2, 1, 2)− (2, 2) ∼ (1, 2)− C(1, 1, 2) ∼ C(1,−1, 1)− (1, 1)

∼ (2, 1)− C(2, 2, 1) ∼ C(2,−2, 0)− (2, 0) ∼ (1, 0)− C(1,∞, 0) .

Then the string complex C•(w) is

A
y2

A

A
y

x

A
x3

A
y2

A

Note that for string complexes (which are always usual in this case) there are
no multiplicities m and all gluings are trivial.



Derived Categories of Modules and Coherent Sheaves 109.

3. Set a = x + y. Then the factor A/aA is represented by the complex
A

a
−→ A, which is the band complex C•(w, 1, 1), where

w = C(1, 1, 1) ∼ C(1,−1, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0)

∼ C(2, 1, 1)− (2, 1) ∼ (1, 1).

Consider the morphism of this complex to A[1] given on the 1-component by
multiplication A

x
−→ A. It is non-zero in D−(A-mod) (presenting a non-zero

element from Ext1(A/aA,A) ), but the corresponding morphism of triples is
(Φ, 0), where Φ arises from the morphism of the complex H

a
−→ H to H[1]

given by multiplication with x1. But Φ is homotopic to 0: x1 = e1a, where
e1 = (1, 0) ∈ H, thus (Φ, 0) = 0 in the category of triples. So the functor F
from Theorem 3.2 is not faithful in this case.

4. The string complex C•(l, 0), where w is the word

C(1,∞, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0) ∼ C(2, 1, 1)− (2, 1)

∼ (1, 1)− C(1,−2, 1) ∼ C(1, 1, 2)− (1, 2) ∼ (2, 2)− C(2,−1, 2)

∼ C(2, 1, 3)− (2, 3) ∼ (1, 3)− C(1,−2, 3) ∼ C(1, 2, 4)− . . . ,

is

. . . A
x2

−→ A
y
−→ A

x2

−→ A
y
−→ A −→ 0.

Its homologies are not left bounded, so it does not belong to Db(A-mod).

3.3.2 Dihedral Algebra

This case is very similar to the preceding one. Again there is only one indecom-
posable projective A-module (A itself) and two indecomposable projective
H-modules H1, H2, corresponding to the first and the second columns of ma-
trices from the ring H, and we have H ⊗A A ' H ' H1 ⊕ H2. The main
difference is that now the unique maximal submodule of Hj is isomorphic to
Hk, where k 6= j. So the ∼-relation is given by:

1. (1, n) ∼ (2, n);

2. C(j, l, n) ∼ C(j,−l, n − sgn l) if l ∈ Z \ { 0 } is even, and C(j, l, n) ∼
C(j ′,−l, n− sgn l), where j ′ 6= j, if l ∈ Z \ { 0 } is odd.

Again there are no special ends. The embeddings Hk → Hj are given by right
multiplications with the following elements from H:

H1 → H1 − by tre11 (colength 2r),

H1 → H2 − by tre12 (colength 2r − 1),

H2 → H1 − by tre21 (colength 2r + 1),

H2 → H2 − by tre22 (colength 2r).
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When gluing H-complexes into A-complexes we have to replace them respec-
tively

tre11 − by (xy)r, tre22 − by (yx)r,
tre12 − by (xy)r−1x, tre21 − by (yx)ry.

The gluings are quite analogous to those for simple node, so we only present
the results, without further comments.

Example 3.11. 1. Consider the band datum (w, 1, λ), where

w = C(1,−2, 0) ∼ C(1, 2, 1)− (1, 1) ∼ (2, 1)− C(2,−5, 1)

∼ C(1, 5, 2)− (1, 2) ∼ (2, 2)− C(2, 4, 2) ∼ C(2,−4, 1)− (2, 1)

∼ (1, 1)− C(1, 3, 1) ∼ C(2,−3, 0)− (2, 0) ∼ (1, 0).

The corresponding complex C•(w,m, λ) is

mA
xyE

mA

mA

(xy)2xE

(yx)2E
mA

xyxJm(λ)

2. Let w be the word

C(2,∞, 0)− (2, 0) ∼ (1, 0)− C(1,−1, 0) ∼ C(2, 1, 1)− (2, 1)

∼ (1, 1)− C(1, 3, 1) ∼ C(2,−3, 0)− (2, 0) ∼ (1, 0)− C(1,−3, 0)

∼ C(2, 3, 1)− (2, 1) ∼ (1, 1)− C(1,∞, 1).

Then the string complex C•(w) is

A
e21

t2e12
A

A
te21

A

3. The factor A/J is described by the infinite string complex C•(w):

. . . e21

A
te12

A
e21

A.

. . . te12

A
e21

A
te12

The corresponding word w is

· · · − C(2, 1, 2) ∼ C(1,−1, 1)− (1, 1) ∼ (2, 1)− C(2, 1, 1)

∼ C(1,−1, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0) ∼ C(1, 1, 1)− (1, 1)

∼ (2, 1)− C(2,−1, 1) ∼ C(1, 1, 2)− . . .
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3.3.3 Gelfand Problem

In this case there are 2 indecomposable projective H-modules H1 (the first
column) and H2 (both the second and the third columns). There are 3 inde-
composable A-projectives Ai (i = 1, 2, 3); Ai correspond to the i-th column
of A. We have H⊗AA1 ' H1 and H⊗AA2 ' H⊗AA3 ' H2. So the relation
∼ is given by:

1. (2, n) ∼ (2, n);

2. C(j, l, n) ∼ C(j,−l, n− sgn l) if l is even;

3. C(j, l, n) ∼ C(j ′,−l, n− sgn l) (j ′ 6= j) if l is odd.

Hence a special end is always (2, n).

Example 3.12. 1. Consider the special word w:

(2, 0)− C(2,−2, 0) ∼ C(2, 2, 1)− (2, 1) ∼ (2, 1)− C(2,−4, 1)

∼ C(2, 4, 2)− (2, 2) ∼ (2, 2)− C(2, 2, 2) ∼ C(2,−2, 1)− (2, 1)

∼ (2, 1)− C(2,−1, 1) ∼ C(1, 1, 2)− (1, 2) .

The complex C•(w, 0) is obtained by gluing from the complex of H-modules

H2 2 H2

H2 4 H2

H2 2 H2

H1 1 H2

Here the numbers inside arrows show the colengths of the corresponding im-
ages. We mark dashed lines defining gluings with arrows going from the bigger
complex (with respect to the ordering in Ej,n) to the smaller one. When we
construct the corresponding complex of A-modules, we replace each H2 by
A2 and A3 starting with A2 (since δ = 0; if δ = 1 we start from A3). Each
next choice is arbitrary with the only requirement that every dashed line
must touch both A2 and A3. (Different choices lead to isomorphic complexes:
one can see it from the pictures below.) All horizontal mappings must be
duplicated by slanting ones, carried along the dashed arrow from the starting
point or opposite the dashed arrow with the opposite sign from the ending
point (the latter procedure will be marked by ‘−’ near the duplicated arrow).
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So we get the A-complex

A2 2 A2

A3

−

4

4

2

2

A3

2

A2 2

2

A2

A1

−1

1 A3

All mappings are uniquely defined by the colengths in the H-complex, so we
just mark them with ‘l.’

2. Let w be the bispecial word

(2, 2)− C(2, 2, 2) ∼ C(2,−2, 1)− (2, 1) ∼ (2, 1)− C(2, 2, 1)

∼ C(2,−2, 0)− (2, 0) ∼ (2, 0)− C(2,−4, 0) ∼ C(2, 4, 1)− (2, 1)

∼ (2, 1)− C(2, 6, 1) ∼ C(2,−6, 0)− (2, 0)

The complex C•(w,m, 1, 0) is the following one:

aA3 ⊕ bA2 M1

−−M1

mA3

2

−

2mA2

2 −

2 mA3

mA3 4 mA2

mA2

4

M2 aA2 ⊕ bA3

where a = [(m+1)/2], b = [m/2], so a+b = m. (The change of δ1, δ2 transpose
A2 and A3 at the ends.) All arrows are just αlE, where αl is defined by the
colength l, except of the “end” matrices Mi. To calculate the latter, write
αlE for one of them (say, M1) and αlJ for another one (say, M2), where J is
the Jordan m×m cell with eigenvalue 1, then put the odd rows or columns
into the first part of Mi and the even ones to its second part. In our example
we get

M1 = α2




1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0



, M2 = α6




1 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 1 1 0 0
0 0 0 1 1



.

(We use columns for M1 and rows for M2 since the left end is the source and
the right end is the sink of the corresponding mapping.)
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3. The band complex C•(w, 1, λ), where w is the cycle

(2, 1) ∼ (2, 1)− C(2,−2, 1) ∼ C(2, 2, 2)− (2, 2) ∼ (2, 2)− C(2, 4, 2)

∼ C(2,−4, 1)− (2, 1) ∼ (2, 1)− C(2, 6, 1) ∼ C(2,−6, 0)− (2, 0)

∼ (2, 0)− C(2,−4, 0) ∼ C(2, 4, 1)

is

mA2 2

−

2

mA2

4λ

−
4λ

mA3

2

4

−

4

−

2

mA2

6

mA3 6 mA2

mA3

4λ −

4λ mA3

Superscript ‘λ’ denotes that the corresponding mapping must be twisted by
Jm(λ).

4. The projective resolution of the simple A-module U1 is

A2 1 A1

A1

−

1

1 A3

1

It coincides with the usual string complex C•(w), where w is

(1, 0)− C(1,−1, 0) ∼ C(2, 1, 1)− (2, 1) ∼ (2, 1)− C(2,−1, 1)

∼ C(1, 1, 2)− (1, 2).

The projective resolution of U2 (U3) is A1 → A2 (respectively A1 → A3),
which is the special string complex C•(w, 0) (respectively C•(w, 1)), where

w = (2, 0)− C(2,−1, 0) ∼ C(1, 1, 1)− (1, 1).

Note that gl.dim A = 2. It is due to the fact that the case 1 from page 103
occur: H⊗A A1 ' H1. One can prove the following consequence of the above
calculations.

Corollary 3.13. Let A be a nodal ring. Suppose that there is no simple A-
module U such that H ⊗A U is a simple H-module. Then gl.dim A = ∞;
moreover, the finitistic dimension ( in the sense of [3]) of A equals 1, i.e. for
every A-module M either proj.dimM ≤ 1 or proj.dimM =∞.
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4 Projective Curves

In this section we consider “global” analogues of the results of the preced-
ing one, namely, the derived categories of the categories CohX of coherent
sheaves over some projective curves X. Again we first consider a general
framework (“projective configurations,” which are an analogue of Backström
rings), when the calculations in CohX can be reduced to some matrix prob-
lems. Then we apply this technique to those classes of projective configura-
tions, where the resulting matrix problem is tame. Throughout this section we
suppose that the field k is algebraically closed. Analogous results can also be
deduced for non-closed fields using the technique of [19], though the picture
becomes more complicated.

4.1 Projective Configurations

Definition 4.1. Let X be a projective curve over k, which we suppose re-
duced but possibly reducible. We denote by π : X̃ → X its normalization;
then X̃ is a disjoint union of smooth curves. We call X a projective configura-
tion if all components of X̃ are rational curves (i.e. of genus 0) and all singular
points p of X are ordinary, i.e. the dimension of the tangent cone at p or, the
same, the number of linear independent tangent directions at this point equals
its multiplicity. Algebraically it means that, if π−1(p) = { y1, y2, . . . , ym }, the
image of OX,p in

∏m

i=1OX̃,yi
contains

∏m

i=1 mi, where mi is the maximal ideal
of OX̃,yi

.

We denote by S the set of singular points of X, by S̃ = π−1(S) its preimage
in X̃ and consider S (S̃) as a closed subvariety of X (resp. X̃). Let ε : S → X
and ε̃ : S̃ → X̃ be their embeddings, and π : S̃ → S be the restriction
of π onto S̃. We also put O = OX , Õ = OX̃ , S = OS, R = OS̃, and

denote by J the conductor of Õ in O, i.e. the maximal sheaf of π∗Õ-ideals
contained in O. Note that Sp ' Op/Jp and Ry ' Õy/(π∗J )y. Since S and
S̃ are 0-dimensional, hence affine, the categories CohS and Coh S̃ can be
identified with the categories of modules, respectively, S-mod and R-mod,
where S =

∏
p∈S Sp and R =

∏
y∈S̃Ry. If X is a projective configuration,

these algebras are semisimple, namely Sp ' k(p) and Ry ' k(y). Moreover,

one easily sees that J ' π∗Õ(−S̃), where Õ(−S̃) = Õ(−
∑

y∈S̃ y).
Since X is a projective variety, Serre’s theorem [40, Theorem III.5.17]

shows that for every coherent sheaf F ∈ CohX there is an integer n0 such
that all sheaves F(n) for n ≥ n0 are generated by their global sections, or,
the same, there are epimorphisms mO → F(n). It easily implies that the
derived category D−(CohX) can be identified with the category of fractions
H−(VB X)[Q−1], where VB X is the category of locally free coherent sheaves
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(equivalently, the category of vector bundles [40, Exercise II.5.18]) over X and
Q is the set of quasi-isomorphisms in H−(VB X). So we always present ob-
jects from D−(CohX) and from D−(Coh X̃) as complexes of vector bundles.
We denote by T : D−(CohX) → D−(Coh X̃) the left derived functor Lπ∗.
Again if C• is a complex of vector bundles, TC• coincides with π∗C•.

Just as in Subsection 3.1, we define the category of triples T = T (X):
Objects of T are triples (A•,B•, ι), where

- A• ∈ D−(Coh X̃) (we always present it as a complex of vector bundles);

- B• ∈ D−(CohS) (we always present it as a complex with zero differen-
tial);

- ι is a morphism B• → π∗ε̃
∗A• from D−(CohS) such that the induced

morphism ιR : π∗B• → ε̃∗A• is an isomorphism in D−(CohR).

A morphism from a triple (A•,B•, ι) to a triple (A′
•,B

′
•, ι

′) is a pair (Φ, φ),
where

- Φ : A• → A
′
• is a morphism from D−(Coh X̃);

- φ : B• → B
′
• is a morphism from D−(CohS);

- the diagram

B•
ι

φ

π∗ε̃
∗A•

π∗ε̃∗Φ

B′
•

ι′ π∗ε̃
∗A′

•

(7)

commutes in D−(CohS).

We define a functor F : D−(CohX)→ T (X) setting F(C•) = (π∗C•, ε
∗C•, ι),

where ι : ε∗C• → π∗ε̃
∗(π∗C•) is induced by the natural isomorphism π∗ε∗F• '

ε̃∗π∗F•.. Just as in Section 1, the following theorem holds (with almost the
same proof, see [12]).

Theorem 4.2. The functor F is a representation equivalence, i.e. it is dense
and conservative.

Remark. We do not now whether it is full, though it seems very plausible.

Just as for Backström rings, most projective configurations are vector bundle
wild. Namely, in [29] it was shown that the only projective curves, which are
not vector bundle wild, are the following:

• Projective line P1.

• Elliptic curves, i.e. smooth projective curves of genus 1, or, the same,
smooth plane cubics.
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• Projective configurations of types A and Ã (see the next subsection for
their definitions).

Actually, projective line and projective configurations of type A are vector
bundle finite, i.e. have only finitely many indecomposable vector bundles
(up to isomorphism and natural twists), while elliptic curves and projective
configurations of type Ã are vector bundle tame. Since the derived cate-
gory D−(CohX) (even D b(CohX) ) contains CohX as a full subcategory, it
can never be representation finite. We always have one-parameter family of
skyscrapers, such as k(x) (x ∈ X). If the curve X is smooth, the category
CohX is hereditary, thus its indecomposable objects are just shifts of sheaves.
Moreover, every coherent sheaf is a direct sum of a vector bundle and several
skyscrapers, i.e. sheaves supported in one point. The latter are just O/mk

x

for some x ∈ X and some integer k, so they form one-parameter families.
Hence, if a smooth curve is vector bundle tame, it is derived tame as well. It
happens, just as in the case of pure noetherian rings, that all vector bundle
tame projective curves are also derived tame, though for projective configu-
rations of types A and Ã the structure of skyscrapers is more complicated (it
involve modules over local rings, which are nodal) and, moreover, there are
“mixed” sheaves, which are neither vector bundles (even not torsion free) nor
skyscrapers.

4.2 Configurations of Types A and Ã

Now we suppose that X is a projective configurations and all singular points
of X are nodes (or double points). To such a curve one associates a graph
∆(X) called its intersection graph or dual graph. The vertices of ∆(X) are the
irreducible components of X and the edges of ∆(X) are the singular points
of X. The ends of an edge p are the components containing this point. In
particular, if p only belongs to one component, it is a loop in ∆(X). Note
that the graph ∆(X) does not completely define X. For instance, consider
the case, when ∆(X) is the graph of type D̃4, i.e.

• •
•

• •

The component corresponding to the central point contains 4 singular points.
Therefore, their harmonic ratio is invariant under isomorphisms of P

1 and can
be an arbitrary scalar λ ∈ k \ { 0, 1 } (these points can always be chosen as
0, 1, λ,∞). Thus the configurations with this dual graph but different values
of λ are not isomorphic.

We say that a projective configuration X is
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• of type A if its intersection graph is a chain:

1 2 . . . s

• of type Ã if its intersection graph is a cycle:

1 2 . . . s

(If s = 1, the projective configuration of type A is just a projective line,
while the projective configuration of type Ã is a nodal cubic.)

In other words, in the A-case irreducible components X1, X2, . . . , Xs and sin-
gular points p1, p2, . . . , ps−1 can be arranged so that pi ∈ Xi∩Xi+1, while in the
Ã-case the components X1, X2, . . . , Xs and the singular points p1, p2, . . . , ps

can be so arranged that pi ∈ Xi ∩ Xi+1 for i < s and ps ∈ Xs ∩ X1. Note
that in the A-case s > 1, while in the Ã-case s = 1 is possible: then there is
one component with one ordinary double point (a nodal plane cubic). These
projective configurations are global analogues of nodal rings, and the calcu-
lations according Theorem 4.2 are quite similar to those of Section 3. We
present here the calculations for the Ã-case and add remarks explaining what
changes should be made for the A-case.

If s > 1, the normalization of X is just a disjoint union
⊔s

i=1Xi; for
uniformity, we write X1 = X̃ if s = 1. We also denote Xqs+i = Xi. Certainly,
Xi ' P1 for all i. Every singular point pi has two preimages p′i, p

′′
i in X̃;

we suppose that p′i ∈ Xi corresponds to the point ∞ ∈ P1 and p′′i ∈ Xi+1

corresponds to the point 0 ∈ P
1. Recall that any indecomposable vector

bundle over P1 is isomorphic to OP1(d) for some d ∈ Z. So every indecom-
posable complex from D−(Coh X̃) is isomorphic either to 0 → Oi(d) → 0
or to 0 → Oi(−lx) → Oi → 0, where Oi = OXi

, d ∈ Z, l ∈ N and
x ∈ Xi. The latter complex corresponds to the indecomposable sky-scraper
sheaf of length l and support {x }. (It is isomorphic in the derived category
to any complex 0 → Oi((k − l)x) → Oi(kx) → 0 with arbitrary k ∈ Z.)
We denote this complex by C(x,−l, n) and by C(x, l, n + 1). The complex
0→ Oi(d)→ is denoted by C(p′i, dω, n) and by C(p′′i−1, dω, n). As before, n is
the unique place, where the complex has non-zero homologies. We define the
symmetric relation ∼ for these symbols setting C(x,−l, n) ∼ C(x, l, n + 1)
and C(p′i, dω, n) ∼ C(p′′i−1, dω, n).

Let Zω = (Z ⊕ { 0 }) ∪ Zω, where Zω = { dω | d ∈ Z }. We introduce an
ordering on Z

ω, which is natural on N, on −N and on Zω, but l < dω < −l for
each l ∈ N, d ∈ Z. Recall that Hom(Oi(d),Oi(d

′)) can be considered as the
space of homogeneous polynomial of degree d′−d in homogeneous coordinates
on P1 if d′ ≥ d; otherwise it is zero. Note also that Cn(x) ' k if C = C(x, l, n)
for some l ∈ Zω. It easily implies the following analogue of Lemma 3.5.
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Lemma 4.3. There is a morphism of complexes C• = C(x, z, n) → C ′• =
C(x, z′, n) such that its nth component induces a non-zero mapping (actually
an isomorphism) Cn(x) → C ′n(x) if and only if z ≤ z′ in Zω. Moreover,
if z = dω, z′ = d′ω, d′ > d and x ∈ S, hence also C• = C(x′, z, n) and
C ′• = C(x′, z′, n) for another singular point x′, there is a morphism φ : C• → C

′
•

such that φ(x) 6= 0, but φ(x′) = 0.

We introduce the ordered sets Ex,n = {C(x, z, n) | z ∈ Zω } with the order-
ing inherited from Zω, We also put Fx,n = { (x, n) } and (p′i, n) ∼ (p′′i−1, n)
for all i, n. Lemma 4.3 shows that the category of triples T (X) can be
again described in terms of the bunch of chains {Ex,n, Fx,n }. Thus we can
describe indecomposable objects in terms of strings and bands just as for
nodal rings. We leave the corresponding definitions to the reader; they are
quite analogous to those from Section 3. If we consider a configuration of
type A, we have to exclude the points p′s, p

′′
s and the corresponding sym-

bols C(p′s, z, n), C(p′′s , z, n), (p′s, n), (p′′s , n). Thus in this case C(p′′s−1, dω, n)
and C(p′1, dω, n) are not in ∼ relation with any symbol. It makes possible
finite or one-side infinite full strings, while in the Ã-case only two-side infi-
nite strings are full. Note that an infinite word must contain a finite set of
symbols (x, n) with any fixed n; moreover there must be n0 such that n ≥ n0

for all entries (x, n) that occur in this word.

If x /∈ S̃ (thus z /∈ Zω), the complex C(x, z, n) vanishes under ε̃∗, so gives
no essential input into the category of triples. It gives rise to the n-th shift of
a sky-scraper sheaf with support at the regular point π(x). In the language of
bunches of chains it follows from the fact that (x, n) 6∼ (x′, n) for any x′ 6= x,
hence the only full words containing (x, n) are (x, n) − C(x, l, n) for some
l ∈ Z \ { 0 }. Therefore, in the following examples we only consider complexes
C(x, z, n) with x ∈ S̃. Moreover, we confine most examples to the case s = 1
(so X is a nodal cubic). If s > 1, one must distribute vector bundles in the
pictures below among the components of X̃.

Example 4.4. 1. First of all, even a classification of vector bundles is non-
trivial in Ã case. They correspond to the bands concentrated at 0 place, i.e.
such that the underlying cycle w is of the form

(p′s, 0) ∼ (p′′s , 0)− C(p′′s , d1ω, 0) ∼ C(p′1, d1ω, 0)− (p′1, 0)

∼ (p′′1, 0)− C(p′′1, d2ω, 0) ∼ C(p′2, d2ω, 0)− (p′2, 0)

∼ (p′′2, 0)− C(p′′2, d3ω, 0) ∼ · · · ∼ C(p′s, drsω, 0)

(obviously, its length must be a multiple of s, and we can start from any place
p′k, p

′′
k). Then C•(w,m, λ) is actually a vector bundle, which can be schemati-
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cally described as the following gluing of vector bundles over X̃.

•
d1 •

λ

•
d2 •

•
d3 •

...

•
drs •

Here horizontal lines symbolize line bundles over Xi of the superscripted
degrees, their left (right) ends are basic elements of these bundles at the
point ∞ (respectively 0), and the dashed lines show which of them must be
glued. One must take m copies of each vector bundle from this picture and
make all gluings trivial, except one going from the uppermost right point to
the lowermost left one (marked by ‘λ’), where the gluing must be performed
using the Jordan m×m cell with eigenvalue λ. In other words, if e1, e2, . . . , em

and f1, f2, . . . , fm are bases of the corresponding spaces, one has to identify f1

with λe1 and fk with λek + ek−1 for k > 1. We denote this vector bundle over
X by V(d, m, λ), where d = (d1, d2, . . . , drs); it is of rank mr and of degree
m

∑r
i=1 di. If r = s = 1, this picture becomes

• d
λ

•

If r = m = 1, we obtain all line bundles: they are V((d1, d2, . . . , ds) , 1, λ) (of
degree

∑s

i=1 di). Thus the Picard group is Zs × k∗.

In the A-case, there are no bands concentrated at 0 place, but there are finite
strings of this sort:

C(p′′1, d1ω, 0)− (p′1, 0) ∼ (p′′1, 0)− C(p′′1, d2ω, 0) ∼

∼ C(p′2, d2, 0)− (p′2, 0) ∼ (p′′2, 0)− C(p′′2, d3, 0) ∼

· · · ∼ C(p′s−1, ds−1ω, 0)− (p′s−1, 0) ∼ (p′′s−1, 0)− C(p′′s−1, dsω, 0)

So vector bundles over such configurations are in one-to-one correspondence
with integral vectors (d1, d2, . . . , ds); in particular, all of them are line bundles
and the Picard group is Zs. In the picture above one has to set r = 1 and to
omit the last gluing (marked with ‘λ’).
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2. From now on s = 1, so we write p instead of p1. Let w be the cycle

(p′′, 1) ∼ (p′, 1)− C(p′,−2, 1) ∼ C(p′, 2, 2)− (p′, 2) ∼ (p′′, 2)−

− C(p′′, 3ω, 2) ∼ C(p′, 3ω, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′, 3, 2) ∼

∼ C(p′′,−3, 1)− (p′′, 1) ∼ (p′, 1)− C(p′, 1, 1) ∼ C(p′,−1, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′,−2, 0) ∼ C(p′′, 2, 1).

Then the band complex C•(w,m, λ) can be pictured as follows:

• ◦ 2 •

λ

◦

• 3 •

◦ • 3 ◦ •

• ◦ 1 • ◦

◦ • 3 ◦ •

Again horizontal lines describe vector bundles over X̃. Bullets and circles
correspond to the points∞ and 0; circles show those points, where the corre-
sponding complex gives no input into π∗ε̃

∗A•. Horizontal arrows show mor-
phisms in A•; the numbers l inside give the lengths of factors. For instance,
the first row in this picture describes the complex C(p′,−2, 1), the second one
is C(p′, 3ω, 2) (or, the same, C(p′′, 3ω, 2) ) and the last one is C(p′′,−3, 0).
Dashed and dotted lines describe gluings. Dashed lines (between bullets) cor-
respond to mandatory gluings arising from relations (p′, n) ∼ (p′′, n) in the
word w, while dotted lines (between circles) can be drawn arbitrarily; the
only conditions are that each circle must be an end of a dotted line and the
dotted lines between circles sitting at the same level must be parallel (in our
picture they are between the 1st and 3rd levels and between the 4th and 5th
levels). The degrees of line bundles in complexes C(x, z, n) with z ∈ N∪(−N)
(they are described by the levels containing 2 lines) can be chosen as d − l
and d with arbitrary d, otherwise (in the second row) they are superscripted
over the line. We set d = 1 in the last row and d = 0 elsewhere. Thus the
resulting complex is

V((−2, 3,−3), m, 1) −→ V((0, 0,−1,−2), m, λ) −→ V((0, 1), m, 1)

(we do not precise mappings, but they can be easily restored). Note that
our choice of d’s enables to consider the components of this complex as the
“standard” vector bundles V(d, m, λ) from the preceding example.
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3. If s = 1, the sky-scraper sheaf k(p) is described by the complex

· · · ◦ • ◦ • 1 ◦ •

· · · • ◦ 1 • ◦ • ◦ 1 • ◦

· · · ◦ • 1 ◦ • ◦ • 1 ◦ •

· · · • ◦ • ◦ 1 • ◦

which is the string complex corresponding to the word

. . . C(p′,−1, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′, 1, 2) ∼ C(p′′,−1, 1)−

− (p′′, 1) ∼ (p′, 1)− C(p′, 1, 1) ∼ C(p′,−1, 0)− (p′, 0) ∼

∼ (p′′, 0)− C(p′′,−1, 0) ∼ C(p′′, 1, 1)− (p′′, 1) ∼ (p′, 1)−

− C(p′,−1, 1) ∼ C(p′, 1, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′,−1, 2) . . .

4. The band complex C(w,m, λ) , where w is the cycle

(p′, 0) ∼ (p′′, 0)− C(p′′,−3ω, 0) ∼ C(p′,−3ω, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′, 0ω, 0) ∼ C(p′, 0ω, 0)− (p′, 0) ∼

∼ (p′′, 0)− C(p′′,−1, 0) ∼ C(p′′, 1, 1)− (p′′, 1) ∼ (p′, 1)−

− C(p′′, 2, 1) ∼ C(p′,−2, 0)− (p′, 0) ∼ (p′′, 0)− C(p′′,−4, 0) ∼

∼ C(p′′, 4, 1)− (p′′, 1) ∼ (p′, 1)− C(p′, 5, 1) ∼ C(p′,−5, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′, 0ω, 0) ∼ C(p′, 0ω, 0)

describes the complex

• -3 •
λ

• 0 •

◦ • 1 ◦ •

• ◦ 2 • ◦

◦ • 4 ◦ •

• ◦ 5 • ◦

• 0 •

or
V((0, 0), m, 1)⊕ V((0, 0), m, 1) −→ V((−3, 0, 1, 2, 4, 5, 0), m, λ).
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Its homologies are zero except the place 0, so it corresponds to a coherent
sheaf. One can see that this sheaf is a “mixed” one (neither torsion free nor
sky-scraper). Note that this time we could trace dotted lines another way,
joining the first free end with the last one and the second with the third:

• -3 •
λ

• 0 •

◦ • 1 ◦ •

• ◦ 2 • ◦

◦ • 4 ◦ •

• ◦ 5 • ◦

• 0 •

It gives an isomorphic object in D (CohX) :

V((0, 0, 0, 0), m, 1) −→ V((-3, 0, 1, 5, 0), m, λ)⊕ V((2, 4), m, 1).

Remark 4.5. In [12] we used another encoding of strings and bands for
projective configurations, which is equivalent but uses more specifics of the
situation. In this paper we prefer to use a uniform encoding, which is the
same both for nodal rings and for projective configurations.

4.3 Application to Cohen–Macaulay Modules

The description of vector bundles has an important application in the theory
of Cohen–Macaulay modules over surface singularities.

Definition 4.6. 1. By a normal surface singularity over the field k, which
we suppose algebraically closed, we mean a complete noetherian k-algebra A
such that:

• Kr.dimA = 2;

• A/m ' k, where m is the maximal ideal of A;

• A has no zero divisors and is normal, i.e. integrally closed in its field of
fractions;

• A is not regular, i.e. gl.dimA =∞.

We denote by X the scheme SpecA, by p ∈ X the point corresponding to the
maximal ideal m (the unique closed point of X) and by X̆ the open subscheme
X \ { p }.
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2. A resolution of such a singularity is a morphism of k-schemes π : X̃ → X
such that:

• X̃ is smooth;

• π is projective (hence closed) and birational;

• the restriction of π onto X̃ \E, where E = π−1(p)red, is an isomorphism
X̃ \E → X̆; we shall identify X̃ \ E with X̆ using this isomorphism.

We call E the exceptional curve of the resolution π (it is indeed a projective
curve) and denote by E1, E2, . . . , Es its irreducible components.

3. A resolution π : X̃ → X is called minimal, if it cannot be decomposed as
X̃ → X ′ → X, where X ′ is also smooth.

Recall that such a resolution, as well as a minimal resolution, always
exists (cf. e.g. [47]).

In [43] Kahn established a one-to-one correspondence between Cohen–
Macaulay modules over a normal surface singularity A and a class of vector
bundles over a reduction cycle Z ⊆ X̃, which is given by a specially chosen ef-
fective divisor

∑s

i=1miEi (mi > 0). His result becomes especially convenient
if this singularity is minimally elliptic in the sense of [46]. It means that A is
Gorenstein (i.e. inj.dim A = 2) and dim H1(X̃,OX̃) = 1. Let π : X̃ → X be
the minimal resolution of a minimally elliptic singularity, Z be its fundamen-
tal cycle, i.e. the smallest effective cycle such that all intersection numbers
(Z.Ei) are non-positive. Then Z is a reduction cycle in the sense of Kahn,
and the following result holds.

Theorem 4.7 (Kahn). There is one-to-one correspondence between Cohen–
Macaulay modules over A and vector bundles F over Z such that F ' G ⊕
nOZ , where

(i) G is generically spanned, i.e. global sections from Γ(E,G) generate G
everywhere, except maybe finitely many closed points;

(ii) H1(E,G) = 0;

(iii) n ≥ dimk H0(E,G(Z)).

Especially, indecomposable Cohen–Macaulay A-modules correspond to vector
bundles F ' G ⊕ nOZ , where either G = 0, n = 1 or G is indecomposable,
satisfies the above conditions (i,ii) and n = dimk H0(E,G(Z)). (The vector
bundle OZ corresponds to the regular A-module, i.e. A itself.)

Kahn himself deduced from this theorem and the results of Atiyah [1] a de-
scription of Cohen–Macaulay modules over simple elliptic singularities, i.e.
such that E is an elliptic curve (smooth curve of genus 1). Using the results
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of subsection 4.2, one can obtain an analogous description for cusp singulari-
ties, i.e. such that E is a projective configuration of type Ã. Briefly, one gets
the following theorem (for more details see [30]).

Theorem 4.8. There is a one-to-one correspondence between indecomposable
Cohen–Macaulay modules over a cusp singularity A, except the regular module
A, and vector bundles V(d, m, λ), where d = (d1, d2, . . . , drs) satisfies the
following conditions:

• d > 0, i.e. di ≥ 0 for all i and d 6= (0, 0, . . . , 0);

• no shift of d, i.e. a sequence (dk+1, . . . , drs, d1, . . . , dk), contains a sub-
sequence (0, 1, 1, . . . , 1, 0), in particular (0, 0);

• no shift of d is of the form (0, 1, 1, . . . , 1).

Moreover, from Theorem 4.7 and the results of [29] one gets the following
corollary [30]:

Theorem 4.9. If a minimally elliptic singularity A is neither simple ellip-
tic nor cusp, it is Cohen–Macaulay wild, i.e. the classification of Cohen–
Macaulay A-modules includes the classification of representations of all
finitely generated k-algebras.

An important example of Cohen–Macaulay tame minimally elliptic singular-
ities are the surface singularities of type Tpqr, i.e. factor rings

k[[x, y, z]]/(xp + yq + zr + λxyz) (1/p+ 1/q + 1/r ≤ 1).

They are simple elliptic if 1/p+ 1/q + 1/r = 1 and cusp otherwise [49].
As a consequence of Theorem 4.8 and the Knörrer periodicity theorem

[44, 50], one also obtains a description of Cohen–Macaulay modules over hy-
persurface singularities of type Tpqr, i.e. factor rings

k[[x1, x2, . . . , xn]]/(xp
1 + xq

2 + xr
3 + λx1x2x3 +Q) (1/p+ 1/q + 1/r ≤ 1),

where Q is a non-degenerate quadratic form of x4, . . . , xn, and over curve
singularities of type Tpq, i.e. factor rings

k[[x, y]]/(xp + yq + λx2y2) (1/p+ 1/q ≤ 1/2).

The latter fills up a flaw in the result of [27], where one has only proved
that the curve singularities of type Tpq are Cohen–Macaulay tame, but got
no explicit description of modules.

Suppose that char k = 0. Then it is known [2, 32] that a normal surface
singularity A is Cohen–Macaulay finite, i.e. has only a finite number of non-
isomorphic indecomposable Cohen–Macaulay modules, if and only if it is a
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quotient singularity, i.e. A ' k[[x, y]]G, where G is a finite group of automor-
phisms. (I do not know a criterion of finiteness if char k > 0). Just in the same
way one can show that all singularities of the form A = BG, where B is either
simple elliptic or cusp, are Cohen–Macaulay tame, and obtain a description
of Cohen–Macaulay modules in this case. Actually such singularities coincide
with the so called log-canonical singularities [45]. There is an evidence that all
other singularities are Cohen–Macaulay wild, so Table 1 completely describes
Cohen–Macaulay types of isolated singularities (for the curve case see [27];
we mark by ‘?’ the places, where the result is still a conjecture).

Table 1.

Cohen–Macaulay types of singularities

CM type curves surfaces hypersurfaces

finite dominate quotient simple
A-D-E (A-D-E)

tame dominate log-canonical Tpqr

Tpq (only ?) (only ?)

wild all other all other ? all other ?
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